A1
Aylesbury Vale Local Plan
Land around Aylesbury Option A (west), Berryfield
Agricultural Land Classification
Semi-detailed Survey
ALC Map and Report
July 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

ADAS Reference: 0301/038/96 MAFF Reference: EL 03/01385 LUPU Commission: 02511

AGRICULTURAL LAND CLASSIFICATION, REPORT

AYLESBURY VALE LOCAL PLAN LAND AROUND AYLESBURY - OPTION A (WEST), BERRYFIELD.

Introduction

- 1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 151.2 hectares of land to the north west of Aylesbury in Buckinghamshire. The survey was carried out during May 1996.
- 2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Aylesbury Vale Local Plan. The results of this survey supersede any previous ALC information for this land.
- 3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
- 4. At the time of survey, the agricultural land on this site was either in arable crops or permanent grass. The areas of the site shown as Other Land include domestic dwellings towards the east, various tracks and roadways and horse stabling towards the centre of the site.

Summary

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below.

Table 1: Area of grades and other land

Grade/Other land	Area (hectares)	% Total site area	% Surveyed Area
3a	22.9	15.2	15.5
3b	124.8	82.5	84.5
Other land	3.5	2.3	-
Total surveyed area	147.7	-	100
Total site area	151.2	100	-

7. The fieldwork was conducted at an average density of slightly less than 1 boring per hectare. A total of 99 borings and five soil pits were described.

- 8. The land at this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality) on the basis of soil wetness, soil workability and soil droughtiness limitations.
- 9. There are two soil types represented at this site. Over the majority of the site, soil wetness and/or workability are the principal limitations. In these areas, medium to heavy loamy and clayey topsoils and thin upper subsoils overlie slowly permeable clays at shallow to moderate depths in the profile. Slowly permeable horizons cause drainage to be impeded so that land utilisation is restricted. The depth at which these horizons occur determines the severity of the soil wetness restrictions and therefore the ALC grade. In addition, the heavy loam and clay topsoils encountered over much of the site cause soil workability problems insofar as they further restrict the number of days when field working is possible without causing structural damage to the soil.
- 10. Towards the east and south east of the site, soil wetness and soil droughtiness are equally limiting. The soils commonly comprise medium loamy topsoils and upper subsoils over slowly permeable clays as above, but the lower subsoils become moderately stony. The stone contents of these profiles cause them to be restricted by soil droughtiness as well as soil wetness to Subgrade 3a. Soil droughtiness may affect plant growth and yield in some years.

Climate

- 11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
- 12. The key climatic variables used for grading this site are given in Table 2 below and were obtained from the published 5km grid datasets using standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values		
Grid reference	N/A	SP 790 156	SP 785 163	
Altitude	m, AOD	75	80	
Accumulated Temperature	day°C	1417	1411	
Average Annual Rainfall	mm	637	640	
Field Capacity Days	days	134	134	
Moisture Deficit, Wheat	mm	111	110	
Moisture Deficit, Potatoes	mm	104	102	

Table 2: Climatic and altitude data

- 13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (ATO, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Local climatic factors, such as exposure and frost risk, are not believed to significantly affect the site. The site is climatically Grade 1.

Site

16. The site lies at an altitude between approximately 75 and 80m AOD. The majority of the site is relatively flat. However towards the north west of the site, the land rises slightly. There are no gradients on the site sufficient to affect agricultural land quality.

Geology and soils

- 17. The published geological information for the site (BGS, 1865) shows the majority of this area to be underlain by Jurassic Kimmeridge Clay. Along the course of the River Thame, which runs close to the south-eastern boundary of the site, river alluvium is mapped as a drift cover. In addition, a band of valley gravel drift deposits is shown passing through part of the eastern section of the site.
- 18. The published soils information for the site (SSEW, 1983) shows it to be underlain by soils from the Denchworth and Fladbury 1 associations. The Denchworth association, which covers the majority of the site, is described as having, 'slowly permeable seasonally waterlogged clayey soils with similar fine loamy over clayey soils. Some fine loamy over clayey soils with slight seasonal waterlogging and some slowly permeable calcareous clayey soils. Landslips and associated irregular terrain locally.' (SSEW, 1983). The Fladbury association soils which are mapped towards the south east of the site, in a similar location to the river alluvium on the geology map are described as, 'stoneless, clayey soils, in places calcareous, variably affected by groundwater. Flat land. Risk of flooding.' (SSEW, 1983). Soils similar to those described above were encountered over the majority of the site, however towards the east and south east, significant stone contents in the subsoil were found which are approximately coincident with the mapped band of valley gravel. These affect the land quality assessment in these parts of the site.

Agricultural Land Classification

- 19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.
- 20. The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III.

Subgrade 3a

- 21. Land of good quality has been mapped in two units towards the east and south east of the site. Land in these areas is commonly equally limited by soil droughtiness and soil wetness.
- 22. Soils in these areas are of two main types. The most common, which occurs over the majority of the area mapped as Subgrade 3a comprises a stoneless to very slightly stony (up to 5% v/v total flints) medium clay loam topsoil, which passes to slightly or moderately stony (up

to 25% v/v total flints), gleyed, permeable medium or heavy clay loam, occasionally clay upper subsoil horizons. From between 50 and 75cm these overlie a moderately or very stony (up to 40% v/v total flints) clay or heavy clay loam horizon which was often impenetrable to the soil auger. The pit observation 5p revealed that clays at this depth were slowly permeable. In the same pit observation, the profile became calcareous from 56cm and passed to a moderately stony (25% v/v total flints), calcareous sandy clay loam lower subsoil horizon. This combination of textures and the stone content present in the profile causes these soils to have restricted water availability, such that in the prevailing local climate Subgrade 3a is appropriate on the basis of a soil droughtiness limitation which can affect plant growth and yield. In addition the presence of gleyed and slowly permeable horizons indicates that a drainage impedance is present in these soils. This is sufficient for them to be placed in Wetness Class III given the local climate. Subsequently Subgrade 3a is assigned when the workability of the medium topsoils is taken into account. Soil wetness causes land utilisation to be restricted as it affects the number of days when land work or grazing may occur without causing damage to the soil. It also adversely affects crop growth and development.

23. The second soil type is essentially similar to that described below (para. 25), except that the topsoil is always a medium clay loam and the upper subsoil is a heavy clay loam or non-slowly permeable clay as in the pit observations 1p and 3p. This passes to a slowly permeable clay horizon at or below 38cm which was not the case in the pit observations. In the prevailing local climate these profiles are principally limited by soil wetness to Wetness Class III and subsequently Subgrade 3a when the workability of the medium clay loam topsoils is taken into account. As above soil wetness affects land utilisation.

Subgrade 3b

- 24. Land of moderate quality has been mapped over the majority of the site in a single mapping unit. Principal limitations to land quality include soil wetness and topsoil workability.
- 25. The soil profiles in this area commonly comprise a stoneless to very slightly stony (up to 5% v/v total flints), medium or heavy clay loam or clay topsoil which was occasionally gleyed. This commonly passes to a thin, gleyed, similarly stony heavy clay loam or non-slowly permeable clay upper subsoil. This overlies a gleyed and slowly permeable clay which was commonly very slightly stony (up to 5% v/v flints). Pits 1-4 are representative of the Subgrade 3b unit as a whole and show the variability encountered over the site. In the prevailing local climate these soils are principally limited by soil wetness to the extent that Wetness Classes III and IV are appropriate. Where Wetness Class III is assigned, the less workable heavier topsoils (heavy clay loam and clay) mean that these areas are appropriately placed in Subgrade 3b. Where Wetness Class IV is appropriate topsoil workability is less significant as Subgrade 3b is applied in the prevailing local climate with all the topsoils encountered on this site. Soil wetness causes land utilisation to be restricted as described in paragraph 22.

M Larkin Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

Geological Survey of Great Britain (1865) Sheet 46 s.w, Aylesbury. Solid Edition. 1:63 360 Scale.

Ordnance Map Office: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land.

MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification.

Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils of South East England. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No. 15. SSEW: Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
III	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

Sample location map

Soil abbreviations - Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	ELEY:	Ley Grass	RGR :	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW:	Fallow
	Ploughed	SAS:	Set aside	OTH:	Other
HRT:	Horticultural Crop	s			

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

```
MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land CHEM: Chemical limitation
```

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC:	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
CT.	Toposit Camina				_

ST: Topsoil Stoniness

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations.

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL :	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: Fine (more than 66% of the sand less than 0.2mm)

M: Medium (less than 66% fine sand and less than 33% coarse sand)

C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

4. **MOTTLE CONT:** Mottle contrast

F: faint - indistinct mottles, evident only on close inspection

D: distinct - mottles are readily seen

P: prominent - mottling is conspicuous and one of the outstanding features of the horizon

- 5. PED. COL: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology One of the following is used.

HR: all hard rocks and stones

CH: chalk

SLST: soft oolitic or dolimitic limestone

FSST: soft, fine grained sandstone

GH: gravel with non-porous (hard) stones

GS: gravel with porous (soft) stones

SI: soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

degree of development WK: weakly developed MD: moderately developed

ST: strongly developed

ped size F: fine M: medium

C: coarse VC: very coarse

ped shape S: single grain M: massive

GR: granular AB: angular blocky

SAB: sub-angular blocky PR: prismatic

PL: platy

9. **CONSIST**: Soil consistence is described using the following notation:

L: loose VF: very friable FR: friable FM: firm VM: very firm

EM: extremely firm EH: extremely hard

10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor

11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.

12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.

13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.

14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

APW: available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes

MBW: moisture balance, wheat moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name : AYLESBURY VDLP, OPTION AW Pit Number: 1P

Grid Reference: SP78701640 Average Annual Rainfall: 637 mm

Accumulated Temperature: 1417 degree days

Field Capacity Level : 134 days Land Use : Peas

Slope and Aspect : 2 degrees SE

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 24	С	10YR42 00	0	3	HR	F				Y
24- 37	С	10YR42 00	0	3	HR	С	MDCSAB	FR	M	Y
37- 60	С	25Y 53 00	0	10	HR	С	MDCAB	FM	P	Y
60- 80	С	25Y 51 00	0	3	HR	M	WKCAB	FM	Р	Y

Wetness Grade: 3A Wetness Class : III

> Gleyina : 24 cm SPL : 37 cm

Drought Grade: APW: пен MBW : 0 mm

APP: mm MBP: 0 mm

FINAL ALC GRADE: 3A MAIN LIMITATION : Wetness

SOIL PIT DESCRIPTION

Site Name: AYLESBURY VDLP, OPTION AW Pit Number: 2P

Grid Reference: SP78601670 Average Annual Rainfall: 637 mm

Accumulated Temperature: 1417 degree days

Field Capacity Level : 134 days Land Use : Oilseed Rape Slope and Aspect : degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 25	HCL	10YR42 00	0	2	HR					
25- 34	HCL	25Y 42 00	0	2	HR	М	MDCAB	FM	Р	
34- 70	C	25Y 51 00	0	2	HR	M	MDCAB	FM	P	

Wetness Grade: 38 Wetness Class : IV

> Gleying : 25 cm SPL : 25 cm

Drought Grade: APW : mm MBH: 0 mm

APP : mm MBP: 0 mm

FINAL ALC GRADE: 3B MAIN LIMITATION : Wetness

SOIL PIT DESCRIPTION

Site Name: AYLESBURY VOLP, OPTION AW Pit Number: 3P

Grid Reference: SP78701580 Average Annual Rainfall: 637 mm

Accumulated Temperature: 1417 degree days

Field Capacity Level : 134 days
Land Use : Wheat
Slope and Aspect : degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT. STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	С	10YR42 00	0	2	HR					
29- 38	С	10YR53 00	0	2	HR	С	MDCSAB	FM	M	
38- 63	С	25Y 53 51	0	2	HR	С	MDCAB	FM	P	
63- 85	С	25Y 61 00	0 ,	10	SLST	M	WKCAB	FM	Р	Y

Wetness Grade: 38 Wetness Class: III

Gleying : 29 cm SPL : 38 cm

Drought Grade: 3A APW: 104mm MBW: -7 mm

APP: 106mm MBP: 2 mm

FINAL ALC GRADE : 38
MAIN LIMITATION : Wetness

SOIL PIT DESCRIPTION

Site Name : AYLESBURY VDLP, OPTION AW Pit Number : 4P

Grid Reference: SP78601630 Average Annual Rainfall: 637 mm

Accumulated Temperature: 1417 degree days

Field Capacity Level : 134 days
Land Use : Cereals
Slope and Aspect : 2 degrees S

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 25	HCL	25Y 42 00	1	3	HR	С				Υ
25- 40	С	25Y 53 00	0	2	HR	C	WKCSAB	FM	Р	Y
40- 54	С	25Y 53 00	0	2	HR	M	MDCAB	FM	Р	Y
54- 76	С	25Y 52 00	0	2	HR	M	STCAB	FM	Р	Y
76-120	HCL	05Y 72 51	0	20	SLST	M	WKCAB	FM	Ρ	Y

Wetness Grade: 38 Wetness Class : IV

Gleying : 0 cm SPL : 25 cm

Drought Grade: APW: mm MBW: 0 mm

APP: mm MBP: 0 mm

FINAL ALC GRADE : 38
MAIN LIMITATION : Wetness

SOIL PIT DESCRIPTION

Site Name: AYLESBURY VDLP, OPTION AW Pit Number: 5P

Grid Reference: SP79101630 Average Annual Rainfall: 637 mm

Accumulated Temperature: 1417 degree days

Field Capacity Level : 134 days

Land Use : Permanent Grass
Slope and Aspect : degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 23	MCL	10YR31 00	0	0						
23- 38	HCL	10YR53 00	0	0		С	MDCSAB	FR	M	
38- 56	С	10YR53 DO	0	15	HR	M	MDCAB	FM	P	
56- 85	С	25Y 62 00	0	20	HR	M	MDCAB	FM	Р	Y
85- 95	SCL	25Y 53 00	0	25	HR	М	WKÇSAB	FM	Р	Y

Wetness Grade: 3A Wetness Class: III

Gleying : 23 cm SPL : 38 cm

Drought Grade: 3A APW: 105mm MBW: -6 mm

APP: 100mm MBP: -4 mm

FINAL ALC GRADE : 3A
MAIN LIMITATION : Wetness

M. REL --WETNESS-- -WHEAT- -POTS-EROSN FROST CHEM **ALC ASPECT** FLOOD EXP DIST LIMIT COMMENTS GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB DRT 1 SP78501680 OSR N 25 25 0 0 WE 38 2 4. 38 WE ЗА BORING 22 1P SP78701640 PEA n 24 34 O 2 37 3 WE 38 2 SP78701680 OSR 20 20 4 38 0 Ö 0 WE 38 BORING 4 2P SP78601670 OSR 25 25 4 38 0 3 SP78401670 OSR NW ۵ 0 WE 38 2 28 28 4 38 3B BORING 74 3P SP78701580 WHT 104 -7 106 2 WE 29 38 3 38 WE 3B SEE 2P 4 SP78601670 OSR 25 25 4 0 0 38 0 0 WE 3B BORING 31 4P SP78601630 CER S 2 0 25 4 38 3B 5 SP79201670 PGR 0 30 4 38 O n WE WE 3A BORING 35 5P SP79101630 PGR 23 38 3 **3**A 105 -6 100 3B IMP 40 A/B BDR DR 6 SP79391670 PGR E 2 -43 2 0 2 68 68 -36 38 SP78301660 OSR 2 28 28 4 38 0 0 ₩E 38 WE 38 8 SP78501660 OSR 25 25 4 38 0 0 0 WE **3B** 9 SP78701660 PEA 38 n 18 18 4 WE 38 10 SP78901660 PGR 0 35 3B 0 0 0 WE 38 11 SP79101660 PGR E 2 25 25 38 ٥ WE 38 12 SP79301660 PGR Ε 2 0 35 4 **3B** 0 0 30 0 WE 38 13 SP78401650 OSR 30 3B 0 0 0 WE 3B 14 SP78601650 OSR 18 30 3B 3В WE 15 SP78801650 PEA SE 3B O 0 3 0 25 16 SP79001650 PGR 23 23 38 0 0 WE **3B** WE **3B** 17 SP79201650 PGR งก 38 a 0 F 2 Ω WE 3**B** 18 SP79401650 PGR E 2 0 25 4 38 0 0 SP78301640 PEA 25 0 0 WE **3B** 25 4 3B 3A IMP 55 SEE 5P SP78401640 PEA 28 2 34 81 -30 83 -21 38 WD SP78501638 PEA 25 25 38 0 0 WE 3B 21 WE 3A SEE 1P SP78701640 PEA 0 50 3 3A 0 0 SE 2 WE 38 23 SP78801640 CER 2 0 28 4 38 ถ O 24 SP78921640 PGR 25 25 4 3B 0 0 WE 38 WE 38 25 SP79101640 PGR 25 25 4 **3B** 0 0 26 SP79201640 PGR 0 23 38 ۵ 0 WF 38 WE 27 SP79301640 PGR 0 0 34 23 40 3 34 WE 38 SP78301630 PEA 0 28 4 38 0 0 2 WE 34 29 SP78401630 PEA a ٥ SE 1 55 55 2 34 30 SP78501630 PEA S 3 0 30 38 0 0 WE. 38 SEE 4P ٥ Đ WF 38 31 SP78601630 CER S 2 25 25 38 32 SP78701630 CER S 2 28 28 38 0 0 WE 38 38 33 SP78801630 CER S 0 28 4 38 0 0 WE 2 WE 38 34 SP79001630 PGR 25 25 4 38 0 Ô 3A IMP 95 SEE 5P 35 SP79101630 PGR 25 45 3 3A 2 109 5 ΗE WE 36 SP79201630 PGR 34 25 50 34 Ω 3 n 3A IMP 60 SEE 5P MD 37 SP79401630 PGR 0 40 3 **3**A 88 -23 94 -10 3B

SP79501580 CER

79

ASPECT SAMPLE --WETNESS-- -WHEAT- -POTS-EROSN FROST M. REL CHEM ALC NO. GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS 38 SP78311621 PEA SE 1 28 28 38 0 0 WE 38 SP78401620 CER S 2 20 39 20 4 38 0 0 WE **3B** 40 SP78501620 CER S 0 35 4 38 0 0 WE 3B BORDER 3A 41 SP78701620 CER S 0 30 4 3B 0 0 1 WE 38 SP78901620 CER S 0 เ 3B n 0 42 WE **3B** SP79101620 PGR 43 0 20 **3B** 0 0 WE 3B SP79111618 PGR 44 0 45 3. 3B 0 0 WE 3B BORDER 3A 45 SP79281618 PGR 20 40 3 3A 0 ٥ WE 34 SP79401620 PGR 25 45 3A 0 WE **3**A 47 SP79521619 CER 30 30 0 0 **3B** WE 3B 48 SP78401610 CER 30 30 4 **3B** 0 **3B** WE 49 SP78601610 CER 28 28 4 **3B** 0 0 WF **3B** SP78801610 CER 50 0 28 4 3B ٥ n WE 3B 51 SP79031611 PGR 25 33 4 **3B** 0 38 WE 52 SP79031611 PGR 0 4 **3B** 0 0 WE 3B IMP FLINTS 65 53 SP79301610 PGR 0 45 3 3A 99 -12 111 7 WD IMP 70 SEE 5P SP79401610 PGR 25 50 3 3A 0 WE **3**A SP79501610 CER 28 28 38 0 0 55 4 WE 38 SP79601610 CER 25 35 38 0 56 0 WE 38 BORDER 3A 57 SP79801610 CER 18 18 4 **3B** 0 0 WE 38 SP78501600 CER 25 25 0 0 58 4 38 WE 38 SP78701600 CER 28 28 ЗR 0 59 4 n WE 3B SP78901600 CER 28 28 4 38 0 0 **3B** WE 61 SP79161600 PGR 23 55 3 **3**A 99 -12 110 6 3A IMP 70 SEE 5P WD 34 SP79151600 CER 45 45 3 .14 100 -11 112 8 .3A IMP 70 SEE 5P 62 WD **3A** 25 37 94 -10 63 SP79301600 CER ЗА 88 -23 WD IMP FLINTS 60 **3A** 32 32 38 0 0 SP79401600 CFR 4 38 64 WF 65 SP79501600 CER 20 20 Δ 38 n n WE 3B SP79701600 CER 25 25 4 38 0 0 **3B** 66 WE SP78601590 CER 30 30 4 38 0 0 67 3B WE 68 SP78801590 CER 30 30 3B 0 0 WE **3B** 69 SP79001590 CER 30 30 3B 0 WE 3B IMP FLINTS 95 70 SP79101590 CER 0 25 4 3B 0 0 3**P** WE 0 25 3B 71 SP79201590 CER 4 0 0 WE 3B IMP FLINTS 55 SP79401590 CER 28 40 3 34 3 107 IMP 95 SEE 5P 114 WD 34 SP79601590 CER 25 25 a 73 3B 0 WE 3B SP78701580 CER 28 40 3 3A 0 0 WE 3A SEE 3P SP78901580 CER 30 30 4 **3B** 0 0 38 75 WF 28 42 76 SP79101580 CER 3 34 O WE 34 77 SP79211580 CER 65 65 2 2 133 22 111 ΗD 2 SL GLEY 30 SP79301580 CER 28 28 3B 0 0 4 WE 38 78

0

WE

38

0

3B

23 23

SA	MPL	E	,	ASPECT				WETI	NESS	- W H	EAT-	-P0	TS-	м.	REL	EROSN	FRO	ST	CHEM	ALC			
NO		GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000	Ε	ΧP	DIST	LIMIT		COMMENTS	\$	
8	0	SP78601570	CER			28	28	4	3B		o		0						WE	38			
₩ 8	1	SP78801570	CER			28	28	4	3B		0		0						WE	38	IMP FLIN	rs 70	
_ 8	2	SP79001570	CER			0	30	4	38		0		0						WE	3B			
8	3	SP79101570	CER			25	25	4	38		0		0						WE	38			
8	4	SP79201570	CER			35	35	4	38		0		0						WE	3B	IMP 50 BC	OR 3A	
— 8	5	SP79301570	CER			28		2	2	70	-41	70	-34	3B					DR	3A	IMP 45 A/	B BDI	R
8	6	SP79401570	CER			28	28	4	3B		0		0						WE	3B			
— 8	7	SP79601570	PGR			24	24	4	3B		0		0						WE	3B			
8	8	SP78701560	CER			30	55	3	3A	88	-23	96	-8	38					WD	3 A	IMP 65 SE	E SP	
8	9	SP78901560	CER	NH	2	28	35	4	3B		0		0						ME	38	BORDER 34	1	
9	0	SP79101560	CER			35	45	3	3 A	133	22	110	6	2					WE	3 A			
9	1	SP79201560	CER			28		2	2	70	-41	70	-34	38					DR	3 A	IMP 45 A/	/B 80	R
9	2	SP79301560	CER			28		2	2	81	-30	83	-21	38					DR	3 A	IMP 55 SE	E SP	
9	3	SP79501560	PGR			0	55	3	3A	105	-6	110	6	3A					WD	3 A	IMP 80 SE	E 5P	
9	4	SP79201550	CER			28	28	4	3B		0		0						WE	38			
— 9	5	SP79401550	PGR			25		2	2	90	-21	95	-9	38					DR	3 A	IMP 60 SE	E SP	
_ 9	6	SP79601550	PGR			22	45	3	3A	100	-11	107	3	3A					MD	3 A	IMP 80 S8	E SP	
9	7	SP79311540	PGR			22	55	3	3A	103	-8	107	3	3A					WD	ЗА	IMP 80 S8	E SP	
9	8	SP79501540	PGR			0	50	3	3A	109	-2	108	4	3A					WD	3A	IMP 90 SE	E SP	
_ 9	9	SP79501530	PGR			22	22	4	3B		0		0						WE	38	IMP FLINT	rs 95	

28-70 c

25Y 52 00 10YR56 66 M

_____ ----STONES---- STRUCT/ SUBS ----MOTTLES---- PED IPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0-25 25Y 42 00 10YR58 00 F 0 0 HR 3 25Y 53 63 10YR56 00 M Y 0 0 HR 2 Υ 25-60 С 1P 10YR42 00 10YR56 00 F 0 0 HR 3 PSD AT BORING 22 0-24 С 24-37 c 10YR42 00 10YR56 00 C Υ 0 0 HR 3 MDCSAB FR M 37-60 25Y 53 00 10YR58 00 C ٧ 0 0 HR 10 MDCAB FM P Υ Υ PIT TO 80 С 3 WKCAB FM P 60-80 25Y 51 00 10YR66 00 M U U HB γ +3% CALC FRAGS c 0-20 hc1 25Y 42 00 10YR58 00 F D O HR 2 BORDERLINE C 25Y 51 52 10YR58 00 M Y 0 0 HR 2 20-45 С 2 45-60 25Y 52 00 10YR56 00 M 0 CH ρ CALC FRAGS 0~25 hc1 10YR42 00 0 0 HR 2 AT BORING 4 PLASTIC/HEAVY 2 MDCAB FM P 25Y 42 00 10YR56 00 M O O HR 25-34 hel ٧ 34-70 25Y 51 00 75YR56 00 M 0 0 HR 2 MDCAB FM P Υ **PIT TO 70** 0-28 hcl 25Y 41 00 0 0 HR 2 ٧ 25Y 52 00 10YR56 66 M Y 0 0 HR 2 28-70 c PSD AT BORING 74 0-29 10YR42 00 O O HR 2 C 29-38 с 10YR52 00 Y 0 0 HR 2 MDCSAB FM M PSD 10YR53 00 10YR56 00 C 38-63 25Y 53 51 10YR58 00 C 25Y 52 00 Y 0 0 HR 2 MDCAB FM P PIT TO 85 c +2% FLINTS 63-85 25Y 61 00 10YR58 00 M 25Y 42 52 Y 0 O SLST 10 WKCAB FM P c 0-25 hc1 10YR42 00 10YR56 00 F 0 0 HR 3 SEE 2P 25-32 25Y 42 00 10YR56 00 C Υ 0 0 HR 3 Ρ Υ hc1 32-60 25Y 61 53 10YR58 00 M 00MN00 00 Y 0 0 HR 2 С AT PORTING 31 0-25 hcl 25Y 42 00 10YR56 00 C 1 0 HR 3 25-40 C 25Y 53 00 10YR58 00 C 25Y 52 00 Y 0 0 HR 2 WKCSAB FM P 40-54 25Y 53 00 10YR58 00 M 25Y 52 00 Y 0 0 HR 2 MDCAB FM P ٧ Υ Υ С 54-76 С 25Y 52 00 10YR58 00 M 25Y 41 51 Y 0 0 HR 2 STCAB FM P Y 76-120 hc1 05Y 72 51 10YR68 00 M 0 O SLST 20 WKCAB FM P PIT 85 AUG 120 0-20 10YR41 00 10YR46 00 C Υ 0 0 O mc l 20-30 10YR51 00 10YR46 00 M 0 0 0 hcl 30-65 10YR51 00 10YR46 00 M 0 HR 2 CALC FROM 55 c 0-23 10YR31 00 0 0 0 AT BORING 35 mc l 23-38 hc? 10YR53 00 10YR56 00 C 10YR52 00 Y 0 0 O MDCSAB FR M 10YR52 00 Y 0 0 HR 15 MDCAB FM P 38-56 10YR53 00 10YR56 00 M Υ С 56-85 25Y 62 00 10YR58 00 M 25Y 61 00 Y 0 0 HR 20 MDCAB FM P С O O HR WKCSAB FM P PIT 90 IMP 95 85-95 sc1 25Y 53 00 10YR58 00 M Υ 25 0-25 10YR51 00 Y 0 0 0 uc] 10YR42 00 75YR58 00 M 25-40 10YR41 42 75YR58 00 M 0 0 HR 5 IMP FLINTS 40 hcl 0-28 hc1 25Y 42 00 0 0 HR 2

0 0 HR

2

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 0-25 hcl 25Y 42 52 00MN00 00 F 0 0 HR 2 25Y 61 00 10YR66 68 M Y 0 0 0 25-55 c 25Y 61 00 75YR58 00 M 00MN00 00 Y 0 0 HR 2 55-70 c 0-18 hcl 10YR42 32 O O HR BORDERLINE C Р 18-45 25Y 53 00 10YR56 52 M Y 0 0 HR 3 С Р 45-70 c 25Y 52 51 10YR56 61 M Y O O HR 3 0-18 mc1 10YR41 42 10YR46 00 C 0 0 25Y 52 00 10YR46 00 M 0 0 18-35 hcl ٥ 35-60 25Y 53 00 10YR56 00 M 00MN00 00 Y 0 0 0 00MN00 00 Y 60-70 25Y 53 00 10YR56 00 M 0 0 0-25 hc1 25Y 42 00 0 0 Λ 25-50 25Y 52 53 10YR58 00 C Y 0 0 0 P C 50-70 c 25Y 52 53 10YR46 00 C 10YR51 00 Y 0 0 12 0-19 mc1 10YR41 42 10YR46 00 C 0 0 0 19~35 hc1 10YR52 53 75YR58 00 M ٧ 0 0 0 25Y 51 52 10YR46 00 M 35-50 25Y 53 00 Y 0 0 0 C 50-70 25Y 52 53 10YR56 00 M 0 0 Λ BORDERLINE C 13 0-30 hc1 25Y 42 00 0 0 HR 2 30-55 c 25Y 52 00 10YR56 00 C 00MN00 00 Y 0 0 HR 2 55-70 05Y 41 00 10YR56 00 M 00MN00 00 Y 0 0 SLST 5 0-18 hc1 10YR42 00 0 0 HR 3 25Y 53 00 10YR56 00 M 0 0 HR 5 18-30 hcl 30-60 25Y 53 51 10YR56 68 M Y 0 0 HR 10YR42 00 10YR56 00 C Y 0 0 HR 15 0-25 с 3 25-60 25Y 52 62 10YR56 00 M Y 0 0 HR 2 Р 0-23 mc1 10YR42 00 10YR46 00 F 0 0 0 16 25Y 53 00 10YR56 00 C 00MN00 00 Y 0 0 Û 23-65 ¢ 65-85 с 25Y 63 00 10YR68 00 M 00MN00 00 Y 0 0 HR 20 85-100 c 05Y 51 61 75YR68 00 M DOMNOO DO Y O O HR 10 0-15 10YR42 00 10YR46 00 C 0 0 mcl 10YR43 00 10YR46 00 C 15-30 hc1 0 0 0 30-40 с 10YR53 00 10YR46 00 M 0 0 0 40-65 25Y 52 00 10YR46 00 M 0 0 10YR41 00 10YR46 00 C 0 18 0-25 mc1 0 0 10YR51 52 75YR58 00 M PLASTIC BORDER C P Υ 25-32 hc1 0 0 0 32-70 25Y 52 00 25Y 56 00 M 0 0 0 0 0 HR 0-25 hc1 25Y 42 00 2 19 25Y 52 53 10YR58 00 M 25-70 c 00MN00 00 Y 0 0 HR

•					WATTI C		050				CTOM	rc.	- STRUCT/	SUBS				
SAMOLE	DEDTU	TEVTUDE	CO1 (01:0		MOTTLES			C1 1					CONSIST) TMC	102 6	CALC	
SAMPLE	DEPTH	TEXTURE	COLOUR	CUL	ABUN	CONT	WL.	GLI	CT >	2 >0	9 L.I	יה וט	CHSISI	31K FUR	t In	- SFL	CALC	
20	0-28	hcl	25Y 42 00						() () HR	2						
	28-38	hc1	10YR52 53	10YR5	8 00 C	(00MN00	00 1	Y () () HR	2		M				
_	38-55	hcl	25Y 64 00	10YR5	6 00 M			,	Y () () HR	20		М			Y	IMP FLINTS 55
21	0-25	С	10YR41 00						() () HR	2					Y	PS0
_	25-50	С	25Y 42 00	10YR5	6 00 C			,	Y () () HR	2		P		Υ	γ	
	50-80	c	25Y 61 00	10YR66	5 76 M			•	Y () (SL	ST 10		P		Y	Y	
22	0-25	hc1	10YR42 00	10YR56	6 00 C			,	Y () () HR	3					Υ	BORDERLINE C
	25-50	c	25Y 53 00						· ·		HR			М			Υ	SEE 1P HCL TO 37
•	50-70	c	25Y 51 00) HR			Р		Y	Y	
23	0-28	hc1	25Y 42 00	10005	5 NN C			,	Y () () HR	2					Υ	BORDERLINE C
	28-60	c c	25Y 52 00								HR			P		v	Ý	BOILD CITE THE
	20-00	C	231 32 00	10110	0 00 11				' '		. IIK	_		•		•	•	
24	0-25	mcl	10YR41 42					_) (_	0		•				V FIRM
	25-33	hcl	25Y 42 52) (_	0		P		Y		BORDERLINE C
	33-55	С	25Y 52 00) (•	U 22 22		P		Y	v	
	55-70	c	05Y 51 61	/5YK6	BUUM			,	Y () () SL	ST 10		Р		Y	Y	
25	0-25	mcl	10YR41 00								0	0						
5	25-45	C	25Y 52 00				OOMNOO				O HR	_		P		Υ		
_	45-70	С	25Y 56 63	10YR6	6 00 M	1	00MN00	۰ 00	Y (0 (O HR	5		Р		Y	Y	
26	0-23	mcl	10YR42 00	10YR4	6 00 C			,	Y (0	0	0						
	23-70	С	25Y 53 52	10YR5	8 00 M	1	00MN00	00 '	Y 1) (O HR	3		Р		Y		
27	0-23	mc1	10YR42 00	10YR4	6 00 F				(0 (0	0						
	23-40	hc1	10YR53 00	10YR5	6 00 C		OOMNOO	۰ 00	Y () (0	0		М				
_	40-70	c	25Y 52 00	10YR5	8 00 M		00MN00	00 '	Y () (D HR	5		Ρ		Y		SPL NOT CONVINCING
28	0-28	hcl	25Y 42 00	10YR56	6 00 C			,	Y I		O HR	2					Y	
	28-55	c	25Y 52 53	10YR6	6 00 M			,	Y 1) (O HR	2		P		Y	Y	V FIRM
29	0-28	hcl	10YR42 41						1	י ר	O HR	2						
	28-55		25Y 42 00	OOMNO	n on c						D HR			М				NO MOTS VISIBLE
_	55-80		25Y 52 62			1	DOMNOO	00 1			D HR			Р		Y	Y	
30	0-30	6-3	25Y 42 00	10006						. ,	O HR	,					Y	
30														P		v	Y	
_	30-50		25Y 52 00 25Y 52 51								D HR			P		Y		NON CALC
	50-70	C	251 52 51	IUTKS	5 UU M	1	OOMNOO	00 1	,	, ,	U RK	2		r		T		NON CALC
31	0-25		25Y 42 00								O HR			_			Y	PSD SEE 4P
	25-90		25Y 53 52				00MN00				HR			P			Y	
	90-100	mzcl	25Y 71 00	10YR6	B 00 M			,	γ () (U SL	ST 10		Р		Y	Y	
32	0-28	hc1	25Y 42 00						(0) HR	2					Y	
	28-40		25Y 52 00		6 00 C			١			O HR			Ρ		Y	Y	
	40-70		25Y 52 51				00MN00	00 1						Р		Y	Y	
_																		

				MOTTLES	PED			-STONES	} -	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		CONT COL.							P SPL	CALC	
33	0-28	С	25Y 42 00	10YR66 00 C		Y	0	0 HR	2				Y	
	28-70	С	25Y 52 00	10YR66 00 C		Y	0	O HR	1		P	Y	Υ	
34	0-25	mcl	10YR42 00	10YR46 00 F			0	_	0					
	25-60	c		10YR58 68 C	00MN00		Q	-	0		Р	Υ		
	60-75	c		10YR68 00 M	00MN00				20		P		Y	
	75–100	С	05Y 61 00	10YR68 00 M		Y	Ō	O SLST	10		Р	Υ	Y	
35	0-25	mcl	10YR42 00	10YR46 00 F			0	0	0					SEE 5P
	25-45	hcl		10YR56 00 C		Υ	0		0		м			
	45-65	С		10YR58 00 M		γ	0	0	0		Р	Υ		
	65-75	С	25Y 63 62	10YR68 00 M		Υ	0	O HR	10		Р	Υ	Y	
	75-95	scl	25Y 63 62	10YR68 00 M		γ	0	O HR	20		Р	Υ	Y	IMP FLINTS 95
36	0-25	mc1	10YR42 00				0	0	0					
	25-50	hc1	10YR52 00	10YR56 00 C		γ	0	0	0		M			
	50-80	c	25Y 53 00	10YR58 00 M	COMMOD	00 Y	0	0 HR	5		Р	Y		
37	0-20	mc1	100041 42	75YR46 00 M		γ	0	0	0					
3,	20-40	hcl	· ·	10YR58 00 M		Ý	0	-	0		м			
	40-60	c		10YR58 00 M	DOMNOO		-	-	0		P	γ		IMP 60 GRAVELLY
	10 00	J	20. 00 02	1011135 55 17	00.1100			·	·		•	•		2000
38	0-28	С	25Y 41 00				0	O HR	3					
	28-70	С	05Y 51 61	10YR58 00 M	00MN00	00 Y	0	O HR	2		Р	Y		
39	0-20	hc1	25Y 42 00				n	O HR	1				Y	
33	20-50	c.		10YR66 00 C		Y		O HR	1		Р	Y		V HARD & DRY
	50-70	c		10YR68 00 M		Y	0		0		P	Y		
40	0-35	mc1	10YR42 00	10YR66 00 C		Y	0	O HR	1					
	35-60	С	25Y 52 00	10YR66 00 M		Y	0	0	0		P	Y		
									_					
41	0-30	hc1		10YR66 00 C				O HR	2		_		Y	BORDERLINE C
	30-58	С		10YR66 00 M				O HR	10		P	Y		
	58-75	С	25Y 61 00	10YR58 00 M		Y	U	O HR	2		Р	Y	Y	
42	0-30	hc1	10YR42 00	10YR66 00 C		Υ	1	O HR	2				Y	
	30-45	С		10YR66 00 C		Ÿ		O HR	2		P	Υ	γ	
	45-60	c		10YR68 00 M	00MN00	00 Y		0 HR	15		Р	Υ	Y	
	60-80	hc1	25Y 71 00	10YR58 00 M		Y		O SLST	5		P	Y	Y	
43	0-20	hc1		10YR46 00 C		Υ	0	0	0					
	20-80	С	25Y 52 53	10YR58 00 M	00MN00	00 Y	0	0	0		Р	Y		
44	0-32	hc1	10YR42 00	10YR58 00 C		Y	0	0	0					
	32-45	c		75YR58 00 C		Ÿ		O HR	1		м			SOFT
	45-80	c		75YR58 00 M		Ÿ		O HR	2		P	γ		
		-				•	-		_			•		

					OTTLE	S	PED				_ST	ONES.		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR											CONSIST		IMP SPL	CALC	
_			55252							-	_							
45	0-20	mc1	10YR42 00	75YR46	5 00 F					0	0		0					
	20-40	hc1	10YR53 00	75YR56	3 00 C				Y	0	0		0		М			
_	40-70	c	25Y 53 00	75YR58	3 00 M	(00 MN 00	00	Y	0	0		0		Р	Y		
46																		
46	0-25	mcl	10YR42 00	10YR46	5 00 F					0	0		0					
	25-45	hc1	10YR53 00	10YR56	00 C				Y	0	0		0		М			
	45-80	С	25Y 53 00	10YR58	3 00 M	1	00MN00	00	Y	0	0	HR	5		Р	Y		
5	80-90	c	25Y 51 61	10YR68	3 00 M	(00MN00	00	Y	0	0	HR	10		P	Υ		
47	0-30	hc1	10YR42 00							0	0		0					
	30-70	c	25Y 53 00	75YR58	3 00 M				Y	0	0		0		Р	Y		
-										_	_		_					
48	0-30	hc1	10YR41 00									HR	2		_		Y	
	30-70	C	25Y 52 53						Y				2		P		Y	
	70-80	hcl	25Y 61 00	10YR66	00 M				Y	0	0	SLST	10		P	Y	Y	
40	0.20	h	10V040 00							^	^	นค	2					
49	0-28	hc)	10YR42 00	10/050			^~**		.,			HR	2			v		
	28-70	С	25Y 52 51	TUYKSE	S UU M		DOMNOO	υυ	Y	0	U	nĸ	2		Р	Y		
_ 50	0-28	hal	10VD42 00	100050	00.0				v	^	۸	uв	2					
~	28-70	hc1 c	10YR42 00 25Y 52 00				DOMNOO		Y	0		пк	0		Р	Y		
5	20-70	C	231 32 00	IUTKO) OI M	,	JUMNOU	v	T	U	U		•		F	IJ		
51	0-25	mcl	10YR42 00	10VP46	nn F					0	n		0					
	25-33	hc1	10YR53 00						Υ	0			ō		М			
	33-65	c	25Y 52 00				OOMNOO			ο			0		P	Y		
_	65-70	c	25Y 61 62				DOMNOO			-		HR	20		P	Y		IMP FLINTS 70
_																		
52	0-25	നമി	10YR42 00	75YR46	00 C				Y	0	0		0					
•	25-35	С	10YR42 00	10YR56	00 C				Y	0	0		0		M	Y		SOFT NOT SPL
_	35-65	С	25Y 53 00	75YR58	00 M				Y	0	0	HR	2		P	Y		
53	0-30	mcl	10YR42 00	75YR58	00 C				Y	0	0		0					
	30-45	hc1	10YR53 00	75YR58	00 C				Y	0	0		0		M			
	45-70	c	25Y S2 00	75YR58	00 C	(DOMNOO	00	Y	0	0		0		Р	Y		
54	0-25	mcl	10YR42 00							0		HR	2					
1	25-50	hc1	10YR53 00						Y	0	0		0		М			
	50-70	С	25Y \$3 52				OOMNOO			0			5		P	Υ		
_	70-80	hc1	10YR52 00						Y	0			20		P	Y	Y	
	80-100	sci	10YR63 00	10YR58	68 M				Y	0	0	HR	25		Р	Y	Y	
55	0-28	•	10/041 00								_		•					
3 3	28-80	mc1	10YR41 00	104055	FO 14		2044100	20	v	0			2 5		Р	Y		
	20-00	C	25Y 52 51	IUTKO	пос	,	DOMNOO	w	*	0	V	пк	3		F	*		
56	0-25	mcl	10YR43 00							0	n	нΩ	3					
_~	25-35	hcl	101R43 00	1ሰሃወፍዳ	. nn r				Y	0			2		м			BORDERLINE C
_	35-40	c	25Y \$3 00						Y	0			2		P	Y		DONOCKETHE V
	40-60	c	25Y 52 00				DOMNOO		•	0			0		Р	Y		
J		-	42 00						•	-	•		-		•	•		

					1OTTLES	S -	PED			5	TONE	s -	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLE	Y >2	>6	LIT	н тот	CONSIST	STR POR	IMP SPL	CALC	
	0.10								_			•					
5/	0-18 18-60	hzc1	10YR41 42 05Y 51 00	75VD46	: E6 M			v		. 0		0		Р	Y		
	18-00	zc	051 51 00	/31K4C) 30 M			7	U		ı	U		Г	,		
58	0-25	hcl	10YR41 42						0	0	HR	2					
	25-70	c	25Y 53 52	10YR58	3 00 C	(OOMNOO	00 Y	0	0	HR	2		P	Y		
59		hcl	10YR42 00								HR	2		_			
	28-80	C	25Y 53 51	10YR56	3 00 C			Y	0	0	HR	2		P	Y		
60	0-28	hc1	10YR42 00						n	n	HR	2					
00		c c	25Y 53 00	10YR68	3 00 C			٧			HR	2		Р	Y		
	55-70		25Y 52 61						0			2		P	Y		
					•												
61	0-23	mcl	10YR42 00	10YR46	00 F				0	0	ı	0					
		hc1	25Y 52 00		-		DOMNOD			-		0		М			
	55-70	С	25Y 51 61	10YR68	3 00 M	(OOMNOO	00 Y	0	0	HR	10		Р	Y		
62	0-35	mc1	10YR43 00						n	C		0					
O.E		hc1	101R43 00	10YR58	1 00 F					0		o		М			
		c	10YR53 00					Y	0			0		P	Y		
63	0-25	mc1	10YR42 00						0	0	ı	0					
			10YR42 41						0			0		M			
	37-60	С	25Y 53 00	75YR58	3 00 C			Y	0	C	l	0		Р	Y		
64	0-32	hc1	10YR32 33						n		HR	2					
- ,	32-55		25Y 52 53	10YR46	5 00 C	(DOMNOO	00 Y				2		Р	Y		
	55-65	С	25Y 52 53								HR	2		Р	Y	Y	
65		hc1	10YR32 00								HR	3		_			
	_	С	25Y 52 00								HR	3		P	Y		
	35-45		25Y 62 00				OOMNOO					3		P P	Y Y	v	
	45-55	С	25Y 62 00	IUTKS	5 UU M	(DOMNOO	00 1	U	Ų	rik.	8		F	1	•	
66	0-25	hcl	10YR42 00						1	0	HR	5					
	25-60	С	25Y 51 00	75YR46	58 M			Y	0	C	HR	5		Р	Y		
67	0-30	hel	10YR42 00								HR	2		_		Y	BORDERLINE MCL
	30-65	С	25Y 53 52			(OOMNOO		_	_	HR	2		P	Y Y	Y	
	65-80	c	25Y 61 00	TUYROS	5 UU M			Y	0	U	SLS	1 10		P	4	Y	
68	0-30	hc1	10YR41 42						0	0	HR	2					BORDERLINE MCL
	30-80	С	25Y 53 52	10YR58	3 00 M			Y	0			2		Р	Y		
69	0-30	hcl	10YR42 00								HR	2		_			BORDERLINE MCL
	30-75	c	25Y 53 00						0			2		P	Y		
	75-95	С	25Y 61 00	IUYR68	S DU M			Υ	0	0	HR	20		Р	Y	Y	

				MO	TŤL FS		PFD				-ST	ONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A			-								STR POR IMP	SPL CALC	
_																	
70	0-25	hc1	10YR52 00	75YR58	00 C				Y	0	0		0				
•	25-70	c	25 Y52 00	75YR56	00 M				Y	0	0	HR	2		P	Y	
-	0.35			75:045						_	_		•				
71	0-25 25-55	hc1	10YR42 00						Y	0	0	HR	3		Р	v	THO FLINTS ES
	23-35	С	25Y 53 00	/51K38	UU M				Y	U	U		U		•	Y	IMP FLINTS 55
72	0-28	mcl	10YR43 00							0	0	HR	2				
12	28-40	hc1	10YR53 00	10RY46	00 C				Y				2		м		
	40-75	С	10YR53 00	10YR\$6	00 м	1	00MN00	00	Υ	0	0	HR	2		P	Y	
_	75-85	c	10YR53 52	10YR46	00 M		OOMNOO	QQ	Y	Đ	0	HR	5		P	γ	
	85-95	scl	10YR53 00						Y	0	0	HR	10		M	Y	IMP 95 GRAVELLY
													_				
73	0-25	hcl	10YR42 00								0		5		_		
	25-60	С	25Y 53 00	75YR46	56 M				Y	0	O	HR	5		P	Υ	
74	0-28	mcl	10YR41 00							n	0	HR	2				SEE 3P
•	28-40	с С	10YR53 54	10YR56	00 C				Y				2		М		512 0 ,
	40-70	c	10YR53 00			1	DOMNOO	00	Y		0		2		Р	γ	
-	70-90	С	25Y 52 00	10YR58	00 M		0011100	00	Y	0	0	SLST	10		Р	Υ	
_																	
75	0-30	hcl	10YR42 00								0		2		_		
	30-45	С	10YR53 00						Υ	_	_		2		P	Y	
_	45-90	С	25Y 52 00	TUYK58	UU M	,	00MN00	00	Y	0	U	нк	2		Р	Y	
76	0-28	mc1	10YR42 00							٥	0	HR	2				
	28-42	hcl	10YR53 54	10YR56	00 C				γ	0			2		M		
_	42-120		25Y 61 52			(OOMNOO	00	Y	0	0	HR	2		Р	Y	
77	0-30	mcl	10YR43 00								0		5				
_	30-45	mcl	10YR54 00						S		0		5		M		SLIGHTLY GLEYED
	45-65	hc1	10YR54 00						S		0		5		M	.,	SLIGHTLY GLEYED
	65-120	C	25Y 52 00	IUYK51	68 M	(00MN00	Ųΰ	Y	U	0	HK	5		Р	Y	
78	0-58	mc1	10YR43 00							0	0	HR	3				
	28-60	С	25Y 51 00	75YR58	00 M				Υ	0	0	HR	5		Р	Y	
-																	
79	0-53	mcl	10YR42 00							1	0	HR	5				
	23-60	c	25Y 51 00	75YR46	58 M				Y	0	0	HR	10		P	Y	
- 00	0.00									_	_		_				
80 ■	0-28 28-60	hcl c	10YR42 00 10YR42 52	10VPE9 (00.0				Υ	0	0		0		Р	Y	
	60-85	c	25Y 53 00						τ Υ	0	_		0		P	Y	PLASTIC C
_	30 43	·	531 33 00	JUINDO I					•	J	•		~		r	•	LEWSIEC C
81	0-58	hc1	10YR42 00							0	0	HR	2				
	28-70	c	25Y 53 00	75YR58 (00 M				Y	0	0	HR	2		P	Y	
_																	
82	0-30	hc1	10YR42 00						Y	0	0	HR	2		_		
	30-70	c	25Y 53 00	75YR58 (DO M				Y	0	0		0		Р	Y	
-																	

----MOTTLES---- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 10YR43 00 1 0 HR 83 0-25 mcl 25Y 52 00 10YR58 00 M 0 0 HR 5 25-45 C 25Y 53 61 75YR58 00 M 00MN00 00 Y 0 0 HR 5 45-70 10YR42 00 0-35 0 0 HR hcl IMP FLINTS 50 25Y 53 52 75YR58 00 M Y 0 0 HR 2 35-50 С 10YR43 00 2 0 HR 85 0-28 mcl IMP FLINTS 45 25Y 52 00 10YR58 51 M Y 0 0 HR 15 28-45 hc1 10YR32 00 1 0 HR 0-28 hc1 25Y 52 00 10YR68 51 M 0 0 HR 28-60 C 0-24 10YR41 42 0 0 HR mc1 25Y 41 42 10YR58 00 M 00MN00 00 Y 24-55 0 0 HR c 25Y 61 71 10YR68 00 M 0 0 SLST 10 55-90 10YR43 00 1 0 HR 0-30 mc1 30-45 10YR41 00 75YR58 00 C 0 0 HR 15 hc1 10YR53 00 75YR58 00 C 45-55 hc1 0 0 HR 25 М IMP FLINTS 65 55-65 10YR53 00 75YR58 00 M 0 0 HR 30 Υ 10YR43 00 O D HR 0-28 2 89 mcl 10YR53 00 10YR58 00 M 28-35 Y 0 0 HR 2 25Y 51 61 75YR58 68 M 0 0 HR 35-60 С 0 0 HR 10YR43 00 2 90 0-35 mc1 10YR53 00 75YR58 00 M 0 0 0 35-45 mc1 45-70 25Y 61 00 75YR68 58 M С 10YR43 00 0-28 mcl 1 0 HR 8 IMP FLINTS 45 28-45 25Y 53 00 10YR66 00 M Y 0 0 HR hc1 10YR43 00 1 0 HR 5 92 0-28 mcl 10YR53 00 10YR56 00 M 28-40 hc1 O O HR 10 40-55 10YR53 00 10YR68 56 M 00MN00 00 Y 0 0 HR IMP FLINTS 55 hc1 10YR41 42 10YR46 00 C 93 0-22 0 0 HR 2 mc? 10YR53 00 10YR58 00 C 0 0 HR 22-40 hc1 10YR53 00 10YR58 00 M 0 0 HR 2 40-55 hcl 25Y 53 63 10YR58 68 M 0 0 HR 55-70 2 C 25Y 61 62 10YR58 00 M 0 0 HR 20 +20% SLST 70-80 hc1 0-28 mc1 10YR43 00 O O HR 3 28-60 25Y 51 53 75YR68 00 M 00MN00 00 Y 0 0 HR 8 Ρ C 10YR42 43 10YR46 00 F 0 0 HR 0-25 2 mel 0 0 HR 10YR53 00 10YR56 00 C Υ 25-45 hc1 2 45-55 hc1 10YR53 00 10YR56 00 C COMNOQ 00 Y 0 0 HR 10 М 25Y 63 53 10YR58 68 M 0 0 HR 40 IMP FLINTS 60 55-60 hcl

				MOTTLE	S PED			-STONE	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT COL.	GLEY	>2	>6 LIT	н тот	CONSIST	STR POR	IMP SPL CALC	
96	0-22	mcl	10YR42 00	10YR45 00 F	•		0	O HR	2				
96	22-45	hc1	10YR53 00	10YR56 00 (:	Y	0	0 HR	2		M		
	45-70	С	10YR53 52	10YR56 00 0	00MN00	00 Y	0	0 HR	2		P	Y	
•	70-80	С	25Y 53 63	10YR58 68 N	I QOMNOO	00 Y	0	O HR	30		Р	Y	IMP FLINTS 60
97	0-22	mcl	10YR42 00				0	0 HR	2				
	22-55	hc1	10YR53 00	10YR56 00 0	00MN00	00 Y	0	O HR	5		М		
	55-70	С	25Y 52 00	10YR56 00 N	00MN00	00 Y	0	0 HR	10		Р	Y	
•	70-80	scl	25Y 62 00	10YR68 00 N	I	Y	0	0 HR	30		M	Y	IMP FLINTS 80
98	0~25	mcl	10YR42 00	10YR56 00 (:	Y	0	0 HR	2				
	25-50	hc1	10YR53 00	10YR58 00 0	•	Y	0	0 HR	2		М		
_	50-75	С	25Y 53 00	10YR56 00 N	OOMNOO	00 Y	0	0 HR	5		P	Y	
1	75-90	c	25Y 52 62	10YR68 00 N	00MN00	00 Y	0	0 HR	20		P	Y	IMP FLINTS 90
99	0-22	mcl	10YR42 00				0	0 HR	2				
_	22-50	c	10YR53 52	10YR58 00 0	:	Y	0	0 HR	2		P	Y	
	50-65	С	25Y 53 00	10YR58 68 N	OOMNOO	00 Y	0	0 HR	10		Р	Y	
8	65-90	c	25Y 53 52	10YR58 68 N	00MN00	00 Y	0	0 HR	20		P	Y	IMP FLINTS 90