A1 Maidstone Borough Local Plan Site 26 Land off Oakapple Lane, Barming Agricultural Land Classification ALC Map and Report August 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

MAIDSTONE BOROUGH LOCAL PLAN SITE 26 LAND OFF OAKAPPLE LANE, BARMING

1 Summary

- 1 1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the Maidstone Borough of Kent The work forms part of MAFF's statutory input to the preparation of the Maidstone Borough Local Plan
- 1 2 Site 26 comprises 2.7 hectares of land west of the cemetery off Oakapple Lane north of the village of Barming Heath An Agricultural Land Classification (ALC) survey was carried out during August 1994 The survey was undertaken at a detailed level of approximately two borings per hectare of agricultural land surveyed A total of 4 borings and one soil inspection pit were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture
- 13 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 14 At the time of survey the agricultural land on the site was in permanent pasture used for grazing by horses The areas mapped as urban are in the north of the site a gravel track and in the south of the site disused concrete bunkers The agricultural buildings mapped are horse stables The non agricultural land shown comprises a track and an overgrown area
- 15 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

Table 1 Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site	% of Agricultural Land
3a	22	81 5	100 0 (2 2 ha)
Urban	01	37	``
Non agricultural	03	11 1	
Agricultural buildings	<u>0 1</u>	<u>3 7</u>	
Total area of site	$\overline{27}$	100 0	

- 16 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 17 All of the agricultural land surveyed has been classified as Subgrade 3a good quality because of a moderate soil droughtiness limitation Profiles typically comprise medium sandy loam topsoils over medium clay loam or sandy clay loam subsoils which are slightly stony throughout These overlie poorly structured clay at moderate depths causing slightly imperfect drainage This clay becomes increasingly stony with depth The interaction between these soil textures and profile stone contents and local climatic parameters at this site may moderately restrict plant growth and yield due to reduced profile available water

2 Climate

- 2.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature (degree days Jan June) as a measure of the relative warmth of a locality
- 2 3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site. The crop adjusted soil moisture deficits at this locality are slightly higher than the regional average. High soil moisture deficits increase the likelihood of soil droughtiness limitations.
- 2.4 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolation

Grid Reference	TQ729554
Altıtude (m)	88
Accumulated Temperature	1407
(degree days Jan-June)	
Average Annual Rainfall (mm)	693
Field Capacity (days)	141
Moisture Deficit Wheat (mm)	111
Moisture Deficit Potatoes (mm)	105
Overall Climatic Grade	1

3 Relief

3 1 The site is flat and lies at approximately 88m AOD

4 Geology and Soil

- 4 1 British Geological Survey (1976), Sheet 288 shows the entire site to be underlain by Hythe Beds (sandy limestone and calcareous sands)
- 42 Soil Survey of England and Wales (1983) Sheet 6 shows the entire site to comprise soils of the Malling Association These soils are described as 'well drained non calcareous fine loamy soils over limestone at variable depths. Some deep well drained coarse loamy soils and similar fine loamy over clayey soils. Some fine loamy soils with slowly permeable subsoils and slight seasonal waterlogging' (SSEW 1983)
- 4 3 Detailed field examination found imperfectly drained soils which become heavier textured and increasingly stony with depth

5 Agricultural Land Classification

- 51 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

Subgrade 3a

53 All of the agricultural land surveyed has been classified as Subgrade 3a because of a moderate soil droughtiness limitation Topsoils typically comprise non-calcareous medium sandy loams In the north of the site topsoils are very slightly stony (c 1% total hard sandstone) and in the south of the site are slightly stonier (c 5% hard sandstone >2cm and 10% total hard sandstone by volume) These overlie upper subsoils of varying texture typically medium clay loams medium sandy loams and sandy clay loams These upper subsoils are very slightly to slightly stony (c 3-12 % total hard sandstone by volume) These overlie clay lower subsoils at approximately 40 45 cm which change from being very slightly stony (c 2% total hard sandstone by volume) to moderately stony (c 30% total hard sandstone) at approximately 62 cm depth Due to the very dry conditions at the time of survey some of the borings proved impenetrable below the topsoil and all of the auger borings proved impenetrable between 55 and 80 cm depth However a soil inspection pit (Pit 1) confirmed similar profiles to those described above From this pit it could be seen that the clay lower subsoils are poorly structured Consequently their slowly permeable characteristics results in slight gleying of these lower horizons and such profiles are assigned to Wetness Class III Given the relatively dry prevailing climatic conditions at this site and the sandy textured topsoils this land is subject to only minor soil wetness limitations. The overriding limitation is that of soil droughtiness. This moderate limitation results from the interaction between the soil properties (soil textures profile stone contents and subsoil structures) with the local climate The restricted available water for crops in such profiles will tend to reduce the level and consistency of crop yields and give rise to a moderate risk of drought stress for those crops which are grown

ADAS Ref 2007/181/94 MAFF Ref EL 20/328 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 Maidstone 1 50,000 Series (solid and drift edition)

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape, potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

1

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hardsurfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply

Woodland

Includes commercial and non-commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of Waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Definition of Soil Wetness Classes

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions Database Printout - Boring Level Information

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	EEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop)S			

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			-

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Sılt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Sılty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described
 - F few <2% C common 2 20% M many 20 40% VM very many 40% +
- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used
 - HR all hard rocks and stones SLST soft oolitic or dolimitic limestone
 - CH chalk FSST soft fine grained sandstone
 - ZR soft argulaceous or sulty rocks GH gravel with non porous (hard) stones

MSST soft medium grained sandstone GS gravel with porous (soft) stones

SI soft weathered igneous/metamorphic rock

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

05 94

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub-angular blocky PL platy	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Nam	e MAIDS	TONE LP SITE	26	Pit Number	1	Р				
Grid Ref	erence T(Q72805530	Average Annu Accumulated Field Capaci Land Use	al Rainfall Temperature ty Level	69 140 141 Per	3 mm 17 degree days manent Gr	days ass			
		:	Slope and As	pect		degrees				
HORIZON 0 22	TEXTURE	COLOUR 10YR43 00	STONES >2 5	TOT STONE	LITH HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
22- 41	SCL	75YR56 00	0	12	HR	м	MDCSAB	FM	м	
41- 62	С	75YR54 00	0	2	HR	м	STCAB	VM	Р	
62-120	С	75YR54 00	C	30	HR	м		VM	Р	
Wetness	Grade 2	1	Wetness Clas	s III						
			Gleying SPL	041	cm cm					
Drought	Grade 3	A .	APW 108mm APP 94mm	MBW – MBP 1	3 mm 1 mm					
FINAL AL	.C GRADE	3A								

MAIN LIMITATION Droughtiness

(

Į

program ALCO12

LIST OF BORINGS HEADERS 07/11/94 MAIDSTONE LP SITE 26

S	AMPI	ĻΕ		ASPE	СТ			WETI	NESS	-₩H	EAT	-PC	TS-	Μ	REL	EROSN	FROST	CHEM	ALC	
N	Ю	GRID R	EF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E)	KP DIST	LIMIT		COMMENTS
-	1	TQ72885	540	PGR			040	3	2	98	-13	103	-2	3A				DR	ЗА	I80 sl gley40
	1P	TQ72805	530	PGR			041	3	2	108	3	94	-11	ЗA				DR	ЗA	Pit7Osl gley41
•	2	TQ72805	530	PGR				1	1	43	68	43	-62	4				DR	ЗA	Imp28 Re 1P
_	3	TQ72895	530	PGR				1	1	38	-73	38	-67	4				DR	ЗA	Imp25 Re 1P
	4	TQ72875	550	PGR S	01			1	1	82	-29	84	-21	3B				DR	3A	Imp54 Re 1P

page 1

rogram ALCO11

page 1

						MOTTLES	;	PED			- S'	TONES		STRUCT	/ Su	BS					
AM	1PLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	r st	r po	R IMP	' SPL	CALC		
Ď	1	0 20	ms]	10YR43 00						0	0	HR	1								
		20-40	mc]	10YR44 00						0	0	HR	2		M						
		40-65	с	10YR44 00	10YR5	8 00 C			S	0	0	HR	2		P			Ŷ		S 1	gleyed
		65-80	с	75YR56 00	10YR5	8 00 C			S	0	0	HR	2		P			Y		S 1	gleyed
	1P	0 22	ms]	10YR43 00						5	0	HR	10								
		22-41	scl	75YR56 00	05YR4	6 00 M				0	0	HR	12	MDCSAB	FM M						
		41-62	с	75YR54 00	75YR5	8 00 M	7	75YR54	00 S	0	0	HR	2	STCAB	VM P	Y		Y		S1	gleyed
		62-120	c	75YR54 00	75YR5	8 00 M	7	75YR54	00 S	0	0	HR	30		VM P	Y		Y		S1	gley Pit70
	2	0-25	msl	10YR43 00						5	0	HR	10								
		25-28	mcl	10YR43 00						0	0	HR	10		M					Im	p 28 v dry
	3	0 22	ສ ຣ]	10YR43 00						5	0	HR	10								
		22-25	wc]	10YR44 00						0	0	HR	10		M					Im	p 25 v dry
-	4	0-23	៣នា	10YR43 00						0	0	HR	1						Y		
		23-45	msl	10YR43 44						0	0	HR	3		M				Y		
Ľ		45-54	hc1	10YR44 00	OOMNO	0 00 F				0	0	HR	8		M				Y	Im	p54dry+stony