A1 South London Golf Course Extension Wrotham, Kent,

Agricultural Land Classification ALC Map and Report November 1995

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 2013/178/95 MAFF Reference EL 20/01356 LUPU Commission 02297

AGRICULTURAL LAND CLASSIFICATION REPORT

SOUTH LONDON GOLF COURSE, WROTHAM, KENT GOLF COURSE EXTENSION PROPOSAL

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 45 2 hectares of land to the west of Stansted near Wrotham in Kent The survey was carried out during November 1995

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with a proposal for an extension to the existing golf course The results of this survey supersede any previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the agricultural land was under permanent grass used for grazing sheep The area shown as Other Land was an established fenced track

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

Grade/Other land	Area (hectares)	% surveyed area	% agricultural area
3a	4 8	10 6	10 7
3b	39 9	88 3	89 3
Other Land	0 5	11	
Total Agricultural Area	44 7		100 0
Total Site area	45 2	100 0	

Table 1 Area of grades and other land

7 The fieldwork was conducted at an average density of approximately 1 boring per hectare A total of 42 borings and two soil pits were described

8 The agricultural land at this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality) Principal limitations to land quality include soil wetness and topsoil stomness Over the majority of the site slightly to moderately stony medium and heavy clay loam topsoils overlie slowly permeable clays at shallow depths in the profile leading to a Subgrade 3b classification In the area of Subgrade 3a there is a heavy clay loam upper subsoil overlying the clay The slowly permeable clay horizons cause drainage to be impeded such that land utilisation is restricted. The depth at which these horizons occur determines the severity of the soil wetness restrictions and therefore the ALC grade. In some areas of the site the topsoil stone content alone is sufficient to restrict the land to a Subgrade 3b classification due to the increased economic costs of cultivation operations on stony land

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

Factor	Units	Values	Values	Values		
Grid reference	N/A	TQ 597 632	TQ 599 630	TQ 595 622		
Altitude	m AOD	10 397 032	160	10 595 022		
Accumulated Temperature	day°C	1337	1325	1309		
Average Annual Rainfall	mm	708	713	729		
Field Capacity Days	days	145	146	149		
Moisture Deficit Wheat	mm	100	98	95		
Moisture Deficit Potatoes	mm	89	87	83		

Table 2 Climatic and altitude data

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

13 The combination of rainfall and temperature at this site means that there is an overall climate limitation where the land rises above approximately 170m AOD this occurs towards the south of the site and means that this area cannot be graded higher than Grade 2 The remaining areas to the north are climatically Grade 1 Local climatic factors such as exposure and frost risk are believed not to affect the site

Site

14 The site lies at an altitude in the range of 150 175 m AOD Overall the land falls gently from east to west and rises slightly from north to south Nowhere on the site does gradient microrelief or flooding affect the agricultural land quality

Geology and soils

15 The published geological information for the site (BGS 1977) shows it to be underlain by clay-with-flints a drift deposit overlying Cretaceous Upper Chalk

16 The most detailed published soils information for the site (SSEW 1983 and 1984) shows the site to comprise soils of the Batcombe Association These are described as fine silty over clayey and fine loamy over clayey with slowly permeable subsoils and slight seasonal waterlogging Some well drained clayey soils over chalk Variably flinty (SSEW 1983) On detailed site inspection the soils were found to be fine loamy over clayey with slowly permeable subsoils they were also variably flinty

Agricultural Land Classification

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III

Subgrade 3a

19 Land of good quality has been mapped towards the south west of the site on some of the lower lying land Principal limitations include soil wetness and topsoil stoniness

Soils in this area commonly comprise a slightly to moderately stony (up to 17% v/v total flints including 13% > 2cm) medium clay loam topsoil passing to a similarly stony (up to 20% total v/v flints) gleyed heavy clay loam upper subsoil. This passes to a slightly stony (up to 10% v/v total flints) gleyed and slowly permeable poorly structured clay to a depth of at least 120cm. The soil pit 2p is representative of this soil type. The slowly permeable clay horizon has the effect of restricting water flow through the soil profile so causing drainage to be impeded. The depth at which this horizon occurs in combination with the local climate leads to Wetness Class III being appropriately applied and subsequently Subgrade 3a given the workability status of the topsoil. Soil wetness affects plant growth and yield as well as restricting land utilisation in terms of the number of days when machinery cultivations and grazing by livestock can occur without causing structural damage to the soil.

In some cases within the Subgrade 3a mapping unit including the soil pit 2p the volume of large stones (>2cm) in the topsoil is sufficient to restrict land quality to Subgrade 3a alone ie contents are in the range 10 15% by volume. A high stone content in the topsoil can increase production costs by causing extra wear and tear to implements and tyres as well as adversely affecting crop establishment and growth

Subgrade 3b

22 Land of moderate quality has been mapped over the majority of the site Principal limitations to land quality include soil wetness and topsoil stoniness

23 Soils in this area comprise a slightly to moderately stony (up to 30% v/v total flints including 25% > 2cm) medium or heavy clay loam topsoil This commonly passes to a slightly to moderately stony (up to 20% v/v total flints) gleyed and slowly permeable poorly structured clay Occasionally the topsoil and the clay horizon was separated by a gleyed slightly to moderately stony (up to 25% v/v total flints) medium or heavy clay loam upper subsoil horizon These observations were often impenetrable to the soil auger in this horizon and were primarily limited by topsoil stone content or passed to clay within 36cm The clay horizon was often impenetrable to the soil auger between 30 and 90 cm due to large flints in the matrix The pit observation 1p is typical of this soil type. The slowly permeable clay horizon restricts water flow through the soil profile so causing drainage to be impeded to the extent that Wetness Class IV and Subgrade 3b has been appropriately applied to this land given the local climate and the workability status of the topsoils Soil wetness affects plant growth and yield as well as restricting land utilisation in terms of the number of days when machinery cultivations and grazing by livestock can occur without causing structural damage to the soil

In some observations mainly towards the west of the site the topsoil contained sufficient large flints (more than 15% > 2cm) to restrict land quality to Subgrade 3b on this basis alone Large stones in the topsoil cause an increase in production costs and adversely affect crop establishment growth and subsequent yield

M Larkın Resource Plannıng Team ADAS Readıng

SOURCES OF REFERENCE

British Geological Survey (1981) Sheet 271 Dartford Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England. 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils and their Use in South East England. Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 31 Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgride 3b Moder ite Quality Agricultural Land

Land capable of producing modernte yields of n nirow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional numble crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer fornge crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Duration of waterlogging ¹
The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
The soil profile is wet within 40 cm depth for 211 335 days in most years
The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in *Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land* (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map Soil abbreviations Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
нтн	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop)S			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	Ελ	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТΧ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			

Soil Pits and Auger Borings

1

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- **C** Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 **STONE LITH** Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
CH	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks		gravel with non porous (hard) stones
MSST SI	soft medium grained sandstone soft weathered igneous/metamo		gravel with porous (soft) stones ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

STRUCT the degree of development size and shape of soil peds are described using the 8 following notation

	degree of development	WK weakly developed ST strongly developed	MD moderately developed				
	<u>ped size</u>	F fine C coarse	M medium VC very coarse				
	<u>ped shape</u>	S single grain GR granular SAB sub angular blocky PL platy	M massive AB angular blocky PR prismatic				
9	CONSIST Soil consist	ence is described using the fol	lowing notation				
	L loose VF very fre EM extremely firm	able FR friable FM f EH extremely hard	firm VM very firm				
10		uctural condition recorded for G good M moderate P p					
11	POR Soil porosity If appear in this column	a soil horizon has less than (0 5% biopores >0 5 mm a Y				

12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon

will

- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- APP available water capacity (in mm) adjusted for potatoes
- moisture balance wheat MBW
- moisture balance potatoes MBP

SOIL PIT DESCRIPTION

Site Na	me SLO	NDON GC WRO	THAM KENT		Pit Numbe	er l	Ρ				
Grid Re	ference	TQ59906330	Average	Annu	al Rainfa	נז וו	3 mm				
			Accumula	ted	Temperatu	re 132	5 degree	days			
			Field Ca	paci	ty Level	146	i days				
			Land Use			Per	manent Gr	ass			
			Slope an	d As	pect	2	degrees S	W			
HORIZON	TEXTUR	E COLOUR	STONES	2	TOT STON	E LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 28	MCL	10YR42	43 13		20	HR					
28 70	С	75YR58	00 0		15	HR	С	WKCAB	FM	Р	
Wetness	Grada	3B	Wetness	flae	s I'						
methess	Graue	36		Clas		-					
			Gleying			8 cm					
			SPL		2	Bcm					
Drought	Grade		APW	m	MBW	0 mm					
			APP	ເດເຄ	MBP	0 mm					

SOIL PIT DESCRIPTION

Site Nam	e SLONDO	n gc wroti	ham kent	Pit Number	- 2	P				
Grid Ref	erence TQS	59616240	-	nnual Rainfall		3 mm				
				ed Temperature		5 degree	days			
				acity Level		days				
			Land Use		Per	manent Gr	ass			
			Slope and	Aspect		degrees				
HORIZON	TEXTURE	COLOUR	STONES	>2 TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 26	MCL	10YR43 0	0 8	12	HR					
26- 58	HCL	10YR53 5		20	HR	с	MDCSAB	FR	м	
58 90	С	75YR56 0	0 0	10	HR	М	WKCSAB	FM	Ρ	
Wetness	Grade 3A		Wetness C	lass II	ſ					
			Gleying	26	cm					
			SPL	58	Cm					
Drought	Grade		APW	mm MBW	0 mm					
			APP	mm MBP	0 mm					

FINAL ALC GRADE 3A MAIN LIMITATION Wetness

MAIN LIMITATION Wetness

1

LIST OF BORINGS HEADERS 01/12/95 S LONDON GC WROTHAM KENT

	SAMPL	.E	A	SPECT				WET	NESS	-WHE	AT-	-POT	s-	I	m re	EL,	ERO	SN F	ROST		CHEM	ALC	
	NO	GRID REF			GRDNT	GLEY	SPL		GRADE			AP		DRT		F1.000		EXP		IST		-	COMMENTS
_	1	TQ59906340	PGR			25		2	2		0		0								ST	3B	IMP FLINT 40
	1P	TQ59906330	PGR	SW	2	28	28	4	3B		0		0								WE	3B	PIT IMP 70
	2	TQ60006340	PGR			25	25	4	3B		0		0								WE	38	
	2P	TQ59616240	PGR			26	58	3	3A		0		0								WE	3A	PIT 90
	3	TQ60106340	PGR			38	38	4	3B		0		0								WE	3B	
	4	TQ59806330	PGR	SW	1	28	28	4	3B		0		0								ST	3B	3B WE ALSO
_	5	TQ59906330	PGR	SW	1	25	25	4	38		0		0								WE	3B	IMP FLINTS 40
	6	TQ60006330	PGR	S	1	25	25	4	3B		0		0								ST	3B	IMP FLINTS 35
	7	TQ60106330	PGR			25	35	4	3B		0		0								WE	3B	IMP FLINTS 50
	8	TQ59806320	PGR	SW	2	27	27	4	3B		0		0								ST	38	IMP FLINTS 30
		TQ59906320		SW	2	25		2	2		0		0								WD	3A	IMP FLINT 50
		TQ60006320		SW	2	27	55	3	3B		0		0								WE	38	IMP FLINT 60
		TQ60106320				27	27	4	3B	119	21	97	10	2							WE	38	
		TQ59706310				25		2	3A		0		0								WD	3A	IMP FLINTS 50
	13	TQ59806310	PGR	SW	1	25	55	3	3B		0		0								WE	38	IMP FLINTS 70
		TQ59906310			2	25		4	3B		0		0								WE	3B	IMP FLINT 50
		TQ60006310		N	1	28	28	4	3B		0		0								WE	3B	
		TQ59706300				35	35	4	3B		0		0								WE	3B	
R		TQ59806300			-			1	1		0		0								ST	3B	IMP FLINTS 30
	18	TQ59906300	PGR	W	2	25	25	4	3B		0		0								WË	3B	IMP FLINTS 55
	19	TQ60006300	PGR			30	30	4	38		0		0								WE	3B	
	20	TQ59706290	PGR	W	2	25	25	4	38		0		0								WE	38	
	21	TQ59806290	PGR			35	35	4	3B		0		0								WE	38	
	22	TQ59906290	PGR			20	20	4	3B		0		0								WE	3B	IMP FLINTS 35
	23	TQ59606280	PGR	W	۱	25	60	3	3A		0		0								ST	3B	IMP FLINTS 90
-	24	T059706280	PGR	W	2	27	27	4	3B		0		0								WE	3B	IMP FLINTS 50
_	25	TQ59806280	PGR			28	28	4	38		0		0								WE	3B	IMP FLINTS 55
	26	TQ59906280	PGR	SE	2	25	25	4	38		0		0								WE	38	
		TQ59606270				28	28	4	38		0		0								WE	3B	IMP FLINTS 70
_	29	TQ59806270	PGR	W	2	25	42	3	38		0		0								WE	38	IMP FLINT 80
		TQ59606260				25		4	38		0		0								WE	3B	IMP FLINT 50
_		TQ59706260				30	60	3	3A	131	33	108	21	1							WE	3A	
	33	TQ59806260	PGR	NE	1	27	27	4	3B	120	22	98	11	2							WE	3B	
		TQ59506250		NW	2	20		2	2		0		0								WE	3A	IMP 42 SEE 2P
	35	TQ59606250	PGR			28		2	2		0		0								WE	ЗА	IMP 45 SEE 2P
		TQ59706250				30	30	4	38		0		0								WE	3B	IMP FLINT 80
		T059806250				28	28	4	3 B		0		0								WE	3B	
		TQ59526240		N	1	28	45	3	3A		0		0								WE	3A	ST ALSO
		TQ59616240				28		2	2		0		0								WE	3A	IMP 40 SEE 2P
	40	TQ59706240	PGR			28	38	4	38		0		0								WE	38	
-		TQ59606230				28		4	38		0		0								WE	38	
	42	TQ59726252	PGR			30	65	3	3A	131	33	109	22	1							WE	ЗА	

page l

LIST OF BORINGS HEADERS 01/12/95 S LONDON GC WROTHAM KENT

program ALCO12

SAMP	LE	A	SPECT				WET	IESS	-WHE	AT-	-P0	TS-	М	REL	EROSN	FROST	CHEM	ALC		
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	E>	P DIST	LIMIT		COMMENTS	
43	TQ59516220	PGR	N	2	25	25	4	3B		0		0							IMP 50 ST 3	
45	TQ59706220	PGR			28	28	4	3B		0		0					WE	3B	IMP FLINT (ľ

page 2

COMPLETE LIST OF PROFILES 01/12/95 S LONDON GC WROTHAM KENT

page 1

					MOTTLES		PED				ONES.		STRUCT	(SUB	ç		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT										IMP SPL CALC	
	0-25	mcl	10YR43 00						16	11	HR	25					
	25-40	hc1	10YR53 00	75YR5	6 00 C			Y	0	0	HR	25		Μ			IMP FLINTS 40
- 0	0 20	1	10/042 42						• •	_		20					
1P	0-28 28-70	mcl c	10YR42 43 75YR58 00	05705	6 00 C	-	75YR53	00 V		5		20	WKCAB	EM D	v	Y	IMP FLINTS 70 + MN CONCS
	20-70	L	731838 00	USIKS	0000	,	/ 51 8 55	00 1	Ŭ	U	n n	15	HAUAD	rei F	Ţ	1	
2	0-25	hc1	10YR43 00						12	7	HR	20					
_	25-35	с	10YR63 00	75YR5	8 00 M			Ŷ	0	0	HR	5		Р		Y	
	35 80	с	10YR63 00	75YR6	8 58 M			Y	0	0		Û		Р		Y	
2P	0-26	mcl	10YR43 00							3		12					
	26-58	hc1	10YR53 54					Y		0			MDCSAB				
	58-90	с	75YR56 00	05YR5	6 00 M		10YR63	00 Y	0	0	HR	10	WKCSAB	FM P	Ŷ	Ŷ	+ MIN CONCS
3	0-27	hc1	10YR41 00						7	3	μр	13					
3	27-38	hc1	10YR44 00							0		15		м			SLIGHTLY SANDY
	38-90	c	75YR53 51	75YR5	8 00 M	(05YR58	00 Y				5		P		Y	SLIGHTLY SANDY
4	0 28	hc1	10YR43 00						17	12	HR	20					
	28 80	с	10YR63 00	75YR5	M 00 B			Y	0	0		0		Ρ		Y	
5	0-25	wcl	10YR43 00							5		20		_			
	25-40	С	10YR63 00	75YR5	6 68 M	(00mn00	00 Y	0	0	HR	10		P		Y	IMP FLINTS 40
6	0-25	hcì	10YR42 41						16	12	HR	20					
Ũ	25 35	c	10YR63 00	75YR5	6 00 M		00MN00	00 Y				15		Р		Ŷ	IMP FLINTS 35
																	• • • • • • • •
7	0-25	hc1	10YR41 00						7	5	HR	15					
	25-35	hcl	10YR44 00	75YR5	6 00 C			S	0	0	HR	15		М			
	35-50	c	75YR54 56	OOMNO	00 00 M			S	0	0	HR	20		Ρ		Y	IMP FLINTS 50
•	0.27	h.1	100040.00						10	10		25					
8	027 2730	hcî c	10YR42 00 75YR63 00	75705	പറം			v	0	10		25 25		P		Y	IMP FLINTS 30
	27 30	C	751805 00	/ J I K J				Ť	U	Ű	ПK	23		F		Ŧ	THE FLINIS SU
9	0-25	നറി	10YR42 00						5	0	HR	10					
	25-50	hc1	10YR53 00	10YR5	6 00 C			Ŷ		0		10		м			IMP FLINT 50
10	027	hc1	10YR42 00							2		10					
	27-55	hc1	10YR53 00					Ŷ		0		10		м			
	55-60	c	75YR53 00	75YR5	8 00 C			Y	0	0	HR	15		Р		Y	IMP FLINT 60
11	0 27	hc1	10YR41 00						F	· ->		10					
, 11	27-120		10YR52 56		8 00 C		OOMINOO	00 V		3		10 5		P		Y	
	27 120	C	TOTROE DO	701 KG	0 00 0		001 1100	00 1	0	0	пк	3		F		•	
12	0-25	hcl	10YR42 00						8	3	HR	15					
1	25-50	hc1	10YR53 00	10YR5	6 00 C			Y		0		15		м			IMP FLINTS 50
13	0 25	hc1	10YR42 00						8		HR	12					
	25-55	hcl	10YR53 00					Y		0		10		М			
	55 70	с	75YR63 00	75YR5	M 00 B	(OOMNOO	00 Y	0	0	HR	10		Ρ		Y	IMP FLINTS 70

COMPLETE LIST OF PROFILES 01/12/95 S LONDON GC WROTHAM KENT

				M	OTTI ES	;	PED				-51	ONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL				GL								IMP SPL CALC	
0,1 % 20	DC1 11							_		_	-						
14	0-25	hcl	10YR42 43							6	3	HR	10				
	25-50	с	75YR63 00	75YR68	00 M				Y	0	0	HR	10		P	Y	IMP FLINT 50
15	0-28	hc1	10YR43 00							7	4	HR	12				BORDER CLAY TS
	28-35	c	10YR63 00						Y	0		HR	5		Ρ	Y	
	35~80	c	10YR63 00	75YR56	68 M	I	00mn00	00	Y	0	0		0		P	Y	
		_								-	•						
16	0-35	mcl	10YR43 00	OFVDED	00 M				Y			HR	10		D	V	
	35-50 50-80	с с	10YR63 00 10YR63 00							0			10 0		P P	Y Y	
	50-60	C	101803-00	031836	00 11				'	U	Ű		Ŭ		r	T	
17	0-25	mc]	10YR44 00							18	11	HR	25				
	25-30	mcl	10YR54 00									HR	25		м		IMP FLINTS 30
18	0-25	mc]	10YR43 00							7	4	HR	12				
	25-55	c	10YR63 00	75YR56	00 M				Y	0	0	HR	15		Þ	Y	IMP FLINTS 55
19	0 15	hc]	10YR53 00									HR	10				
	15-30	c	10YR53 00									HR	10		м		
	30-40	c	10YR53 00				OOMNOO	-				HR	5		P	Y	
	4080	c	05YR56 00	109853	00 C		DOMNOO	DO	Ŷ	Ð	0		0		Р	Y	
20	0-25	mcl	10YR43 00							13	5	HR	20				
20	25 50	C	10YR63 00	75YR58	00 M				Y				10		Р	Y	
	50-80	c	10YR63 00						Ŷ	0			0		P	Ŷ	
													-		-	·	
21	0-20	mcl	10YR43 00							13	5	HR	20				
	20-35	hc1	10YR54 00							0	0	HR	10		M		
	35-80	С	10YR63 00	10YR68	00 M				Y	0	0		0		P	Y	
22	0.00		100010 00							• •	_		•••				
22	0-20	mcl	10YR43 00	754060	00 M					13			20				THE FLENCE OF
	20-35	c	05YR56 00	/31600	00 M				Y	U	U	rik.	15		Р	Y	IMP FLINTS 35
23	0-25	mcl	10YR42 00							17	10	HR	23				
	25-60	hc1	10YR53 00	10YR58	00 C				Y				15		M		
	60-90	с	75YR63 00				OOMNOO					HR	15		P	Y	IMP FLINTS 90
24	0-27	hcl	10YR42 00							7	3	HR	12				
	27-50	С	25Y 62 00	05YR58	00 M		75YR58	00	Y	D	0	HR	15		Р	Y	IMP FLINT\$ 50
		_															
25	0-28	mcl	10YR43 00									HR	20		_		
	28 55	с	05YR56 00	104868	00 M				Y	0	D	HR	15		Р	Ŷ	IMP FLINTS 55
26	0-25	mcl	10YR43 00							12	٨	HR	10				
4V	25-55	nc. C	05YR46 00	10YR68	00 M		COMNOO	on				HR	10 10		Ρ	Y	
	55-80	c	05YR46 00				OOMNOO					HR	20		P	Y	
		-								-	-				•	·	
27	0 2B	hc1	10YR42 43							6	3	HR	8				
	28-70	с	10YR63 00	75YR68	00 M		000000	00	Y	0	0	HR	5		Р	Y	IMP FLINTS 70

page 2

COMPLETE LIST OF PROFILES 01/12/95 S LONDON GC WROTHAM KENT

page 3

					_ 1	אחדדו בי	6 PED				STONES	_	<u> የ</u> የ በ የ ተ	SHDC		
		DEDTH	TEVTUDE													
	SAMPLE	DEPTH	TEXTURE	COLOUK	ωĻ	ABUN		GLI	LY >2	2 >	6 LITH	101	CONSIST	STR POR I	MP SPL CALC	
	29	0-25	hc]	10YR42 00					\$	2	5 HR	12				
	23	25-42	hcl	10YR53 00		5 00 C		,			OHR	10		м		
		42-80		25Y 63 00			05YR58					3		P	Ŷ	IMP FLINT 80
		42-00	L	251 05 00	10110	0011	001830				U HK	5		r	1	THE FEINE OF
	31	0-25	bc]	10YR42 00	10YR4	656F			11	1	7 HR	15				
	5.	25-50		75YR58 00			0041000	00 1				5		P	Y	IMP FLINT 50
		23 30	C	791830 00			0011100	•••			• •	-		•	I	
	32	0 30	mc]	10YR42 00					4	4	1 HR	8				
		30 60	hc]	10YR54 53		6 00 C		,			OHR	5		м		
		60-120		10YR63 62							0 HR	3		P	Y	
			-									-		-	·	
	33	0-27	hc1	10YR42 00					4	4	1 HR	8				
		27-120	с	75YR68 00	10YR6	2 63 C		•	y (0	O HR	5		Р	Y	
	34	0-20	mcl	10YR43 44					8	8	3 HR	12				
		20 42	ന്നി	10YR53 00	10YR5	6 00 C	00MN00	00	Y C	С	0 HR	15		м		IMP FLINTS 42
	35	0-28	mcl	10YR42 00					-	7	3 HR	15				
		28 45	hc1	10YR53 00	10YR5	8 00 M		•	Y (0	OHR	15		м		IMP FLINTS 45
ļ																
	36	0-30	mcl	10YR42 00					(6	2 HR	10				
Ì		30-80	¢	10YR58 00	10YR5	3 63 C	OOMNOO	00	Y (0	0 HR	5		Р	Y	IMP FLINT 80
	37	0 28	wcj	10YR43 00							3 HR	10				
		28 35	с	10YR63 00							OHR	10		Р	Ŷ	
		35 80	¢	10YR63 00	75YR5	8 66 M	00MN00	00	Y (0	0	0		Р	Ŷ	05YR58 MOTS FROM 70
ļ	38	0.20	1	100040.00						-	0.00					
	- 00	028 2845	mcl hcl	10YR42 00 10YR53 00		6 00 C					8 HR 0 HR	17 15				
		28 45 45 90	c				10YR63					10		M	v	
		45 90	C	751636 00	03163	8 00 C	101603	00	r i		Олк	10		Р	Y	
	39	0 28	mcl	10YR43 00						A	3 HR	12				
	35	28 40	mci mci	107R43 00		6 00 C					OHR	12		м		IMP FLINTS 40
				101803-00						-	U 111	1.3				108 C 1010 40
-	40	0 28	mcl	10YR42 00					ļ	5	3 HR	10				
		28 38	hc1	10YR53 00		8 00 M					0 HR	10		м		
		38 80	c	05YR56 00							0 HR	3		P	Y	
j			-						-	-	2	-		•	•	
	41	0-28	mcl	10YR43 00					9	5	2 HR	10				
		28-60	с	05YR46 00		6 52 M					0 HR	15		Ρ	Y	
l		60-80	c	05YR46 00			OOMNOO				OHR	2		P	· Y	
				-							-				·	
	42	0-30	mcl	10YR42 00					9	5	2 HR	8				
ļ		30 65	hc1	10YR53 54	10YR5	6 00 C		•	Y C	5	0 HR	5		м		
		65 120	c	10YR63 62	10YR6	8 00 C	00MN00	00	Y (С	0 HR	5		Ρ	Y	
	43	0 25	wcj	10YR41 42					2	51	5 HR	30				IMP FLINTS 50
1		25 50	с	75YR58 00	10YR6	2 00 C	05YR58	00 Y	Y (0	0 HR	15		Ρ	Y	+ MN CONCS