Berkshire Waste Local Plan Omission Site 9: Colnbrook

Agricultural Land Classification November 1995

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference: 0302/173/95 MAFF Reference: EL 02/804 LUPU Commission: 2243

AGRICULTURAL LAND CLASSIFICATION REPORT

BERKSHIRE WASTE LOCAL PLAN OMISSION SITE 9: COLNBROOK

INTRODUCTION

- 1. This summary report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 11.3 hectares of land at Colnbrook, approximately 2.5 km west of Heathrow Airport. The survey was carried out in November 1995.
- 2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading, as an omission site for the Berkshire Waste Local Plan. This survey supersedes previous ALC surveys on this land. The land immediately to the south of this site was surveyed in 1991 as Site 19 (Horton) of the Berkshire Minerals Plan. Information from this survey was used in the grading of the current site.
- 3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
- 4. At the time of survey the north of the site was under cereals, the centre of the site had been recently ploughed and an area to the south was under cabbages. The eastern field was under permanent grass.

SUMMARY

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10000. It is accurate at this scale but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Table 1: Area of grades and other land

Grade/Other land	Area (hectares)	% surveyed area
2	5.4	47.8
3a	1.5	13.3
3b	4.4	38.9
Total site area	11.3	100.0

- 7. The fieldwork was conducted at an average density of one boring per hectare. A total of twelve borings and one soil pit were described.
- 8. Land quality on the site ranged from Grade 2 (very good quality) to Subgrade 3b (moderate quality). The availability of irrigation water was taken into consideration when grading this land, although it had no overall effect on the grade distribution as other limitations were overriding.
- 9. The soil textures and structures observed in the auger borings and in the inspection pit, indicate that in some areas, the crop would suffer from a lack of water in the summer months which could depress yields. Referred to as soil 'droughtiness', this can restrict the versatility of the land to varying degrees, depending on its severity.
- 10. Evidence of poorly drained profiles in some areas indicate that crop growth would be adversely affected, and the time available throughout the year for grazing or for tillage operations would be limited, imposing a restriction on land quality due to soil 'wetness'.
- 11. Grade 2 land was mapped on the basis of slight soil wetness and slight soil droughtiness limitations. The Subgrade 3a land in the west of the site was restricted to this grade by a more severe soil wetness limitation and slight soil droughtiness. Land in the easternmost field was mapped as Subgrade 3b. This land suffers an even more severe soil wetness restriction caused by a high water table, and poorly drained clayey soils.

Factors Influencing ALC Grade

Climate

- 12. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
- 13. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Table 2: Climatic and altitude data

Factor	Units	Values
Grid reference	N/A	TQ 025 769
Altitude	m, AOD	20
Accumulated Temperature	day°C	1492
Average Annual Rainfall	mm	663
ield Capacity Days	days	136
Moisture Deficit, Wheat	mm	118
Moisture Deficit, Potatoes	mm	114

- 14. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 15. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.
- 16. The combination of rainfall and temperature at this site mean that there is no climatic limitation to land quality. Neither exposure nor frost risk are believed to affect the site. The site is climatically Grade 1.

Site

17. Altitude varies between approximately 19m AOD in the south-west and 21m AOD in the north-east giving rise to an almost level site. There may be a risk of flooding in the easternmost field adjacent to the Colne Brook.

Geology and soils

- 18. The site is located on the flood plain of the River Thames and River Colne. The most detailed published geological information for the site (BGS, 1981) shows the solid geology of the site to be London Clay, overlain by flood plain gravels over the majority of the area, and by deposits of alluvium in the east.
- 19. The most detailed published soils information for the site (SSEW, 1983) shows the west of the site to have soils corresponding to the Waterstock association. Waterstock soils are described as 'deep, permeable mainly fine loamy soils, variably affected by groundwater' with 'some deep, well drained, fine and coarse loamy soils' (SSEW, 1983). The east of the site is mapped as having soils corresponding to the Fladbury 3 association. Fladbury 3 soils are described as; 'stoneless, clayey, fine silty and fine loamy soils, affected by groundwater' located on 'flat land' with a 'risk of flooding' (SSEW, 1983).

Agricultural Land Classification

- 20. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.
- 21. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III.

Grade 2

- 22. Very good quality land was mapped in the centre of the site, where slight soil wetness and/or soil droughtiness limitations exist.
- 23. Soils in this area typically have non-calcareous medium clay loam topsoils overlying heavy clay loam subsoils which were found to be gleyed though not slowly permeable. Some profiles are underlain by gravelly horizons, impenetrable to the soil auger at 80-90 cm depth. This land is limited to Grade 2 primarily due to a tendency to slight soil wetness, which limits crop growth and the workability of the land. The land is equally restricted to this grade by slight soil droughtiness, as the soil water available to the crop would not fully met the crop's requirements during the summer months.
- 24. Other profiles in the area mapped as Grade 2 have slowly permeable clay lower subsoils occurring at approximately 70 cm depth, and often pass into sandy lower horizons which are typically calcareous. Slight soil wetness limits these areas to Grade 2.
- 25. Pit 1 was described in this mapping unit. It is representative of the Grade 2 land and also displays the range of textures found within other grades on the site. The pit confirms the structure of the clay horizon, which is slowly permeable, and enables extrapolation to other borings on the site. All land in this grade falls in Wetness Class II (see Appendix II for definition of Wetness Classes). Soil horizons typically have a total of 1-2% flints above the gravelly layer, which, from a previous ALC survey of land to the south of this site, contains approximately 30% hard flints. (Previous survey no. 0200/006/91).

Subgrade 3a

- 26. Good quality land was mapped in the west of the site, restricted to this grade by slight soil droughtiness and moderate soil wetness limitations.
- 27. Soils have medium clay loam topsoils overlying heavy clay loam or slowly permeable clay subsoils. Profiles pass into gravels at approximately 80 cm depth and the land falls into Wetness Classes II and IV. In the north of this mapping unit soils are poorly drained, restricting crop growth and soil workability. In the south, profiles appear slightly disturbed and Subgrade 3a was considered an appropriate grade considering the variability in this area.

Subgrade 3b

- 28. Moderate quality land was mapped in the east, where quite severe soil wetness limits the number of days available for agricultural use and cultivations.
- 29. Organic heavy clay loam topsoils overlie slowly permeable clay subsoils which pass to gravel at approximately 80 cm depth. Profiles are poorly drained, falling in Wetness Class IV, with subsoils impeding the downward movement of water in the profile. More severe drainage problems are caused by high groundwater levels in this area adjacent to the Colne Brook, resulting in waterlogged profiles.
- 30. There is a strong possibility of standing surface water on this land in the wetter months. Flooding from the Colne Brook is possible, as the water level is close to field level, although the river banks have been raised with bunds. There are limited opportunities for field drainage because of insufficient outfalls, and with poor drainage through the profile standing water is possible. Although this was not observed at the time of survey, the previous summer and autumn were very dry. The land could, therefore, fall into Wetness Class V and be classified as Grade 4. On the evidence of the survey the land is mapped as Subgrade 3b.

Haidee Bishop Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1981) Sheet 269, Windsor.

BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification.

Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils of South-East England.

SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England

SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹									
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²									
II	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.									
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.									
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.									
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.									
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.									

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

Contents:

Sample location map

Soil abbreviations - Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR:	Вагley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	ELEY:	Ley Grass	RGR :	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG :	Bog or Marsh	FLW:	Fallow
PLO:	Ploughed	SAS:	Set aside	OTH:	Other

HRT: Horticultural Crops

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. **DRT**: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land

CHEM: Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC: Overall Climate AE: Aspect EX: Exposure FR: Frost Risk GR: Gradient MR: Microrelief FL: Flood Risk TX: Topsoil Texture DP: Soil Depth CH: Chemical WE: Wetness WK: Workability

DR: Drought ER: Erosion Risk WD: Soil Wetness/Droughtiness

ST: Topsoil Stoniness

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations.

S: Sand LS: Loamy Sand SL: Sandy Loam SZL: Sandy Silt Loam CL: Clay Loam **ZCL**: Silty Clay Loam Silt Loam SCL: Sandy Clay Loam C: ZL: SC: Sandy Clay ZC: Silty Clay OL: Organic Loam P: Peat SP: Sandy Peat LP: Loamy Peat PL: Peaty Loam PS: **Peaty Sand** MZ: Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: Fine (more than 66% of the sand less than 0.2mm)

M: Medium (less than 66% fine sand and less than 33% coarse sand)

C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

4. **MOTTLE CONT:** Mottle contrast

F: faint - indistinct mottles, evident only on close inspection

D: distinct - mottles are readily seen

P: prominent - mottling is conspicuous and one of the outstanding features of the horizon

- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology One of the following is used.

HR: all hard rocks and stones SLST: soft oolitic or dolimitic limestone

CH: chalk FSST: soft, fine grained sandstone

ZR: soft, argillaceous, or silty rocks GH: gravel with non-porous (hard) stones

MSST: soft, medium grained sandstone GS: gravel with porous (soft) stones

SI: soft weathered igneous/metamorphic rock

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

degree of development WK: weakly developed MD: moderately developed

ST: strongly developed

ped size F: fine M: medium

C: coarse VC: very coarse

ped shape S: single grain M: massive

GR: granular AB: angular blocky

SAB: sub-angular blocky PR: prismatic

PL: platy

9. **CONSIST**: Soil consistence is described using the following notation:

L: loose VF: very friable FR: friable FM: firm VM: very firm

10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor

- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

APW: available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes

MBW: moisture balance, wheat MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name : BERKS WASTE LP-COLNBROOK Pit Number : 1P

Grid Reference: TQ02507700 Average Annual Rainfall: 663 mm

Accumulated Temperature: 0 degree days

Field Capacity Level : 136 days
Land Use : Cereals

Slope and Aspect : degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 35	MCL	10YR32 00	1	2	HR					
35- 38	HCL	10YR42 00	0	1	HR	F	MDCSAB	FR	M	
38- 56	HCL	10YR42 00	0	1	HR	С	MDCSAB	FR	M	
56- 70	HCL	10YR41 00	0	1	HR	С	MDCOAB	FM	Р	
70- 90	С	10YR52 00	0	1	HR	M	WKCOAB	FM	Р	
90-120	SCL	10YR62 00	Ò	1	HR	С	MDVCPR	FM	P	γ

Wetness Grade : 2 Wetness Class : II

Gleying :038 cm SPL :070 cm

Drought Grade : 2 APW : 139mm MBW : 21 mm

APP: 112mm MBP: -2 mm

FINAL ALC GRADE : 2

MAIN LIMITATION : Soil Wetness/Droughtiness

program: ALCO12

LIST OF BORINGS HEADERS 01/12/95 BERKS WASTE LP-COLNBROOK

page 1

Sampi	LE	ASPECT				WETI	NESS	-WH	EAT-	-P0	TS-	M.	REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE	GRDNT	GLEY	SPL.	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	EX	P DIST	LIMIT		COMMENTS
1	TQ02307700	CER		035	035	4	3B	000	0	000	0					WE	38	
19	TQ02507700	CER		038	070	2	2	139	21	112	-2	2				WD	2	PIT AT 3
2	TQ02407700	CER		035		2	2	116	-2	118	4	3A				DR	ЗА	2 IRRIGATION
3	TQ02507700	CER		030	070	2	2	148	30	116	2	2				WD	2	2 IRRIGATION
4	TQ02207690	PL0		045		1	1	117	-1	119	5	3A				DR	ЗА	POSS DISTURBED
5	TQ02307690	PLO		050		1	1	126	8	115	1	2				DR	2	SL GLEY AT 25
6	TQ02407690			030	030	4	3B	100	-18	105	-9	3A				WE	3B	
7	TQ02507690	CER		035	070	2	2	154	36	117	3	2				₩D	2	
8	TQ02607690	PGR		020	020	4	38	089	-29	089	-25	3B				WE	3B	HIGH GR WATER
9	TQ02307680	PLO		030		2	2	115	-3	117	3	3A				DR	ЗА	2 IRRIGATION
10	TQ02407680	PLO		030	030	4	3B	145	27	105	-9	2				WE	3B	
11	TQ02507680	PGR		035	035	4	3B	000	0	000	0					WE	3B	HIGH GR WATER
12	TQ02507670	PGR		040	040	4	3B	000	0	000	0					WE	3B	HIGH GR WATER

----MOTTLES---- PED ---STONES---- STRUCT/ SUBS 1PLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0-35 10YR32 00 hc1 2 1 HR 10YR53 00 75YR58 00 C 35-80 С 0 0 HR Υ 1 IMP GRAVELLY 1P 0-35 10YR32 00 mc1 1 0 HR 2 35-38 hc1 10YR42 00 75YR56 00 F 0 HR 1 MDCSAB FR M 38-56 10YR42 00 75YR56 00 C 0 HR 1 MDCSAB FR M 56-70 hc1 10YR41 00 10YR58 00 C 10YR52 00 Y n 0 HR 1 MDCOAB FM P 70-90 10YR52 00 75YR58 00 M С Υ 0 0 HR WKCOAB FM P 90-120 10YR62 00 10YR58 00 C ٥ 0 HR MDVCPR FM P 0-35 10YR32 00 mc? 1 0 HR 35-80 10YR53 00 75YR58 00 C 0 IMP GRAVELLY 0-30 10YR32 00 mc1 2 1 HR 2 30-55 10YR42 00 75YR56 00 C hcl 0 HR 2 55-70 hc1 10YR41 00 75YR56 00 C 2 70-90 С 10YR52 00 75YR58 00 M 0 0 0 10YR62 00 10YR58 00 C 90-120 scl 0 0 0 0-45 mc1 10YR32 00 2 1 HR 2 10YR53 00 75YR58 00 C 45-50 10YR72 00 Y 0 0 HR hc:1 2 М 50-70 hc1 10YR53 00 75YR58 00 C 10YR72 00 Y 0 0 HR 2 М 70-80 10YR43 00 0 0 HR scl 00MN00-00 Y 2 IMP GRAVELLY 0-25 10YR32 00 mc1 1 0 HR 25-50 10YR43 00 75YR58 00 C 0 0 10YR53 00 75YR58 00 C 50-75 scl 10YR72 00 Y 0 0 10YR53 00 75YR58 00 C 75-90 10YR72 00 Y നടി 1 0 HR 1 IMP GRAVELLY 0-30 10YR32 00 mc1 0 0 HR 1 30-70 C 10YR53 00 75YR58 00 C 10YR71 00 Y 0 0 0 10YR62 00 75YR58 00 C 70-80 0 0 С 0 IMP GRAVELLY 0-30 mc1 10YR32 00 1 0 HR 7 10YR43 00 30-35 hc1 0 0 0 35-70 hc1 10YR42 00 75YR46 56 C 00MN00 Υ 0 0 10YR52 00 75YR58 00 C 70-75 C Υ 0 0 0 10YR62 00 75YR58 00 C 75-120 scl 0 0 0 0-20 10YR31 00 0 0 10YR41 00 75YR58 00 C 20-45 c 0 0 a Ρ IMP GRAVELLY 0-30 mc1 10YR32 00 1 0 HR 1 30-80 hc1 10YR53 00 75YR58 00 C 00MN00 00 Y IMP GRAVELLY М 0-30 mol 10YR32 00 1 0 HR 10YR52 00 75YR58 00 C 30-70 10YR72 00 Y c 0 0 O P 70-90 10YR63 00 75YR58 00 C hc1 Υ 0 0 HR 1 М 90-100 sc1 10YR63 00 75YR58 00 C Υ 0 0 HR 1 Ρ 100-120 ms1 10YR63 00 75YR58 00 C Υ 0 0 HR 1

program: ALCO11

COMPLETE LIST OF PROFILES 01/12/95 BERKS WASTE LP-COLNBROOK

D	ao	e	2

SAMPLE	DEPTH	TEXTURE	COLOUR		MOTTLES ABUN				•	TOT CONSIST		P SPL	CALC	
11	0-35 35-70	ohc1 c	10YR31 00 05 Y25 01	75YR5	6 00 C		Y	0	•	0 0	Р	Y		IMP GRAVELLY
12	0-40 40-90	hcl c	10YR32 00 10YR62 00	75YR5.	8 00 C		Y	0		0 0	P	Y	Y Y	IMP GRAVELLY