A1

Test Valley Local Plan Review Sites 136 138, Romsey

Agricultural Land Classification ALC Map and Report

January 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 1512/198/96 FRCA Reference EL 15/00292 LURET Job Number 02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITES 136-138 ROMSEY HAMPSHIRE

SEMI DETAILED SURVEY

INTRODUCTION

- This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 34 hectares of land near Chandler's Ford south Hampshire The survey was carried out during January 1997
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land Land to the immediate east of the current area of survey was surveyed in 1993 (RPT Job Number 1512/110/93) and so was not re visited on this occasion
- Prior to 1 April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. After this date, the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA). Reading The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I.
- At the time of survey the agricultural land on this site was mostly in permanent grassland the northern central field was being stripped for turf. The area shown as Other Land comprises woodland and scrub. Land in the south of the site is mapped as Agricultural land not surveyed permission to survey this land was not obtained.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf
- 7 The fieldwork was conducted at an average density of 2 borings every 3 hectares A total of 20 borings and one soil pit were described

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	/ surveyed area	/ site area
3a	78	28 5	23 3
3b	196	71.5	58 5
Agricultural land not surveyed	3 0	N/A	90
Other land	3 1	N/A	9 2
Total surveyed area	27 4	100 0	100.0
Total site area	33 5		100 0

- The majority of land at this site has been classified as Subgrade 3b (moderate quality) Subgrade 3a (good quality) occurs on the mid slopes
- The majority of the soil profiles suffer from wetness problems to varying degrees arising from the interbedded deposits of the Bracklesham Beds. Subgrade 3a land comprises loamy soils which overlie clay subsoils at moderate depth within the soil profile. The clay acts to impede soil drainage resulting in some restrictions to the flexibility of cropping stocking and cultivations. Where the clay occurs at shallow depths the drainage will be severely impeded. At this locality, such land is classified as Subgrade 3b.

FACTORS INFLUENCING ALC GRADE

Climate

- 10 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Va	lues
Grid reference	N/A		
		SU 415 216	SU 414 219
Altitude	m AOD	50	40
Accumulated Temperature	day°C (Jan June)	1496	1507
Average Annual Rainfall	mm	821	820
Field Capacity Days	days	175	176
Moisture Deficit, Wheat	mm	106	107
Moisture Deficit, Potatoes	mm	99	101
Overall climatic grade	N/A	Grade 1	Grade 1

- 12 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation. However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. At this locality, the climate is relatively wet in regional terms. As a result the likelihood of soil wetness problems may be increased. The data in Table 2 shows that there is an important field capacity day (FCD) boundary across the site (from 175 FCD to 176 FCD). Land in the north of the site falls within a slightly wetter climatic regime than the remainder of the site. Thus, similar profiles may have a different soil wetness limitation according to the FCD range which is applicable. No local climatic factors, such as exposure or frost risk, are believed to adversely affect the land quality on the site. This site is climatically Grade 1.

Site

The highest land occurs in the south of the site and lies at an altitude of approximately 50 m AOD. The land gently falls (1 4) typically in a northerly direction, to lie at approximately 35 m AOD adjacent to the railway line. Nowhere on the site do gradient or microrelief adversely affect agricultural land quality.

Geology and soils

- The published geology map (BGS 1987) shows the entire site to be underlain by Bracklesham Beds (interbedded sands and clays)
- The most detailed published soil map for this area (SSEW 1983) shows the entire site to comprise soils of the Wickham 3 Association. These soils are described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging. Some deep coarse loamy soils affected by groundwater. (SSEW 1983)

Agricultural Land Classification

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II page 8

Subgrade 3a

- The land classified as Subgrade 3a (good quality) is limited either by soil wetness and workability or by soil droughtiness. Where soil wetness is limiting the topsoils comprise non calcareous medium clay loams. These overlie similarly textured or heavy clay loam upper subsoils which are permeable and moderately structured. At approximately 42 to 55 cm these pass into plastic clay lower subsoils which are poorly structured and slowly permeable. Given the relatively wet local climate, these profiles are assessed as being imperfectly drained (Wetness Class III) as indicated by gleying from the surface. The interaction between these soil drainage characteristics and the medium topsoils with the relatively wet local climate means that this land will have some restrictions on the flexibility of cropping stocking and cultivations.
- Elsewhere medium clay loam topsoils overlie similarly textured or heavy clay loam topsoils. These profiles are slightly better drained but contain more stone (approximately 2 10% and 5 20% total flints in the topsoil and upper subsoil respectively). At approximately 45 to 50 cm depth, these profiles proved impenetrable to a soil auger because of stonier lower subsoils. The interaction between these soil characteristics with the prevailing climate results in the amount of soil water being inadequate to fully meet crop needs in some years. This may cause crops to suffer drought stress and thereby adversely affect yield potential.

Subgrade 3b

The majority of land on the site has been classified as Subgrade 3b (moderate quality) because of significant soil wetness and workability limitations. Topsoils comprise non calcareous medium and heavy clay loams. Occasionally these overlie permeable heavy clay loam upper subsoils which pass into clay lower subsoils within 40 cm depth typically however these profiles pass directly into clay subsoils. The clay subsoils are poorly structured and slowly permeable. As such, these profiles are poorly drained (Wetness Class IV). These profiles are typified by Pit 1 (see Appendix II). The interaction between the topsoil textures poor soil drainage and the relatively wet local climate means that this land is limited by soil wetness. Soil wetness can adversely affect seed germination and survival and can inhibit the development of a good root system. It also influences the sensitivity of soil to structural damage and is therefore a major factor in determining the number of days when cultivation trafficking or grazing can take place.

Gillian Iles Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1987) Sheet No 315 Southampton 1 50 000 (solid and drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent	LEY	Ley grass	RGR	Rough grazing
	pasture				
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous	BOG	Bog or marsh	SAS	Set Aside
	woodland				
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation		_		

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				-

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	\mathbf{CL}	Clay Loam	ZCL	Silty Clay Loam
ZL	Sılt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66 % of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40 % +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	single grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes MBW moisture balance wheat

MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name TESTVALLEYLP SITES136138 Pit Number

G 1d Reference SU41552162 Average Ann al Rainfall 820 mm

Accumulated Temperature 1513 degree days

19

175 days

Field Capacity Level

Land Use Permanent G ass

Slope and Aspect 01 degrees E

HORIZON TEXTURE COLOUR STONES 2 TOT STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC 0 26 MCL 10YR34 00 2 10 HR

26 55 C 10GY06 00 0 M WKACPR VM P

Wetness Grade 3B Wetness Class IV

Gleying 026 cm SPL 026 cm

Drought Grade APW mm MBW 0 mm

APP mm MBP 0 mm

FINAL ALC GRADE 38

MAIN LIMITATION Wetness

	SAMPI	LΕ	ASI	PECT		WETI	NESS-	-MHE	AT	PO	TS	м	REL	EROSN	FRC	ST	CHEM	ALC	
	10	GRID REF	USE	GRONT	GLEY SPL	. CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	E.	(P	DIST	LIMIT		COMMENTS
_	,	SU41522206	ıev		0 025	4	3B		0		0						WE	3B	
ı	1			- 01		-			_		_							38	
		SU41552162		_	026 026	4	3B		0		0						WE		
	2	SU41302196			0 042	3	3A		0		0	•					WE	3A	
	3	SU41502200		•	032	1	2	125		112	11	2					WD	2	
	4	SU41302190	PGR I	N 02	0 055	3	3 A		0		0						WE	3A	
_	5	SU41402190	DCD I	N 02	032 032	4	3B		0		0						WE	3B	
•	6	SU41502190			042	1	1	153		115	15	1					***	1	
	7	SU41602190		·	0	2	2	076		076	25	38					DR	ЗА	Imp45 Prob3aDR
•	8	SU41702195		. 02	0 025	4	2 3B	070	0	0,0	0	36					WE	38	Tilip43 Prob3abk
	9	SU41502180		S 01	028 028	4	3B		0		0						WE		Q mcl t/soil
	7	3041302160	ruk .	5 (1	UZO UZO	4	36		U		U						MC	30	Q mc1 t/so11
	10	SU41702180	PGR I	N 02	0 030	4	3B		0		0						WE	38	
_	11	SU41402170	PGR I	NE 02	030 030	4	3B		0		0						WE	38	
	12	SU41602170	PGR I	NE 02	025 038	4	3B		0		0						WE	38	
	13	SU41552162	PGR I	N 01	025 040	4	3B		0		0						WE	38	
	14	SU41702160	PGR I	v ₩ 01	0 027	4	3B		0		0						WE	38	
	15	SU41602150	PGR		030 030	4	3B		0		0						WE	38	Bl e s/soil
_	16	SU41852196	PGR I	NE 02	025 025	4	3B		0		0						WE	38	
_	17	SU41832185	PGR I	N 02		1	1	072	35	072	29	3B					DR	3A	Imp50 Prob3aDR
	18	SU41772194	PGR I	W 04	030 030	4	3B		0		0						WE	38	
•	19	SU41822170	PGR I	V 01	0 040	4	3B		0		0						WE	38	
1	20	SU41802160	PGR I	N 01	028 040	4	3B		0		0						WE	38	

				-M	OTTLES-	PED				STONE	S-	STRUCT/ S	29112					
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN CON		GI	LEY	2			CONSIST S		TMD 4	CDI	CALC		
				• • • •					-			00110101	JIK 1 OK	1	O1 L	CALC		
1	0 25	mcl	10YR42 00	10YR46	00 C			Y	0	0 HR	2							
	25-70	c	10YR61 00	10YR58	00 M			Y	0	0	0		P		Y			
_																		
1P	_	mcl	10YR34 00						2	O HR	10							
	26 55	C	10GY06 00	75YR68	00 H			Y	0	0	0	WKACPR VM	PY		¥			
		_																
2	0 33	mc]	10YR42 00					Y		0 HR	2							
	33-42	mcl	10YR54 00					S	0		0		M					
	42-80	С	10YR53 00	IUTKS	00 H			Y	0	U	0		P		Y			
3	0 32	mcl	10YR42 00	10YR56	00 F				Λ	O HR	2							
,	32 70	ms 1	25 Y53 00					Y		O HR	3		М					
•	70-80	Ims	05 Y72 00					Y	0	0	0		M					
_	80 120	ms	05 Y72 00					Ÿ	0	_	ō		 М					
									-	_	•		••					
4	Ø 30	mcl	10YR42 00	10YR56	00 C			Y	0	0	0							
	30 42	mcl	10YR54 00					γ	0	0	0		м					
	42 55	hcl	10YR53 00	75YR58	00 C	10YR61	00	Y	0	0	0		М					
J	55-80	c	10YR53 00	75YR58	00 M	10YR61	00	Y	0	0	D		Р		γ			
_		_																
5	0 32	mcl	10YR42 00							O HR	1							
	32 70	С	25 Y61 00	75YR68	00 M			Y	0	0	0		Р		Y			
6	0-25	mc1	10YR43 00						0	٥	0							
ľ	25-42	mc1	10YR54 00						0		0		м					
ļ	42 50	c	10YR63 73	75YR58	00 C			Y	0	-	0		M					
	50 85	ms1	10YR73 00					Υ	0		ō		M					
1	85-100	lms	25 Y72 00	75YR58	00 C			Y	0	0	0		М					
	100 120	msl	25 Y72 00	75YR58	00 C			Y	0	0	0		М					
_																		
7	0 30	mcl	10YR42 00							0 HR	2							
	30-45	mcl	10YR62 00	10YR56	00 M			Y	0	O HR	5		M				Imp 45 stone	\$
-	0.25	h-1	10YR41 00	10/050	00.0			u	_	_								
8	0 25 25–60	hc1 c	10YR51 00			25 Y71		Y		0	0							
	23-00		101831 00	751KJQ	00 C	23 171	•	•	0	U	0		Р		Y			
9	0 28	hcl	10YR43 00						0	O HR	5							
•	28 60	С	25Y 71 62	75YR58	68 M				0		0		P		Υ			
											-							
10	0 30	mcl	10YR42 00	10YR56	00 C			Y	0	0	0							
	30 70	c	10YR61 00	75YR68	00 M			Y	0	0	0		P		Y			
	0.20		AEN							<u> </u>	_							
11	0 30		25Y 41 42	35V050	00 C					O HR	5		_					
•	30 60	C	25Y 41 00	PCN1C1	w c			Y	U	O HR	2		P		Y			
12	0-25	mc)	10YR53 00						2	O HR	8							
,,,	25-38		107R53 50	10YR58	00 M					O HR	15	1	M					
_								•	-	J .M		'						

				_P	OTTLES	-	PED			STON	ES	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COF	GLEY	2	6 LI	ти тот	CONSIST	STR	OR IM	P SPL CALC	
13	0-25	mcl	10YR32 00						0	O HR	5					
	25-40	hc1	10YR52 53	10YR56	00 C			Υ	0	O HR	_		М			
	40 60	c	05Y 63 61					Y	0	0	0		P		Y	
14	0 27	hcl	10YR53 00	10YR58	00 C			Y	0	O HR	5					
	27 60	С	25Y 71 62	75YR68	00 M			Y	0	0	0		P		Y	
15	0-30	hc1	10YR32 00						0	0 HR	5					
	30 60	С	05G 42 00	75YR68	3 00 C			Y	0	0	0		P		Y	
16	0-25	mcl	10YR42 43						0	0 HR	6					
	25-40	c	25Y 63 00	10YR58	00 C			Y	0	0 HR	15		P		Y	Probably spl
	40-65	С	25Y 52 53	75YR58	3 00 M			Y	0	O HR	2		P		Υ	
17	0 20	mcl	10YR42 43						0	O HR	10					
	20-50	hal	75YR56 00						0	0 HR	20		М			Imp 50 stones
18	0 30	mcl	10YR42 00	10YR56	00 F				0	0 HR	2					
	30 60	c	25Y 62 63	10YR56	58 M			Y	0	O HR	2		P		Y	
19	0 32	mcl	10YR41 00	10YR44	00 C			Y	0	0 HR	2					
	32 40	hcl	25 Y53 00	10YR56	00 C			Υ	0	0 HR	2		М			
	40 70	С	25 Y62 00	75YR68	3 00 M			Y	0	0	0		Р		Y	
20	0 28	mcl	10YR43 00						0	0 HR	5					
	28 35	hc1	10YR53 00	10YR58	3 00 C			Y	0	O HR	5		M			
	35-40	hcl	10YR53 00	10YR56	3 00 C			Y	0	0 HR	25		M			
	40 70	С	10YR64 00	75YR58	3 00 M			Y	0	0 HR	2		P		Y	