A1

KENT MINERALS LOCAL PLAN REVIEW Land at Moat Farm, Five Oak Green, Kent

Agricultural Land Classification ALC Map and Report

December 1998

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 2014/098/98 MAFF Reference EL 20/01847

AGRICULTURAL LAND CLASSIFICATION REPORT

KENT MINERALS LOCAL PLAN REVIEW LAND AT MOAT FARM, FIVE OAK GREEN, KENT

INTRODUCTION

- 1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 40 8 ha of land at Moat Farm Five Oak Green near Paddock Wood in Kent The survey was carried out during December 1998
- 2 The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with its statutory input to the Kent Minerals Local Plan Review The survey supersedes any previous ALC information for this land
- 3 The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- 4 At the time of survey the whole of the agricultural area had been sown to oil seed rape The areas mapped as Other land includes woodland an irrigation lagoon a soil bund and an area used for tipping and burning of farm rubbish

SUMMARY

- 5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading
- 6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	% surveyed area	% site area
3b	39 1	100 0	95 8
Other	1 7		4 2
Total surveyed area	39 1	100 0	95 8
Total site area	40 8		100 0

Table 1	Area of	' grades :	and ath	er land
I abic I	AI CA VI	gi auco i	anu otne	er ranu

7 The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land In total 44 borings and two soil pits were described

¹ FRCA is an executive agency of MAFF and the Welsh Office

8 The agricultural land at this site has been classified as Subgrade 3b (moderate quality) The soils comprise deep stoneless heavy clay loam textured topsoils overlying poorly structured clay subsoils. These exhibit indications of soil wetness to the extent that in the local climate Subgrade 3b is appropriate. Soil wetness reduces the versatility of the land in terms of access by machinery (e.g. for cultivations or harvesting) and grazing by livestock if damage to the soil is to be avoided. Soil wetness will also adversely affect seed germination and root growth and will therefore reduce the level and consistency of yields.

FACTORS INFLUENCING ALC GRADE

Climate

- 9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- 10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)
- 11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Factor	Units	Values		
Grid reference	N/A	TQ 647 466	TQ 646 461	
Altitude	m AOD	16	17	
Accumulated Temperature	day°C (Jan June)	1496	1495	
Average Annual Rainfall	mm	691	694	
Field Capacity Days	days	143	143	
Moisture Deficit Wheat	mm	121	121	
Moisture Deficit Potatoes	mm	118	118	
Overall climatic grade	N/A	Grade 1	Grade 1	

Table 2 Climatic and altitude data

- 12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality
- 13 The combination of rainfall and temperature at this site means that there is no overall climatic limitation and in addition the site does not suffer from any local factors such as exposure or frost risk As such the site may be considered as being climatically Grade 1

- 14 The survey area is flat and low lying at 16–17m AOD. To the south of the site the land rises Nowhere on the site does gradient microrelief or flooding adversely affect agricultural land quality
- 15 As regards flooding the site lies in the floodplain of the River Medway and the Environment Agency (EA) was contacted with regard to information on flooding EA records show that the site has not experienced a significant flood event since 1968 and as such the flood risk is probably no worse than Subgrade 3a for both summer and winter flooding

Geology and soils

- 16 The most detailed published geological information for this area (BGS 1971) maps the entire site as alluvium
- 17 The most recent published soils information covering the area (SSEW 1983) shows the site to comprise soils of the Fladbury 3 Association These soils are described as Stoneless clayey fine silty and fine loamy soils affected by groundwater Flat land Risk of flooding (SSEW 1983) These soils are similarly described in Soils of Kent (SSEW 1980) The survey found soils of this general type to be represented throughout the site

AGRICULTURAL LAND CLASSIFICATION

- 18 The details of the classification of the survey area are shown on the attached ALC map and the area statistics of each grade are given in Table 1
- 19 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Subgrade 3b

- 20 The entire site has been mapped as land of moderate quality The principal limitation is soil wetness. The soils are typified by the soil pits 1P and 2P (see Appendix II)
- 21 Soils on the site typically comprise poorly drained profiles (Wetness Class IV) having a heavy clay loam topsoil overlying heavy clay loam and clay subsoils. The subsoils are gleyed and are poorly structured and slowly permeable. In one area in the south west of the site medium clay loam topsoils overlie a thin (8cm) transitional horizon of heavy clay loam and clay subsoils. The soils in this area are typified by soil pit 2P. Two isolated borings (ASPs 28–35) have a horizon of medium or fine sandy loam below 90cm depth but still experience poorly drained conditions due to the presence of shallow slowly permeable layers

Site

22 Across the site the interaction between the soil drainage characteristics the topsoil textures and the prevailing field capacity days (143 days) means that this land is classified as Subgrade 3b Soil wetness of this degree adversely affects seed germination and survival and inhibits the development of a good root system Soil wetness also imposes restrictions on cultivations trafficking by machinery or grazing by livestock there will be a significant restriction on the number of days when the land can be worked without risk of damage to the soil

> Vaughan Redfern and Edgar Black Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No 287 Sevenoaks 1 63 360 Solid and Drift Edition BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1980) Soils of Kent Soil Survey Bulletin No 9 SSEW Harpenden

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit and soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	отн	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
НТН	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

oc	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

2 MOTTLE COL Mottle colour using Munsell notation

3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic rock	GH	gravel with non porous (hard) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	М	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR friable	EM extremely firm	

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

- 11 POR Soil porosity If a soil horizon has less than 0 5% biopores >0 5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations
 - APWavailable water capacity (in mm) adjusted for wheatAPPavailable water capacity (in mm) adjusted for potatoesMBWmoisture balance wheat
 - MBP moisture balance potatoes

LIST OF BORINGS HEADERS 05/01/99 KENT MINS LP 5 OAK GREEN

page l

	AMPL	LE	ASPECT				HETI	NESS	48-1	EAT-	-P0	TS	м	REL	EROSN	FROST	CHEM	ALC	
	0	GRID REF		GRONT GL	LEY					MB		MB	DRT	FLOOD	EX		LIMIT		COMMENTS
	1	TQ64504670	OSR	3	30	30	4	38	129	8	105	-12	3a				WE	38	
	2	TQ64604670	OSR		0	25	4	38	125	4	102	-16	3a				WE	38	S/soil +manyMn
	3	TQ64704670	OSR		0	25	4	38	127	6	104	-14	3a				WE	38	H3 many Mn
	4	TQ64404660	OSR	3	30	30	4	3B	129	8	106	-12	3a				WE	38	
	5	TQ64504660	OSR	3	30	30	4	38	129	8	106	-12	3a				WE	38	
-																			
		TQ64604660				20	4	38	122	1	99	-19	3a				WE	38	
		TQ64704660			0	20	4	3B	123	2	100	-18	3a				WE	38	
		TQ54804660				30	4	38	126		103	-15	3a				WE	3B	
		TQ64904660				30	4	3B	129		106	-12	3a				WE	3B	
	10	TQ65004660	OSR	2	29	29	4	38	125	4	100	-18	3a				WE	3B	
		TQ64404650		3		32	4	38	130		107	-11	3a				WE	3B	
		TQ64504650				35	4	3B	132		109	-9	2				WE	3B	H3 V many Mn
		TQ64604650				28	4	38	90	-31		-19	3b				WE	3B	Impen 65
		TQ64704650				30	4	3B	126	_	103	-15	3a				WE	3B	H3 Many Mn
	15	TQ64804650	USK		0	35	4	38	132	11	109	-9	2				WE	3B	
	16	TQ64904650	060	-	30	30		20	120	7	105	12	2-				LIE.	20	6 h al a l a l a l a l a
_		TQ65004650				26	4 4	38 38	128 127			-13 -14	3a 3a				WE WE	38 38	S1 gleyed O
		TQ65104650				30	4	38	126			-14	Ja Ja				WE	38	
		TQ64404640				32	4	38	130		103	-11	3a				WE	38	
		TQ64504640				29	4	38	129			-12	-				WE	38	
		1401001010		-			-	4 0		Ų		•						00	
	21	TQ64604640	OSR		0	30	4	38	98	-23	106	-12	3a				WE	38	Impen 75
		TQ64704640		3		34	4	38	101	-20		-14	3a				WE	38	Impen 80
	23	TQ64804630		2	29	29	4	38	129			-13	3a				WE	38	•
	24	TQ64204630	OSR	3	30	30	4	38	129	8	106	-12	3a				WE	38	
	25	TQ64304630	OSR	3	30	30	4	38	129	8	106	-12	3a				WE	38	
_																			
	26	TQ64404630	OSR	3	30	30	4	3B	129	8	106	-12	3a				WE	3B	
	27	TQ64504630				30	4	38	112	-9	106	-12	3a				WE	38	
	28	TQ64604630				28	4	38	135			-16	3a				WE	38	
	29	TQ64704630				25	4	38	134		103		3a				WE		H3 V many Mn
	30	TQ64804630	OSR		0	25	4	38	94	-24	100	-21	3a				WE	38	Imp75 manyMn
	••			-		~~				-									
_	31	TQ64904630				20	4	3B	124			-20					WE	38	• • • • •
	32	TQ65004630				25	4	38	113			-17					WE	38	Impen 100
	33	TQ64404620				42	3	3A 25	132		109	-9	2				WE	3A 20	
	34	TQ64504620 TQ64604620		4		34 30	4	38	130			-11					WE	38	
	35	1004004020	USK		U	30	4	38	149	31	100	-13	29				WE	38	H2 plastic
	36	TQ64704620	050		0	25	4	38	127	0	104	-17	3-				WE	38	V many Mn
	39	TQ65004620				25	4	38	127			-17					WE	38	H3 many Mn
	40	TQ65094616				30	4	38	129			-15					WE	38	the meanly CHI
	43	TQ64404612		2		34	4	3B	130			-11					WE	3B	
	44	TQ64504611				25	4	3B	126			-15					WE	3B	
				-			•		/	-		. •							
	45	TQ64594613	OSR		0	45	3	3B	131	13	108	-13	3a				WE	3B	H2 Q sp1
-	. –	TQ64704630				28	4	38	121			-14					WE	3B	
		-																	

program ALCO12 LIST OF BORINGS HEADERS 05/01/99 KENT MINS LP 5 OAK GREEN

SAMPLE ASPECT --WETNESS---WHEAT--POTS-- M REL EROSN FROST CHEM ALC NO GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS TQ64504620 OSR 0 28 4 38 126 5 103 -15 3a WE 3B H2 shallow ŻΡ

page 2

COMPLETE LIST OF PROFILES 05/01/99 KENT MINS LP 5 OAK GREEN

				M OTT	I ES		PED	_	5	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABL		CONT						STR POR IM	IP SPL CALC	
1	0-30	HCL	10YR42						0	0	0			
	30-120	C	10YR71	10YR68	M	D		Y	0	0	0	Р	Y	
_ 0	0.05	1101	10/042	100055	~	~			•	•	•			
2	0-25 25-45	hcl. hcl	10YR42	10YR56		D		Ŷ		0	0	•	v	
	25-45 45-120		25Y 52 05Y 62	10YR58 10YR58	M			Y Y		0 0	0 0	P P	Y Y	
	43-120	C	051 02	IVIKJO	п	U		1	Ű	U	v	۲	T	
3	0-25	HCL	10YR42	10YR56	с	D		Y	0	0	0			
	25-45	С	25Y 52	107758	M			Ŷ		0	0	Р	Y	
	45-120	с	05Y 62	10YR58		D		Y		0	0	Ρ	Y	
4	0-30	HCL	10YR42						0	0	0			
	30-72	С	25Y 71	10YR68	Μ	D		Ŷ	0	0	0	Ρ	Y	
	72-120	С	10YR71	10YR68	M	D		Y	0	0	0	Р	Y	
										•				
- 5	0-30	HCL	10YR42	10/000	~					0	0	•		
	30-60 60-120	C	10YR71	10YR68		D		Ŷ		0 0	0	P P	Y	
	00-120	L	10YR72	10YR56	п	D		Ŷ	U	U	0	٣	Y	
— 6	0-20	HCL	10YR42	10YR56	с	D		Y	0	0	0			
	20-45	HZCL	25Y 52	10YR58		D		Ŷ		0	0	Р	Y	
	45-120		05Y 62	10YR5846	M	D		Y	0	0	0	Р	Y	
7	0-20	HCL	10YR42	10YR56	С	D		Y	0	O HR	2			
	20-50	С	25Y 52	10YR58	M	D		Y	0	0	0	Ρ	Y	
	50-90	C	05Y 62	10YR5846	M			Y		0	0	Р	Y	
	90-120	C	05Y 71	75YR4658	M	Ð		Y	0	0	0	P	Ŷ	
8	0.20	c	10YR42						•	•	0			
	0-30 30-50	C C	05Y71	10YR56	M	D		Ŷ		0 0	0	P	Y	
	50-120		05Y71	10YR56	C			Ŷ		0	0	P	Ŷ	
		•			·			•	•	•	•	•		
9	0-30	HCL.	10YR42						0	0	0			
_	30-120	С	05Y71	10YR56	С	D		Y	0	0	0	Ρ	Y	
10														
10	0-29	С	10YR42	10YR56	С					0	0			
-	29-40	C	05Y71	10YR68	С			Y		0	0	Ρ	Y	
	40-120	HCL	05Y71	10YR56	Μ	Ρ		Y	0	0	0	Р	Y	
	0 33		100042						^	•	0			
11	0-32 32-95	HCL C	10YR42 25Y 72	10YR56	M	n		Y	0 0		0 0	P	Y	
	95–120		10YR72	10YR68	M			Ŷ	0		0	P	Ý	
	30 ILU	~	.vin/L					•	v	•	•	•	1	
12	0-35	HCL	10YR42	10YR56	с	D		Y	0	0	0			
	35-50	с	25Y 52	10YR56	С			Y	0	0	0	Р	Y	
	50-120		05Y 62	10YR5868	M			Y	0		0	Ρ	Y	
13	0-28	HCL	10YR42	10YR56	С			Y	0		0			
	28–65	С	05Y 62	10YR58	M	D		Ŷ	0	0	0	Ρ	Y	Impen 65

page 1

COMPLETE LIST OF PROFILES 05/01/99 KENT MINS LP 5 OAK GREEN

page 2

				MOTT	LES		PED	-	8	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABL		CONT	COL.				TOT CONSIST		IP SPL CALC	
14	0-30	с	10YR42	10YR56	с	D		Y	0	0	0			
	30-50	С	05Y 62	10YR6858	M	D		Y	0	0	0	Р	Y	
	50 -120	с	05Y 61	10YR58	M	D		Y	0	0	0	Ρ	Y	
15	0-35	HCL	10YR42	10YR56	с	D		Y	0	0	0			
	35-80	C	05Y 62	10YR6858	M			Ŷ	ō	õ	0	Р	Y	
_	80-120		05Y 61	10YR58	M			Ŷ		õ	0	ρ	Ŷ	
1 6	0-30	HCL	10yr43	10YR56	С	D		S	0	0	0			S1 gleyed
	30-45	HZCL	25Y 52	75YR4658	Μ	D		Y	0	0	0	Р	Y	
1	45-80	С	05Y 62	75YR4658	M	D		Y	0	0	0	Р	Y	
	80-120	с	05Y 61	75YR4658	M	D		Y	0	0	0	Ρ	Y	
1 7	026	HCL	10YR42						0	0	0			
	26-120	C	05Y71	10YR68	С	D		Y	0	0	0	Р	Y	
	0-30	с	10YR42						0	0	0			
	30-65	c	05971	10YR68	с	D		Y	0	õ		р	v	
	65-120		05771	107R68	M			Ŷ	ō		0 0	P P	Y Y	
19	0-32	MCL	10YR42						0	0	0			
	32-120	С	25772	10YR68	M	D		Y	0	0	0	Р	Y	
20	0-29	HCL.	10YR42						0	0	0			
	29-60	с	25Y61	10YR68	С	D		Ŷ	0	0	0	Р	Y	
	60120		25771	10YR68	M			Ŷ	0	0	0	Ρ	Y	
21	0-30	HCL	10YR42	10YR56	с	•		Y	0	0	0			
21	30-30	C		107R56	c			Ŷ	ō		0	0	v	Inc. 75
-	30-73	C	25Y72	TUTKOO	C	U		r	v	Ŭ	0	P	Y	Impen 75
22	0-34	HCL	10YR42						0	0	0			
	34-56	HCL	25Y64	10YR68		D		Y	0	0	0	P	Y	
-	56-80	MCL	10YR72	10YR68	M	P		Ŷ	0	0	0	Ρ	Y	Impen 80
23	0-29	HCL.	10YR42						0	0	0			
	29-68	С	05Y71	10YR68	M	D		Y	0	0	0	P	Y	
_	68-120	HCL	05Y71	10YR68	M	Ρ		Y	0	0	0	Ρ	Y	
24	0-30	HCL	10yr42						0	0	0			
. 24	30-90	C	25972	10YR68	M	n		Y	ō	ō	0	Ρ	Y	
_	90-120		10YR53	10YR56	M			Ŷ	ō	õ	0	P	Y	
	JV-12V	~	101833	IVINU	17	6		r	U	•	v	r	·	
25	0-30	HCL.	10YR42						0	0	0			
_	30-90	С	25Y 72	10YR68	М	D		Y	0	0	0	Р	Y	
	90-120	С	10YR63	10YR68	С	D		Y	0	0	0	Ρ	Y	
26	0-30	HCL.	10YR42						0	0	0			
20	30-120		2542	10YR68	м	n		Y	0		0	P	¥	
	JU-120	J.	LUITE	IUTROO	n	~		r		•	J	г	T	

page 3

					M	OTTLE	S	PED	-	S	TONES	STRUCT/	SUBS		
SA	MPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY >	2 >6	LITH T	OT CONSIST	STR POR IMP	SPL CALC	
						_				_	_	_			
	27	0-30	HCL	10YR42	10YR56				Ŷ	0		0	_		
		30-45	C C	25Y 52	10YR58				Ŷ	0		0	P	Y	
		4595	с	05Y 6261	10YR58	146 M	D		Ŷ	0	U	0	Р	Y	
	28	0-28	HCL	10YR42	10YR56	i c	Ð		Y	0	0	0			
		28-70	С	05Y62	10YR58		D		Y	0	0	0	P	Y	
_		7 0 -100	HCL,	05Y 72	10YR58	6 M	D		Y	0	0	0	Р	Y	
		100-120	MSL	05Y 72	107758	i M	D		Y	0	O HR	5	М		
	20	0.25		100040	10/055				v	•	•	0			
-	2 9	0-25 25-60	HCL, C	10YR42 05Y 61	10YR56 10YR58				Y Y	0 0		0 0	P	Y	
		20-00 60-95	HCL.	05Y 61	107R58				Ϋ́	0		0	₽ P	Y	
		95-120	MCL	05Y 61	10YR58				Y	0		0	P	Y	
_		50 .20			1011100	• •	Ū		•	Ŭ	Ū	·	•	•	
	30	0-25	HCL,	10YR42	10YR56	i C	D		Y	0	0	0			
		25-50	С	05Y 61	10YR58	168 M	D		Y	0	0	0	P	Ŷ	
-		50-75	HCL.	05Y 52	10YR58	L M	Ð		Y	0	0 HR	5	P	Ŷ	
	31	0-20	HCL,	10YR42	10YR56	ic	D		Ŷ	0	0	0			
-	51	20-45	C	10YR5251	25YR56				Ŷ	0		0	P	Y	
-		45-120	c	05Y 61	10YR58				Ŷ	0		0	P	Ŷ	
			-							•	•	-		•	
	32	0-25	HCL	10YR42	10YR56	i d	D		Y	0	0	0			
		25-45	С	10YR42	10YR56	5 M	D		Y	0	0	0	P	Y	
		45-90	С	05Y 62	10YR58	8 M	D		Y	0	0	0	Р	Y	
		90 –100	HCL	05Y 62	10YR58	6 M	D		Y	0	0	0	Р	Y	
	33	0-29	MCL,	10YR42						0	0	0			
		29-42	HCL	25Y64	10YR56	; c	D		Y	0		0	м		Gese
-		42-120	C	25Y71	10YR68				Ŷ	0		0	Р	Ŷ	
	34	0-27	MCL	10YR42						0	0	0			
-		27-34	HCL	10YR53	10YR56				Y	0	0	0	м		
		34-120	С	10YR71	10YR68	8 M	D		Y	0	0	0	Р	Y	
	35	0-30	MZCL	10YR42	10YR56	i c	D		Ŷ	0	0 HR	2			
_		30-90	C	05Y 6261	10YR58				Ŷ	0	0	0	Ρ	Y	
		90-120		05Y61	10YR68				Ŷ	0		0	M		
	36	0-25	HCL.	10YR42	10YR56		-		Ŷ	0	0	0	_		
		25-95	C	05Y 61	10YR58				Y	0	0	0	P	Ŷ	
		95-120	HCL.	05Y 61	10YR58	M 80	D		Y	0	U	0	Р	Y	
	39	0-25	HCL	10YR42	10YR56	i c	D		Y	0	0	0			
		25-60	С	05Y 6162	10YR58				Y	0	0	0	Ρ	Y	
		60-120	с	05Y 5261	10YR58	i M	D		Y	0	0	0	Р	Y	
_				_							_				
	40	0-30	HCL.	10YR42	10YR56				Y	0	0	0	_		
		30-120	C	05Y 6162	10YR58	M	D		Ŷ	0	0	0	Р	Ŷ	

COMPLETE LIST OF PROFILES 05/01/99 KENT MINS LP 5 OAK GREEN

page 4

				M OT	דו בי		PED	_				TRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AE								DNSIST			SPL CALC	
SHIFLE	DEFIN	TEATORE	CULOUK			CONT	ωL	GLET >	2 20			WIS121	SIKP	JK IMP	SPL CALC	
43	0-29	MCL	10YR42						0	0	0					
	29-34	С	25Y63	10YR56	С	D		Y	0	0	0		м			
	34-120	С	25Y71	10YR68	С	D		Y	0	0	0		Р		Y	
44	0-25	MCL	10YR52						0	0	0					
	25-34	MCL	10YR71	10YR68	М	D		Y	0	0	0		Р		Y	
_	3490	С	10YR71	10YR68	м	D		Y	0	0	0		Р		Y	
	90-120	С	75YR71	75YR58	M	Ð		Y	0	0	0		Р		Y	
45	0-25	HCL	10YR42	10YR56	С	D		Y	0	O HR	2					
	25-45	HCL	10YR52	10YR58	С	D		Y	0	0 HR	2		M			Q spl
	45-120	С	05Y 62	10YR58	Μ	Ð		Y	0	0	0		Р		Y	
💼 1P	0-28	HCL.	10YR42	10YR56	С	D		Y	0	0	0					
	28-62	С	05Y72	10YR68	м	D	10YR53	Y	0	0	0	MCPR	FM P	Y	Y	
	62-84	HCL	05Y71	10YR68	M	D		Y	0	0	0	WKCPL	FR P	Y	Y	
_	84-110	MCL	05Y71	10YR68	м	Ρ		Y	0	0	0	WKCPL	FR P	Y	Y	
📕 2P	0-20	MCL	10YR42	10YR56	С	D		Y	0	0	0					
	20-28	HCL	25Y 53	10YR56	С	D		Y	0	0	0		М			
	28-80	С	25Y 6163	10yR6858	M	D		Y	0	0	0	MDCPR	FM P	Y	Y	
	80-120	С	05Y 61	10YR58	M	D		Y	0	0	0	WKCPR	FM P	Y	Y	