Kinwarton Farm Road, Alcester Agricultural Land Classification March 1998

Resource Planning Team Worcester FRCA Western Region Job Number 07/98

MAFF Ref EL43/00021D

KINWARTON FARM ROAD ALCESTER

AGRICULTURAL LAND CLASSIFICATION SURVEY

CONTENTS

		Page
INTRODUCTIO	N .	1
SUMMARY		1
CLIMATE		2
RELIEF		2
GEOLOGY ANI	OSOILS	2
AGRICULTURA	AL LAND CLASSIFICATION AND MAP	3
REFERENCES		4
APPENDIX I	Description of the Grades and Subgrades	5
APPENDIX II	Definition of Soil Wetness Classes	7
APPENDIX III	Survey Data	8
	Sample Point Location Map	
	Pit Descriptions	
	Boring Profile Data	
	Boring Horizon Data	
	Abbreviations and Terms used	in Survey Data

KINWARTON FARM ROAD ALCESTER

AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 6 3ha of land at Kinwarton Farm Road Alcester Field survey was based on 7 auger borings and 1 soil profile pit and was completed in March 1998
- The survey was conducted by the Resource Planning Team of FRCA Western Region on behalf of MAFF in its statutory role in the Stratford upon Avon Local Plan
- Information on climate geology and soils and from previous ALC surveys was considered and is presented in the relevant section. Apart from the published regional ALC map (MAFF 1977) which shows the site at a reconnaissance scale as wholly Grade 3 the site had not been previously surveyed. However, the current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF 1988) and supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I
- At the time of survey land cover was not in agricultural use. Other land which was not surveyed included industrial development, a pond and some storage barns

SUMMARY

The distribution of ALC grades is shown on the accompanying 1 10000 scale ALC map. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas. Areas are summarised in the Table 1

Table 1 Distribution of ALC grades Kinwarton Farm Road

Grade	Area (ha)	% Surveyed Area (6 3 ha)		
3b	5 7	90 5		
Other land	06	9 5		
Total site area	6 3	100 0		

No best and most versatile land occurs across the site. The site is wholly of subgrade 3b quality. The soils are heavy and are limited by soil wetness.

CLIMATE

- Estimates of climatic variables for this site were derived from the published agricultural climate dataset. Climatological Data for Agricultural Land Classification (Meteorological Office 1989) using standard interpolation procedures. Data for key points around the site are given in Table 2 below
- Since the ALC grade of land is determined by the most limiting factor present overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions. Parameters used for assessing overall climate are accumulated temperature a measure of relative warmth and average annual rainfall a measure of overall wetness. The results shown in Table 2 indicate that there is no overall climatic limitation.
- Climatic variables also affect ALC grade through interactions with soil conditions. The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections.

Table 2 Climatic Interpolations Kinwarton Farm Road

Grid Reference	SP 096584		
Altıtude (m)	53		
Accumulated Temperature (day C)	1439		
Average Annual Rainfall (mm)	639		
Overall Climatic Grade	1		
Field Capacity Days	143		
Moisture deficit (mm) Wheat	104		
Potatoes	96		

RELIEF

Altitude ranges from 45 metres at Seymour Road in the south of the site to 55 metres in the east of the site with no limitation due to slope gradient

GEOLOGY AND SOILS

The underlying geology of the site is shown on the published geology map (BGS 1974) as wholly Mercia mudstone. In the recent ALC survey parent materials were found to match the published geology.

- Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1 250 000 (SSEW 1983) as wholly Whimple 3 Soil Association More detailed soils information is also available in the 1 50000 scale survey of The Worcester area (SSEW 1986)
- The soils of the Whimple 3 Soil Association are described as reddish fine loamy or fine silty over clayey soils with slowly permeable subsoils and slight seasonal waterlogging
- 14 The recent ALC survey identified loamy over red clayey soils across the whole site

AGRICULTURAL LAND CLASSIFICATION

- The distribution of ALC grades found by the current survey is shown on the accompanying 1 10000 scale map and areas are summarised in Table 1. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas.
- 16 Subgrade 3b

Land of moderate quality occurs across the whole site. The soils were described as having a medium clay loam topsoil texture overlying a red clay subsoil within 38cm and extending to a depth of 70 80cm below this a soft blocky mudstone was encountered. A profile pit confirmed that the clay and mudstone were slowly permeable and the soils were placed into Wetness Class IV (see Appendix II)

S Y HUNTER
Resource Planning Team
FRCA Worcester
March 1998

REFERENCES

BRITISH GEOLOGICAL SURVEY/INSTITUTE OF_GEOLOGICAL SCIENCES (1974) Sheet 200 Stratford upon Avon 1 50 000/63 360 series Solid and Drift edition BGS London

HODGSON J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 Silsoe

MAFF (1977) 1 250 000 series Agricultural Land Classification South West Region MAFF Publications Alnwick

MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for grading the quality of agricultural land MAFF Publications Alnwick

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification Meteorological Office Bracknell

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 3 Soils of Midland and Western England 1 250 000 scale SSEW Harpenden

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in Midland and Western England Bulletin No 12 SSEW Harpenden

SOIL SURVEY OF ENGLAND AND WALES (1986) Sheet 150 Soils of the Worcester and Malverns District 1 50000 scale SSEW Harpenden

APPENDIX I

DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 excellent quality agricultural land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 very good quality agricultural land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.

Grade 3 good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 very poor quality agricultural land

-Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Source MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land MAFF Publications Alnwick

APPENDIX II

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 and 90 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

Notes The number of days specified is not necessarily a continuous period

In most years is defined as more than 10 out of 20 years

Source Hodgson J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 Silsoe

SITE NA	ME		PROF	FILE NO	SLOPE	AND A	SPECT	LAND USE Av		Av	Raınfall	639 mm		PAI	RENT MATE	RIAL		
Kınwarto	n Farm Ro	oad	Pit1 (Asp 5 6)	2 w			Scru not 1	rb in ag use		АТО		1439 day C		Mercia Mudstone			
JOB NO			DAT	E	GRID	REFERE	NCE	DES	SCRIBED BY		FC Days 143		PSE	SAMPLES'	TAKEN	- ,		
07/98			18 M	arch 1998	SP 096	55822	55822 SH/SK			matic Grade	1		None					
Horizon No	Lowest A Depth (cm)	Text	t re	Matrix (Ped Face) Colours	Stonine Size Ty F eld M	pe a d	Mottling Abundance Contrast S and Colour		Mangan Concs	Structure Pe Developmer Size and Sha	ed nt	Cons stence	Structural Cond t on	Pores (F ssu es)		Roots Abundance and Size	Calcium Carbonate Content	Horizon Boundary Distinctness and form
1	27	M	ICL	75YR3/2 4/2	29' HR ()	None		None							CF+VF		Smooth clear
2	47	,	С	5YR4/3 4/4 (5YR5/2 3)	29 HR ()	None		Common	WKCPR breaking WKCSA	to	FM	P	P fron 35cm		CF+VF		Smooth diffuse
3	100		С	5YR4/4 (5YR5/2)	NONE		None		Common	MASS WK CPI breaking MAB		FM	P	P		FF+VF		
Profile G	leyed Fror	n í	35			Availal	ble Water	Whe	eat 126mm				Final ALC (Grade		3b		
Slowly P Horizon	ermeable From	3	35			Potatoe	es		103mm 104mm				Main Limiti	ng Factor(s))	We		
Wetness			IV 			Moistu	re Deficit	Who	eat 96mm									
Wetness	Grade	•	3b			Potatoe Moistu	es re Balance	Whe	eat +22mm				Remarks H	3 Clay stru	ıcture	determined by	y structure of	
						+7mm Potatoes				mudstone rather than pedogenic development								
						Drough	htiness Grade	e 2	(Calcula	ted to 120	em))	Water visibl	le into pit on	n all si	ides between l	H1 and H2	

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below. These conform to definitions contained in the Soil Survey Field Handbook (Hodgson 1997).

1 Terms used on computer database in order of occurrence

GRID REF National 100 km grid square and 8 figure grid reference

LAND USE At the time of survey

WHT	Wheat	SBT	Sugar Beet	HTH	Heathland
BAR	Barley	BRA	Brassicas	BOG	Bog or Marsh
OAT	Oats	FCD	Fodder Crops	DCW	Deciduous Wood
CER	Cereals	FRT	Soft and Top Fruit	CFW	Coniferous Woodland
MZE	Maize	HRT	Horticultural Crops	PLO	Ploughed
OSR	Oilseed Rape	LEY	Ley Grass	FLW	Fallow (inc Set aside)
POT	Potatoes	PGR	Permanent Pasture	SAS	Set Aside (where known)
LIN	Linseed	RGR	Rough Grazing	OTH	Other
BEN	Field Beans	SCR	Scrub		

GRDNT Gradient as estimated or measured by hand held optical clinometer

GLEY SPL Depth in centimetres to gleying or slowly permeable layer

AP (WHEAT/POTS) Crop adjusted available water capacity

MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop potential MD)

DRT Best grade according to soil droughtiness

If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EKOSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief

FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR -	Drought	ER	Erosion Risk	WD _	Soil
					Wetness/Droughtiness

ST Topsoil Stoniness

TEXTURE Soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Silt Loam	SCL	•	C	Clay
SC	Sandy clay	ZC	Silty clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (< 27% clay) H heavy (27 35% clay)

MOTTLE COL Mottle colour using Munsell notation

MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40%+

MOTTLE CONT Mottle contrast

- F faint indistinct mottles evident only on close inspection
- **D** distinct mottles are readily seen
- P Prominent mottling is conspicuous and one of the outstanding features of the horizon

PED COL Ped face colour using Munsell notation

GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear

STONE LITH Stone Lithology One of the following is used

HR All hard rocks and stones SLST Soft oolitic or dolimitic limestone

CH Chalk FSST Soft fine grained sandstone

ZR Soft argillaceous or silty rocks GH Gravel with non-porous (hard) stones

MSST Soft medium grained sandstone GS Gravel with porous (soft) stones

SI Soft weathered igneous or metamorphic rock

Stone contents are given in % by volume for sizes >2cm >6cm and total stone >2mm

STRUCT The degree of development size and shape of soil peds are described using the following notation

Degree of development WA Weakly developed WK Weakly developed Adherent MD Moderately ST Strongly developed developed M Medium F Fine Ped size \mathbf{C} VC Very coarse Coarse S Single grain M Massive **Ped Shape** GR Granular AB Angular blocky Prismatic Sub angular blocky PR SAB PL Platy

CONSIST Soil consistence is described using the following notation

L Loose VF Very Friable FR Friable FM Firm VM Very firm EM Extremely firm EH Extremely Hard

SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G Good M Moderate P Poor

POR Soil porosity If a soil horizon has poor porosity with less than 0 5% biopores >0 5mm a Y will appear in this column

IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon

SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column

CALC If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a Y will appear this column

2 Additional terms and abbreviations used mainly in soil pit descriptions

STONE ASSESSMENT

VIS Visual S Sieve D Displacement

MOTTLE SIZE

EF Extremely fine <1mm M Medium 5 15mm VF Very fine 1 2mm> C Coarse >15mm

F Fine 2 5mm

MOTTLE COLOUR May be described by Munseil notation or as ochreous

(OM) or grey (GM)

ROOT CHANNELS In topsoil the presence of rusty root channels should

also be noted

MANGANESE CONCRETIONS Assessed by volume

N None M Many 20 40% F Few <2% VM Very Many >40%

C Common 2 20%

POROSITY

P Poor less than 0 5% biopores at least 0 5mm in diameter G Good more than 0 5% biopores at least 0 5mm in diameter

ROOT ABUNDANCE

The number of	roots per 100cm ²	Very Fine and Fine	Medium and Coarse
F	Few	1 10	1 or 2
C	Common	10 25	2 5
M	Many	25 200	>5
A	Abundant	>200	

ROOT SIZE

VF Very fine <1mm M Medium 2 5mm F Fine 1 2mm C Coarse >5mm

HORIZON BOUNDARY DISTINCTNESS

 Sharp
 <0 5cm</th>
 Gradual
 6 13cm

 Abrupt
 0 5 2 5cm
 Diffuse
 >13cm

Clear 25 6cm

HORIZON BOUNDARY FORM Smooth wavy irregular or broken *

* See Soil Survey Field Handbook (Hodgson 1997) for details