A1

HAVANT BOROUGH LOCAL PLAN Site 43 Land at Manor Road, Hayling Island, Hampshire

Agricultural Land Classification ALC Map and Summary Report

October 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 1507/134/97 FRCA Reference EL 15/1041

AGRICULTURAL LAND CLASSIFICATION SUMMARY REPORT

HAVANT BOROUGH LOCAL PLAN SITE 43 LAND AT MANOR ROAD, HAYLING ISLAND, HAMPSHIRE

INTRODUCTION

- This summary report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 8 4 ha of land north and south of Manor Road Hayling Island in Hampshire The survey was carried out during September 1997
- The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with MAFF s statutory input to the Havant Borough Local Plan This survey supersedes any previous ALC information for this land
- The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I
- At the time of survey the land use on the site was a mixture of permanent grassland grazed by dairy cattle and land in oilseed rape. The areas mapped as. Other land include thick wooded field boundaries one of which has a substantial ditch running parallel to it.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% surveyed area	% site area
2 3a Other land	62 18 04	77 5 22 5	73 8 21 4 4 8
Total surveyed area Total site area	8 0 8 4	100	95 2 100

7 The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. A total of 11 borings and 1 soil pit was described

¹ FRCA is an executive agency of MAFF and the Welsh Office

- The area surveyed represents relatively low lying flat land on the coastal plain of Hampshire with the soils developed from brickearth deposits. Agricultural land at this site has been classified as Grade 2 (very good quality) and Subgrade 3a (good quality)
- All of the land classified as Grade 2 is subject to a slight soil droughtiness limitation. Non calcareous medium silty clay loam topsoils and upper subsoils overlie heavier lower subsoils. Although these soils are deep well drained and silty, the warm and dry local climate imparts a minor restriction on the available water for crops. The ensuing slight soil droughtiness limitation may cause plants to suffer from minor drought stress for all or part of the growing season.
- 10 In addition parts of this land are also equally limited by minor soil wetness Fluctuating water levels cause these profiles to be moderately well drained Soil wetness may slightly limit the flexibility of cropping stocking and cultivation
- The remainder of the land has been classified as Subgrade 3a because of a soil wetness limitation. Soil profiles are similar to the Grade 2 land, but are imperfectly drained because of poorly structured clays in the lower subsoil. This land is subject to slightly more pronounced soil wetness limitations than the land assigned to Grade 2.

FACTORS INFLUENCING ALC GRADE

Climate

- 12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Va	lues
Grid reference	N/A	SU 722 009	SU 724 007
Altıtude	m AOD	5	3
Accumulated Temperature	day C (Jan June)	1549	1551
Average Annual Rainfall	mm	702	700
Field Capacity Days	days	144	143
Moisture Deficit Wheat	mm	122	122
Moisture Deficit Potatoes	mm	119	120
Overall climatic grade	N/A	Grade 1	Grade 1

14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Although the site is very close to the sea exposure and frost risk do not have a significant adverse affect on land quality at this location. The site is climatically Grade 1. However climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. At this locality the climate is about average for Southeast England.

Site

The topography of the site is relatively flat lying at an altitude of approximately 5m AOD. The survey area is not adversely affected by any site restrictions (i.e. steep gradient uneven micro relief or flooding)

Geology and soils

- The most detailed published geological information for the site (BGS 1964) shows the entire site to be underlain by brickearth drift deposits over London Clay
- The most detailed published soils information covering the area (SSEW 1983) maps the soils of the Park Gate association. These soils are described as deep stoneless silty soils variably affected by groundwater (SSEW 1984). Soils consistent with this description were observed across the entire site, with an area along the south and south eastern boundary more waterlogged than elsewhere.

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- Land of very good quality covers most of the site and is subject to a minor soil droughtiness limitation. In places soil wetness is an equally limiting factor
- Soils comprise non calcareous medium silty clay loam topsoils which may contain up to 2 % flints by volume. Topsoils overlie similarly textured and stony upper subsoils and pass into heavy silty clay loam lower subsoils. Soil Pit 1 (see Appendix II) is typical of these soils which exhibit moderate subsoil structural conditions. Moisture balance calculations for these soils which take into account texture depth, stone content, subsoil structure and the local climate, indicate that these soils are slightly droughty. The effect of this on a growing

crop is that available water is not sufficient at critical times of the growing season and may result in a reduction in yield and yield consistency

Where soil wetness is equally limiting the presence of gleying within 40 cm of the soil profile is evidence of a fluctuating water level resulting in soils being assigned to Wetness Class II This combination of moderately well drained soils topsoil texture and climatic factors gives rise to an agricultural land classification of Grade 2

Subgrade 3a

- 25 Land of good quality is located in the south west of the survey area
- All of this land is affected by soil wetness restrictions. Soils comprise non calcareous medium silty clay loam topsoils which may contain up to 2% flints. Topsoils overlie similarly textured and stony upper subsoils which pass to poorly structured clayey lower subsoils. It is the depth to these slowly permeable layers which determines the ALC grade. The depth to these imperfectly drained clayey subsoils (between approximately 43 and 67 cm) results in these soils being assigned to Wetness Class III. This factor in combination with topsoil texture and the local climate results in an agricultural land classification of Subgrade 3a.
- The effect of prolonged soil wetness is to impede drainage which in turn adversely affects seed germination and survival partly by a reduction in soil temperature and partly because of anaerobism. This also inhibits the development of a good root system and can affect crop growth. In addition, the heavy topsoils restrict the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock.

Colin Pritchard Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1964) Sheet No 331 Portsmouth 1 50 000 Solid and Drift Edition
BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent	LEY	Ley grass	RGR	Rough grazing
	pasture				
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous	BOG	Bog or marsh	SAS	Set Aside
	woodland				
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

rısk	MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil	erosion
,,,,,	EXP CHEM	Exposure limitation Chemical limitation	FROST	Frost prone	DIST	Disturbe	ed land

9 LIMIT The main limitation to land quality The following abbreviations are used

\mathbf{oc}	Overall Climate	\mathbf{AE}	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	$\mathbf{W}\mathbf{D}$	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic	GH	gravel with non porous (hard)
	rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	single grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose FM firm EH extremely hard
VF very friable VM very firm
FR friable EM extremely firm

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes MBW moisture balance wheat

MBP moisture balance potatoes