

Figure 2.5 European Climate data 0.5° long x 0.5° lat resolution - Axis 3

Figure 2.6 European Climate data 0.5° long x 0.5° lat resolution - Axis 3

Figure 2.7 European Climate data 0.5° long x 0.5° lat resolution - Axis 4

Figure 2.8 European Climate data 0.5° long x 0.5° lat resolution - Axis 4

8 Lalc Cuskict
11 Yudgtur Daks
Cusw 2
1 Borker Uhax
2 Nantem Formes

9 Ontrian Castal Plain
10 Murexnke Hy Litesturs
12 Southen Privics
18 The Dak Ftik
30 The Whice Ftak
Chster 3
3 Nruhniteriand Coxstal Prain
4 Tyr Vas
5 Datwin Magrecium Lincsine
14 Nax Yuk Mars
Charer 4
13 Vale of Yink
15 Yonchint Whid
16 Fhimstat Hizemess
17 Lankatier Pkin

${ }_{2}^{24}$ Lincumsine Chatal Pain
2 Lower Derweit Valley
31 Saffunktire Nartem Lphand
32 Mreses and Mres
33 Stropsime Chatk
34 Lipre Ture Vally

Chasts 5
Gi) Exniry and Oxanch
61 OXm Meares
62 Drimat
7) South Hest Pail

71 Exdmin
Chrse ${ }^{\circ}$
2) Chtbetice Mapresim Limesine

21 Serwond firest
22 Trat Valry artl level
23 Cover Smis
26 Linculdexine (iny Valas
37 Lircohndare Limestixe
37 Nuth Nafil
4) Sandadiqu

53 Noth Ker Phan
66 South $\mathrm{E} \mathrm{y}_{\mathrm{M}} \mathrm{B}$
as Romicy Mench
Oryer 7
28 Froman!
35 Brranghan Pateau
36 Wadk Sariktur Rkiza
39 East Andian
39 East Anian Mams
42 Eas Mrdand Lowian
44 Severn Vally
44 Hevernd Pain
46 Oford Cry Vals
49 Wessex Down
50 Oniltirs
54 Nath Dinns
56 Famphere Chalk
75 \#cts Groasant
76 Onfond Ftights
Cherer 8
47 Mendips
55 Grursial
57 Salistay Prin axd Duser Drwo
58 vale of Turron
99 Suritse Levels
63 Dran Sankine
64 Emdxtowr
65 Hanpotire Basin
G7 Low Weald
os How Weakl
74 Severilye Piera
Qusea 9
45 Markran Hols
51 Lrmin Essin 52 Thiries Master
Custr 10
72 Tre Lard

Figure 2.9 Clustered English Nature Natural Areas.

1975

2050

2100

Distance in Environmental Space
$\begin{aligned} & <15 \\ & <30 \\ < & <45 \\ \square & >45\end{aligned}$

Figure 2.10 Analogue Climates - Cluster 1

1975

2050

Distance in Environmental Space
$\square<15$
$\square<30$
$=<45$
$=>45$

2100

Figure 2.11 Analogue Climates - Cluster 2

1975

2050

2100

Distance in Environmental Space
$\square<15$
$\square<30$
<45
$\square>45$

Figure 2.12 Analogue Climates - Cluster 3

1975

2050

Figure 2.13 Analogue Climates - Cluster 4

1975

2050

2100

Distance in Environmental Space

Figure 2.14 Analogue Climates - Cluster 5

1975

2050

Distance in Environmental Space
$\square<15$
$\square<30$
$=45$
$\square>45$

Figure 2.15 Analogue Climates - Cluster 6

1975

2050

2100

Distance in Environmental Space
$\square<15$
$\square<30$
$=<45$
$\square>45$

Figure 2.16 Analogue Climates - Cluster 7

1975

2050

2100

Distance in Environmental Space
$\square<15$
$\square<30$
$=<45$
$=>45$

Figure 2.17 Analogue Climates - Cluster 8

1975

2050

2100

Distance in Environmental Space

< 30
<45
$\square>45$

Figure 2.18 Analogue Climates - Cluster 9

1975

2050

Distance in Environmental Space

\square	<15
\square	<30
<45	
$>$	>45

Figure 2.19 Analogue Climates - Cluster 10

Figure 2.20 Environmental space showing Britain (dark crosses) in relation to the rest of Europe.

Figure 2.21 Environmental space (magnified scale) showing movement of clusters as the climate changes. The Lizard (cluster 10) in year 2100 has no close European analogue.

Figure 2.22 Azolla filiculoides in geographical and environmental space.

Figure 2.23 Castanea sativa in geographical and environmental space.

Figure 2.24 Pinus pinaster in geographical and environmental space.

Figure 2.25 Quercus cerris in geographical and environmental space.

Figure 2.26 Quercus ilex in geographical and environmental space.

