A1

~

5

WEST OXFORDSHIRE LOCAL PLAN Land At Chipping Norton Oxfordshire Semi-Detailed Survey

۰,

Agricultural Land Classification ALC Map and Report

August 1998

Resource Planning Team Eastern Region FRCA Reading RPT Job Number: 3305/051/98 FRCA Reference: EL 33/1860

AGRICULTURAL LAND CLASSIFICATION REPORT

WEST OXFORDSHIRE LOCAL PLAN LAND AT CHIPPING NORTON OXFORDSHIRE

SEMI-DETAILED SURVEY

INTRODUCTION

- 1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 210.2 hectares of land to the south and east of Chipping Norton, West Oxfordshire. The survey was carried out during August 1998.
- 2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF). The survey was carried out in connection with MAFF's statutory input to the West Oxfordshire Local Plan. Land around Tank Farm in the north-east of the survey area was surveyed previously in 1993 (FRCA Ref: 3305/139/93, Site 230 Chipping Norton). The results of this previous investigation are incorporated into the current survey which therefore supersedes it.
- 3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix 1.
- 4. At the time of survey the land was in winter cereals, oilseed rape, and grassland production (both permanent and ley). Parts of the land had recently been ploughed. The areas mapped as "Other land' include allotment gardens, recreation grounds, farm buildings and tracks, school playing fields and factories.

SUMMARY

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:15,000. It is accurate at this scale but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.
- 7. The fieldwork was conducted at an average density of approximately 1.5 borings per hectare of agricultural land. A total of 118 borings and 9 soil pits was described.
- 8. Just over half of the land surveyed has been classified as Grade 2 (very good quality) and Subgrade 3a (good quality), with Subgrade 3b (moderate quality) making up the remainder of the land. The main limitation over much of the survey area is soil droughtiness; with soil wetness, topsoil stoniness, gradient and microrelief being restricting on occasions.

¹ FRCA is an executive agency of MAFF and the Welsh Office.

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	12.2	6.7	5.8
3a	93.4	51.4	44.4
3b	76.1	41.9	36.2
Other land	28.5	N/A	13.6
Total surveyed area	181.7	100	100
Total site area	210.2	-	

Table 1: Area of grades and other land

9.

The majority of the area comprises soils developed over limestone deposits. Land which is assigned to Grade 2 is limited in extent and occupies the valley bottoms in the south-east part of the site. The soils typically comprise deep, usually well drained, loamy profiles. The combination of these soil properties and the prevailing climate results in a minor soil droughtiness limitation. As a result, yield potential may be affected to a limited extent. Occasional profiles within this mapping unit experience a slight soil wetness limitation due to slowly permeable lower subsoils. A wetness limitation may adversely affect crop growth or impose restrictions on cultivations or grazing by livestock.

- 10. Most of the land to the south and east of Chipping Norton is classified as Subgrade 3a and Subgrade 3b on the basis of a soil droughtiness limitation caused by the presence of very high volumes of hard limestone in the subsoil. The difference in grade mainly reflecting the depth at which limestone is encountered; shallow in the case of the Subgrade 3b and deeper in the case of Subgrade 3a. Such high stone volumes severely restrict profile available water for plant growth as well as reduce the potential rooting depth for crops. In addition to soil droughtiness, localised areas of land are also limited to Subgrade 3b on the basis of topsoil stoniness. Up to 16% flints > 2cm were measured, the volume of stones determining the severity of the limitation, with the stoniest areas assigned to Subgrade 3b. The presence of stones in the topsoil has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.
- 11. The lower lying land on the valley sides to the west of Chipping Norton is dissected with a number of small, often incised valleys, containing springs, streams and ponds, making the land difficult to farm. The soils are very variable and consist mainly of clayey profiles (derived from Lias Clays) which are limited to different extents by soil wetness. As a result of the above, the land quality in this area is limited to Subgrade 3b due to a combination of microrelief, gradient and soil wetness limitations. Very occasional borings in this area have been downgraded because they have been disturbed and are thought to comprise waste material from construction of the nearby dismantled railway.

FACTORS INFLUENCING ALC GRADE

Climate

12. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

- 13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (ATO, January to June), as a measure of the relative warmth of a locality.
- 15. A detailed assessment of the prevailing climate was made by interpolation from the published 5km grid point datasets (Met. Office, 1989). Due to the range in altitude within the survey area, (i.e. 140m-226m) interpolations were performed at 5m altitude increments in two transects (a total of 41 interpolations) to assess the degree of climatic variation. Four climate zones were used which are represented by the interpolations given in Table 2.
- 16. The combination of rainfall and temperature within the survey area means that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have a significant adverse effect on the site. The site is climatically Grade 1.

Factor	Units	Values										
Grid reference	N/A	SP 320 268	SP 307 259	SP 305 263	SP 303 265							
Altitude	m, AOD	220	200	170	145							
Accumulated Temperature	day°C (Jan-June)	1258	1282	1316	1344							
Average Annual Rainfall	mm	732	730	726	723							
Field Capacity Days	days	164	164	163	163							
Moisture Deficit. Wheat	mm	83	86	89	92							
Overall climatic grade	mm	67	71	75	79							
	N/A	Grade 1	Grade 1	Grade 1	Grade 1							

Table 2: Climatic and altitude data

Site

17. The majority of the survey area is gently undulating. The highest land occurs above 220m to the east and south of Chipping Norton. The most notable valley feature runs in an east-west direction to the west of Chipping Norton (around Westend Farm). Here, the altitude of the land varies considerably with the highest land lying at about 180m to 215m (south of Churchill Road) and the lowest land lying adjacent to the dismantled railway at about 140m. Streams and springs dissect this valley area causing an undulating landscape, with small parcels of land on the lower valley slopes which are limited to Subgrade 3b quality on the basis of gradient (with slopes measuring between 7.5-11°). Nowhere does flooding restrictions affect land quality.

Geology and soils

18. The most detailed published geological information (BGS, 1968) shows the majority of the site (to the east and south of Chipping Norton) to lie over solid Chipping Norton and Oolite limestone deposits. There is a change of geology to the west of Chipping Norton (around

Westfield Farm and Westend Farm) where softer deposits of interbedded clays, silts and marls occur.

- 19. The most recently published soils information for the site shows that in areas where hard limestone deposits occur (to the east and south of Chipping Norton) four different soil associations are mapped. The first of these is the Aberford Association and is mapped in the far north-east of the site around London Road. This is described as 'Shallow, locally brashy, well drained calcareous fine loamy soils over limestone. Some deeper calcareous fine loamy soils over colluvium.' (SSEW, 1983). Elsewhere, over the limestone deposits, the remaining three soil associations are mapped. These comprise the Elmton 1, Elmton 2 and Sherborne Associations. Elmton 1 Association is described as 'Shallow well drained brashy calcareous fine loamy soils over limestone. Some deeper soils and some calcareous and non-calcareous clayey soils'. (SSEW, 1983). Elmton 2 Association is described as 'Shallow well drained brashy calcareous fine loamy soils over limestone. Some deeper fine loamy or fine silty over clayey soils. (SSEW, 1983). Sherborne Association is described as 'Shallow well drained brashy calcareous fine loamy soils over limestone. Some deeper fine loamy or fine silty over clayey soils. (SSEW, 1983). Sherborne Association is described as 'Shallow well drained brashy clayey soils over limestone, associated with slowly permeable calcareous soils. (SSEW, 1983).
- 20. In the lower lying land of the valley to the west of Chipping Norton (around Westfield Farm and Westend Farm where deposits of clays, silts and marls occur) the Oxpasture Association is mapped. This is described as 'Fine loamy over clayey and clayey soils with slowly permeable subsoils and slight seasonal waterlogging. Some slowly permeable seasonally waterlogged clayey soils.' (SSEW, 1983).

AGRICULTURAL LAND CLASSIFICATION

- 21. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.
- 22. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.
- 23. Just over half of the agricultural land surveyed has been classified as Grade 2 (very good quality) and Subgrade 3a (good quality), with Subgrade 3b (moderate quality) making up the remainder of the land. The main limitation over much of the survey area is soil droughtiness; with soil wetness, topsoil stoniness, gradient and microrelief being restricting on occasions.

Grade 2

- 24. A small proportion of the survey area (totalling 12.2 hectares) is mapped as Grade 2 agricultural land (very good quality) and occurs on the colluvial footslopes of the dry valleys in the south-west part of the site. Here, the soils are deep and tend to limited to a minor extent by a combination of soil droughtiness and occasionally soil wetness.
- 25. The soil profiles generally comprise calcareous medium clay loam or silty clay loam topsoils, which are very slightly to slightly stony (containing up to 8% total hard limestone). These overlie heavy clay loam or silty clay loam (and occasionally clay) upper subsoils which contain up to 15% total hard limestone. Lower subsoils are similar but are variably stony (containing between 0-50% total hard limestone) Most of the profiles in the Grade 2 mapping unit are

impenetrable to the soil auger at depths between 60cm and 100cm. Soil Pits 2 and 9 are representative of these soils types (see Appendix II).

- 26. Where soil droughtiness is limiting, the soils are well drained and a Wetness Class of I is ascribed. The combination of soil texture and amount of hard rock in the profile restricts the water available to crops such that there is a slight risk of drought stress to the plants in most years. As a result, the level and consistency of crop growth and yields may be reduced.
- 27. In occasional locations where soil wetness is limiting, profiles tend to show either evidence of impeded drainage (in the form of gleying) and/or have poorly structured, slowly permeable, clay horizons which occur at depths between 45cm and 65cm. In this climatic regime, the occurrence of such waterlogging in the profile results in a minor soil wetness limitation such that the soils are placed in Wetness Class II and the land is classified as Grade 2. Crop germination and growth may therefore be adversely affected and cultivations may also be restricted.
- 28. Very occasional borings of better quality occur within the Grade 2 mapping unit but were too few and far between to be mapped separately at this scale.

Subgrade 3a

- 29. Approximately half (51.4%) of the surveyed area has been classified as Subgrade 3a (good quality agricultural land) on the basis of a soil droughtiness limitation.
- 30. The profiles within this unit comprise calcareous medium clay loam and medium silty clay loam (with very occasional heavy clay loam or heavy silty clay loam) topsoils which are very slightly or slightly stony (containing up to 10% total hard limestone and/or occasionally soft limestone fragments). The subsoils are very similar to the topsoils in character but they become increasingly stony with depth (the upper subsoil usually contain up to 30% total hard limestone and the lower subsoils contain as much as 65% total). The profiles are impenetrable to the soil auger at depths between 30cm and 55cm. Overall, the soils within this unit are permeable and well drained (Wetness Class I). Soil Pits 4 and 5 (Appendix II) are representative of the soils within this unit. The combination of soil texture and hard stone restricts the water available to crops such that there is a risk of drought stress to the plants in most years. However, given the local climate, which has relatively low moisture deficits in a regional context (due to the high altitudes), droughtiness is less marked than in other parts of Oxfordshire on similar soils. Land of Subgrade 3a quality could be expected to produce moderate yields of a wide range of crops and moderate to high yields of a narrow range of crops, principally cereals and grass.

Subgrade 3b

- 31. The remainder of the site (76.1 hectares) has been classified as Subgrade 3b (moderate quality agricultural land) mainly on the basis of a significant soil droughtiness and soil wetness problem. Topsoil stoniness, gradient and microrelief is also limiting on occasions.
- 32. Parts of the survey area (to the east and south of Chipping Norton) are limited to Subgrade 3b on the basis of a soil droughtiness limitation where the soils are relatively stony and shallow. Within these areas the soil profiles generally comprise calcareous medium clay loam (with occasional

medium silty clay loam or heavy clay loam) topsoils which are variably stony (containing up to 40% total hard limestone fragments). Where penetrable, these overlie similarly, or slightly heavier, textured upper subsoils which are calcareous and contain up to 80% total limestone. The soil profiles are impenetrable to the auger at depths between 23cm and 35cm. They are permeable and well drained (Wetness Class I). Soil Pits 1, 6 and 7 (Appendix II) are representative of the soils within this unit. Such high stone volumes severely restrict profile available water for plant growth as well as reduce the potential rooting depth for crops to the extent that Subgrade 3b is appropriate. The hard, flaggy nature of the solid limestone deposits in the area meant that the potential rooting depth was restricted as the roots were unable to sufficiently penetrate the bedrock. Drought calculations were cut-off as appropriate (depending on the 'observed rooting depth') into the limestone.

- 33. Within the Subgrade 3b areas affected by soil droughtiness, localised patches of land are also limited by topsoil stoniness. Around 16% flints > 2cm were measured, the volume of stones determining the severity of the limitation, with the stoniest areas assigned to Subgrade 3b. The presence of stones in the topsoil has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.
- 34. In addition to soil droughtiness and topsoil stone content, occasional profiles are limited to Subgrade 3b on the basis of soil depth. Topsoils are very shallow over 'solid' limestone bedrock (see pits 1P and 7P, Appendix II). Shallow soils restrict the range of cultivations which can take place and limit the nutrient supply to crops.
- 35. The majority of land to the west of Chipping Norton (on the lower lying land in the valley around Westfield Farm and Westend Farm) is limited to Subgrade 3b on the basis of soil wetness, micro-relief and gradient limitations.
- 36. Where soil wetness is limiting the profiles generally comprise medium clay loam or medium silty clay loam (occasionally heavy clay loam or heavy silty clay loam) topsoils which tend to be stoneless or very slightly stony (0-2% total hard rock). These sometimes overlie virtually stoneless, shallow, upper subsoils which are slightly heavier in texture and show evidence of wetness in the form of gleying. At shallow depths within the profile (20cm to 44cm), clay or silty clay subsoils are encountered which impede soil drainage. Soil inspection pit 8 (see Appendix II) reveal these shallow clay lower subsoils to be poorly structured and slowly permeable. Wetness Class IV, Subgrade 3b is therefore considered appropriate for this land. Occasional borings in this area are of better quality but were not mapped as such because the landscape is, in places, limited by a micro-relief restriction which is overriding. The valley side is dissected by springs and streams causing changes of slopes and localised areas of steep gradients. This somewhat broken landscape is considered difficult to cultivate intensively using normal agricultural equipment. Consequently, the whole area is limited to Subgrade 3b on the basis of a soil wetness and/or microrelief limitation.
- 37. As indicated above, numerous small areas of land are limited to Subgrade 3b on the basis of a gradient limitation. The gradients were measured (with an optical reading clinometer) between 7° and 10°. Slopes in this gradient range are sufficient to compromise the safe and efficient operation of farm machinery.

38. Very occasional borings in this area have been downgraded because they have been disturbed and are thought to comprise waste material from construction of the nearby dismantled railway. Such profiles were too limited in extent to investigate further (by digging a soil pit) and have been incorporated into the Subgrade 3b mapping unit.

> Sharron Cauldwell Resource Planning Team Eastern Region FRCA

۰.

SOURCES OF REFERENCE

British Geological Survey (1968) *Sheet No. 218*, *Chipping Norton*. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) *Climatological Data for Agricultural Land Classification.* Met. Office: Bracknell.

Soil Survey of England and Wales (1983) *Sheet 6, Soils of South East England.* SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linsced	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent	LEY:	Ley grass	RGR:	Rough grazing
	pasture				
SCR:	Scrub	CFW:	Coniferous woodland	ОТН	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL:	Microrelief limitation	FLOOD:	Flood risk	EROSN:	Soil erosion risk
EXP:	Exposure limitation	FROST:	Frost prone	DIST:	Disturbed land
CHEM:	Chemical limitation				

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

0C:	Overall Climate	AE: Aspect	ST:	Topsoil Stoniness
FR	Frost Risk	GR: Gradient	MR:	Microrelief
FL:	Flood Risk	TX: Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE: Wetness	WK:	Workability
DR:	Drought	ER: Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure			

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations:

S:	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. PED. COL: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology one of the following is used:

HR:	all hard rocks and stones	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	CH:	chalk
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered	GH:	gravel with non-porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

۰.

Contents:

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development	WK: ST:	weakly developed strongly developed	MD:	moderately developed
Ped size	F: C:	fine coarse	M :	medium
Ped shape	S: GR: SAB: PL:	single grain granular sub-angular blocky platy	M: AB: PR:	massive angular blocky prismatic

9. CONSIST: Soil consistence is described using the following notation:

L: loose	FM: firm	EH: extremely hard
VF: very friable	VM: very firm	
FR: friable	EM: extremely firm	

10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor

- 11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations:

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

LIST OF BORINGS HEADERS 24/12/98 W.OX DLP CHIPPING NORTON

page 1

SAMP	۴LE	ASPEC	л			WET	NESS	-HH	IEAT-	-90	TS-	۲	1. REL	EROSN	FR	OST	CHEM	ALC	
NO.	GRID REF	USE	GRDNT	GLE	y spl	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	I	EXP	DIST	LIMIT		COMMENTS
1	SP32242782	LEY				1	1	85	1	86	17	3A					DR	за	IMP 55 SEE 5P
2	SP32202770	LEY				1	1	64	-20	63	-6	3A					DR	3A	IMP 40 SEE 5P
¯ 3	SP32402770	CER				1	1	78	-6	78	9	ЗА					DR	3A	IMP 52 SEE 5P
4	SP32102760	LEY				1	1	69	-15	68	-1	3A					DR	3A	IMP 47 SEE 5P
5	SP32302760	CER				1	1	70	-14	69	0	3A					DR	3A	IMP 50 SEE 5P
6	SP32502760	CER				1	1	88	4	89	20	3A					DR	3A	IMP 55 SEE 5P
7	SP32102750	LEY				1	1	46	-38	45	-24	3B					DR	3A	I30 2P 139/93
8	SP32202750	CER				1	1	51	-33	50	-19	3B					DR	34	I35 2P 139/93
9	SP32402750	CER				1	1	46	-38	45	-24	3B					DR	3A	I30 2P 139/93
. 10	SP32562744	rgr				1	1	60	-24	59	-10	3B					DR	34	I40 2P 139/93
11	SP32002710	BAR			_	1	1	42	-42	41	-28	3B					DR	3A	IMP 38 SEE 4P
12	SP32102716	LEY		40	S	1	1	117	33	110	41	1						1	IMP 87
13	SP32202710	LEY				1	1	82	-2	84	15	3A DD					DR	3A 20	IMP 55
- 14	SP31902700	BAR				1	1	37	-4/	30	-29	38					DR	38	130 20 139/93
15	SP32002700	BAR				1	1	40	-44	39	-26	38					UK	38	130 28 139/93
16	SP32102700	OPH				1	2	82	-2	84	15	3A					DR	3A	IMP 55 SEE 5P
17	SP32102690	PGR				1	1	41	-43	40	-29	3B					DR	3B	IMP 30
18	SP32202690	LEY E	1			1	1	49	-35	48	-21	3B					DR	3A	IMP 40 SEE 5P
19	SP31702680	PGR				1	1	48	-36	47	-18	38					DR	38	IMP 32
20	SP32102682	LEY				1	1	27	-57	26	~39	4					DR	3B	IMP 30
21	SP32202680	LEY				1	1	43	-41	42	-27	38					DR	38	IMP 30
/ 22	SP30552667	PGR NW	3	20	20	4	38	80	-11	89	11	3A					WE	38	
23	SP30712671	LEY NW	3	30	30	4	38	128	37	105	27	1					WE	3B	SEE 8P
24	SP31602670	PGR				1	1	71	-13	70	1	3A					DR	3A	IMP 50 SEE 3P
25	SP32202670	BAR E	2			1	1	60	-24	59	-10	38					DR	3A	IMP 40 SEE 4P
26	SP32302670	STB S	2			1	1	113	29	103	34	2					DR	2	IMP 100 SEE 2P
27	SP32402670	BAR SW	2			1	1	47	-3/	46	-23	38					OR UE	-ALC	IMP 40 SEE 4P
- 28	SP30342656	PGR NH	6	35	43	4	38	112	21	110	32	2					WE	38	SEE BP
29	SP30502660	PGR NW	3			1	1	62	-29	62	-16	38				Y	DR	3B	DISTORBED
30	SP30602660	PGRNW	3	39	95	2	2	14.5	52	113	35	I					WE	2	
31	SP30702660	RGR NH	3	0	35	4	38	129	38	106	28	1					WE	3B	SEE 8P
32	SP30802660	PGR NH	3	35	35	4	3B	130	39	106	28	1					WE	3B	SEE 8P
33	SP32302660	BAR S	2			1	1	99	15	105	36	2					DR	2	SEE 2P
34	SP30202650	PGR NH	3	25	25	3	38	107	16	104	26	2					WE	3B	SEE 8P
35	SP30402650	PGR SW	5	25	6 42	4	38	132	41	116	38	1					WE	38	SEE BP
36	SP30502650	PGR NW	3	20	20	4	38	98	7	93	15	2					WE	3B	SEE 8P
37	SP30602650	PGR NW	4			1	1	75	-16	74	-4	3A					DR	3A	IMP 50
38	SP31602650	HRT				1	1	59	-25	58	-11	3B					DR	38	IMP 35 SEE 4P
39	SP31802650	HRT				1	1	50	-34	49	-20	3B					DR	38	IMP 30 SEE 4P
40	SP32202650	BAR W	2	45	5	1	1	90	6	97	29	2					DR	2	IMP 80 SEE 2P
41	SP32302650	STB W	2			1	1	75	-9	77	8	3A					DR	3A	IMP 55 QGR2
4 2	SP32402650	BAR W	3			1	1	51	-33	51	-18	3B					DR	3A	IMP 40

	SAMPI	LE	A	SPECT				WETI	NESS	-MH	EAT-	-P0	TS-	м.	REL EF	IOSN	FROST	CHEM	ALC	
	NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	ORT	FLOOD	EXP	DIST	LIMIT		COMMENTS
-		6020102640	~ ~		•	25	E0	•	24	100			25	2				내는	24	V MANY MA
	43	SP30102040	PGK		3 2	20	50	ა ი	<u>э</u> ч	120	17	113	30	2				ᄣ	2	ROOT MOTTS
-	44 45	5030502640	PUK DÓD	NGR Li	3 5	22	44	2	20	112	40	117	32	ו 2				WE	28	SEE AP
-	40 NG	5030302040	гчж ЦОр		þ	22	-+-+	1	30 1	04	22	63	14	2				02 02	34	TMP50 SEE 3P
	40	5931702040						1	2	62	21	63	7	30					34	THP 38 SEF 49
	• * /	3831302040	ΠŲΚ					1	2	03	-21	02	-,	30				DR.		11 00 0EE 41
-	48	SP32102640	WNT	S	2			1	1	46	-38	46	-23	3B				DR	3A	IMP 30 SEE 4P
	49	SP32302642	BAR	W	1			1	1	66	-18	66	-3	3A				DR	3A	IMP 45 SEE 3P
1	50	SP30202630	PGR	NE	6	45	45	3	3A	115	24	113	35	2				WE	3A	SEE 8P
	51	SP30402633	PGR	NH	4	25		2	2	88	-3	96	18	3A				DR	3A	IMP 60
	52	SP30602630	PGR	NH	5			1	1	35	-56	34	-44	3B				DR	3B	IMP 25 SEE 6P
	। 5२	SP31602630	CER	SF	4	47	47	3	R	105	21	113	44	2				WE	3B	
_	5A	SP31802630		UC	-	47	47	ĩ	1	56	-28	56	-13	- 38				DR	38	TMP 35 SEE 4P
	55	SP32002630	RAP	s	3			,	2	84	0	89	20	34				DR	34	IMP 60 SEE 3P
	56	SP32172635	DCD	SE	1	٥		2	2	66	-18	66	_3	30				DR	34	140 NR DITCH
	57	SP30142623	PGP	N	5	25	25	4	2R	114	23	105	27	2				WE	38	SEE 8P
		01 00 142020	i yan		Ŭ		20	•	00		20			-						
	58	SP30302620	PGR	N	3			1	1	98	14	106	37	2				DR	2	IMP 70
	59	SP30502620	LEY	N	6			1	1	56	-35	55	-23	38				DR	3B	SEE 6P
	60	SP31202620	BAR	NH	1			1	1	46	-38	45	-24	3B				DR	3B	IMP 28 SEE 7P
	61	SP31302620	BAR	SH	2			1	1	64	-20	63	6	3A				DR	3A	IMP 40 SEE 4P
_	62	SP31502620	BAR	SE	3	28		2	2	62	-22	62	-7	3B				DR	3A	IMP 40 SEE 4P
	63	SP31602620	STR	s	1			1	1	77	-7	77	8	34				DR	ЗА	IMP 48 SEE 4P
	64	SP31702620	STR	ŝ	1			1	1	62	-22	62	-7	38				DR	3A	IMP 40 LST
	65	SP31942620	RAR	s	1			1	2	49	-35	49	-20	38				DR	3B	IMP 35 SEE 1P
	66	SP32102620	BAR	s	2	20	20	4	- 3B	101	17	86	17	2				WE	38	
	67	SP32302620	LEY	S	2			1	1	63	-21	63	-6	38				DR	3A	IMP 40 SEE 4P
_																				
	68	SP30202610	PGR	N	4			1	1	36	-48	35	-34	38				DR	3B	IMP 23 SEE 6P
	69	SP30402610	PGR	NW	3			۱	1	39	-45	38	-31	3B				DR	3B	IMP 25 SEE 6P
	70	SP30602610	STB	NH	2			1	1	52	-32	51	-18	3B				TS	3B	SEE 7P+ 8P
_	71	SP31102610	BAR	NH	1			1	1	40	-44	40	-29	38				DR	38	IMP 25 SEE 6P
	72	SP31202610	BAR					1	1	31	-60	31	-47	4				DR	38	IMP 20 SEE 6P
	, 73	SP31302610	STB	NE	1			1	1	44	-40	44	-25	38				DR	38	IMP 30 SEE 7P
	74	SP31402610	BAR					1	2	89	5	97	28	2				DR	2	IMP 60 SEE 9P
	75	SP31502610	STB			65	65	2	2	130	46	110	42	1				WE	2	SEE 9P
-	76	SP31602610	BAR					1	2	137	53	113	44	1				WK	2	SEE 9P
_	77	SP31802610	STB	S	1			1	1	74	-10	74	5	3A				ĎR	3A	IMP 50 LST
	78	SP32002610	PGR	S	1			1	1	91	7	105	36	2				DR	2	SEE 9P
_	79	SP32112612	SAS	SE	2	65	24	3	38	105	21	100	31	2				WE	3B	SEE 2P
	80	SP32222612	LEY	S	1			1	1	45	-39	45	-24	3B				DR	3B	IMP 30 SEE 1P
	81	SP32302610	SAS	S	2			1	1	44	-40	44	-25	3B				DR	38	IMP 30 SEE 1P
_	82	SP30302600	STB	NE	1			١	1	44	-40	43	-26	3B				DR	3B	IMP 35 SEE 7P
	828	5030502600	STR	NU	2			1	1	47	_46	47	-32	38				DR	3 B	IMP 25 SEE 7P
	83	SP30702600	WHT	N	2			1	1	49	-35	49	-20	38				DR	3B	IMP 35 SEE 7P
					_			-	-	· -										

SAMP	LE	4	SPECT				WET	NESS	-WH	EAT-	-P0	TS-		M.REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
84	SP30922596	WHT	N	3			1	2	96	12	107	38	2				WD	2	IMP 70
85	SP31102600	8AR					1	2	57	-34	57	-21	3B				DR	38	IMP 35 SEE 7P
86	SP31302600	BAR					1	1	66	-18	66	-3	3A				DR	3A	IMP 40 SEE 4P
87	SP31402600	STB	NE	3			1	1	47	-37	47	-22	3B				DR	3B	IMP 30 SEE 7P
88	SP31502600	WHT					1	2	39	-45	39	-30	38				DR	38	IMP 25 SEE 7P
- 20	\$031602600	CEP	F	2			1	1	47	-37	47	-22	R				DR	38	TMP 30 SEE 7P
0	SP31802600	STR	E	2			1	, 1	141	57	112	43	1				UK	1	SEE 9P
9 1	SP31902600	DCD	NE	1			1	1	133	49	110	41	1					1	SEE 9P
- 02	SP32102600	DCD	N	2			1	1	59	-25	59	-10	38				0R	34	IMP 40 SEE 4P
93	SP32302600	LEY		£	65	65	2	2	102	18	109	40	2				WD	2	SEE 2P
	0000400500			•			-	•	60	15	c 0		24				DD	24	THD 45 SEE 30
94	SP30402590	218	N	1					70	-15	70	- 1	24					24	THP 45 SEE SP
95	SP30582590	WHI	N	2			1		. 72	-12	12	17	- AC 00					24	THE AD SEE AD
96	SP30802590	WHI	N	2			•	1	- 2 2	-32	22	-17	35					20	IMP 40 3EE 4P
97	SP31002590	WH1	NE	2				2	48	-30	4/	-22	38					30	IMP SU SEE 7P
98	SP31202590	BAR	NE	2			1	2	83	-1	83	14	AL				DK	2	IMP DU SEE SP
99	SP31302590	WHT	NE	1			1	2	53	-31	53	-12	3B				DR	38	IMP 28 SEE 7P
100	SP31402590	WHT	NE	2			1	2	37	-47	37	-32	3B				DR	3B	IMP 25 SEE 7P
101	SP31502590	CER	NE	2			1	1	62	-22	60	-9	3B				DR	3A	IMP 40 SEE 7P
102	SP31592588	WHT					1	2	95	11	106	37	2				WD	2	IMP 70
103	SP32002590	STB					1	1	42	-42	42	-27	3B				DR	3B	ST I30 SEE 1P
104	SP32202590	STB	SE	1			1	1	39	-45	39	-30	3B				DR	3B	130 ALSO ST
0 ₁₀₅	SP30302580	STB	NH	3			1	1	50	-34	49	-20	3B				ÐR	3B	IMP 33 SEE 7P
106	SP30402580	STB	NH	3			1	1	57	-27	57	-12	3B				DR	38	IMP 35 SEE 7P
107	SP30512585	STB	NH	3			1	1	57	-27	57	-12	3B				DR	38	IMP 35 SEE 7P
108	SP30702580	WHT	N	3			1	1	50	-34	50	-19	38				DR	38	IMP 30 SEE 7P
109	SP30902580	ынт	NE	3			1	2	57	-27	56	-13	3B				DR	за	IMP 40 Q3B
110	SP31302580	HHT	NE	3			1	2	83	-1	86	17	3A				DR	3A	IMP 60 Q2
111	SP31502580	WHT		-			1	1	95	12	102	33	2				DR	2	IMP 60
112	SP31902580	STB	N	2			1	1	39	-45	39	-30	3B				DR	38	ST
113	SP32102580	STB	E	3			1	1	67	-17	67	-2	3A				DR	3A	VALLEY
114	5020202570	сто	NE	2			1	1	46	_38	46	-23	3 8				DR	38	TMP 33 SEE 7P
115	SD30612570	510	NL.	2			1	1	62	-22	62	-23	38 38				DR DR	34	TMP 40 SEE 4P
115	SP30012572		NE NE	2			1	1	57	-22	56	_13	38				DR	38	TMP 35 SEE 4P
117	SP31202370	CTD	N	2			1	1	60	_18	64	-5	34				DR	34	TMP 40 SEE 4P
▶P1	SP322222570	LEY	S	1			1	1	38	-46	38	-31	3B				DR	3B	+ SOIL DEPTH
			-	•															
P2	SP32202650	BAR	Ε	2			1	1	90	6	97	28	2				DR	2	PT 90 ROOT 85
P3	SP31702640	HOR	S	2			1	1	85	4	90	21	3A				DR	2	PT 80 ROOT 57
P4	SP31902640	RGR	S	2			1	1	76	-8	77	7	3A				DR	3A	PT 82 ROOT 78
₽5	SP32302760	WHT					1	1	69	-15	72	3	3A				DR	3A	PT 82 ROOT 72
P6	SP30202610	PGR	N	5			1	1	52	-36	55	-23	3B				DR	3B	PT 60 ROOT 55
P7	SP30302580	STB	N	4			1	1	33	-51	32	-37	4				DR	38	+ SOIL DEPTH
P8	SP30402650	PGR	SM	6	23	42	4	38	105	14	108	30	2				WE	38	PIT 80

program: ALCO12 LIST OF BORINGS HEADERS 24/12/98 W.OX DLP CHIPPING NORTON

SAMPLE ASPECT --WETNESS---WHEAT--POTS- M.REL EROSN FROST CHEM ALC NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS P9 SP31802600 STB 80 1 1 142 58 113 44 1 1 VALLEY

					MOTTLES	5	PED		S	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2 >6	LITH T	OT CONSIST	STR POR I	MP SPL CALC	
1	0-27	MCL	10YR42						0	0 SLST	2		Ŷ	
	27-50	HCL	10YR46						0	0 SLST	2	м	Y	
-	50-55	HCL	10YR46						0	0 SLST	30	M	Y	IMP LIMESTONE
•									-			• •		
2	0-27	MCL	10YR43						0	0 HR	2		Y	
-	27-37	HCL	10YR44 46						0	0 SLST	5	м	Y	
-	37-40	HCL	10YR44 46						0	0 HR	50	м	Y	IMP LIMESTONE
3	0-30	MCL	10YR42 43						0	0 HR	5		Y	
	30-40	MCL	10YR44 46						0	0 SLST	2	м	Ŷ	
	40-52	MCL	10YR44 46						0	0 SLST	20	м	Y	IMP LIMESTONE
4	0-25	MCL	10YR42 43						0	0 HR	2		Y	
•	25-30	MCL	10YR43 44						0	0 SLST	20	м	Y	
	30-47	HCL.	10YR44 46						0	O HR	20	M	Y	IMP LIMESTONE
-														
5	0-25	MCL	10YR42 43						0	0 HR	5		Y	
	25-50	MCL	10YR43 44						0	0 HR	20	м	Y	IMP LIMESTONE
-														
6	0-30	MCL	10YR43						0	0 SLST	2			
	30-50	HCL	10YR43 44						0	0 SLST	2	м	Ŷ	
	50-55	HCL	10YR44 46						0	0 SLST	20	M	Ŷ	IMP LIMESTONE
_														
a 7	0-20	MCL	10YR42 43						0	0 SLST	2		Y	
L	20-30	MCL	10YR44						U	UHR	20	M	Ŷ	TWN 210NA
-	0.00		100040 40						•	0.00	F		v	
• °	V-22		107842 43						0		3 20		r v	THE STORY
	22-35	MUL	IUTK43 44						U	Unk	20	n	Ť	THE STORT
-	0 30		100042 42						n		10		v	
_ ,	0-30	FIGL	101842 43						v	Q TIK	10		Ŧ	
10	0_30	MCI	107042						n		5		v	
	30_40	MCI	107043 44						ů.	0 HR	30	м	, v	THP + THESTONE
	JU-40								Ť	0 111				
1 1	0-25	MCI	10YR42						12	8 HR	25		Y	
	25-38	HCL	75YR46						0	OHR	60	м	Ŷ	IMP LIMESTONE
12	0-25	MCL	10YR43						0	OHR	5			
	25-40	С	10YR44	10YR6	8 F	D			0	0 HR	3	м		
-	40~55	с	10YR54	10YR5	в м	D		S	0	0 HR	3	м		
-	55-87	SCL	25Y 56	10YR5	8 м	D		S	0	0	0	м	Y	IMP LIMESTONE
13	0-28	MCL.	10YR43						1	0 HR	5		Y	
_	28-45	HCL	10YR44						0	0 HR	10	M	Y	
	45-55	HCL	10YR46						0	0 HR	20	M	Y	IMP LIMESTONE
14 1	0-23	MCL	10YR42						9	4 HR	20		Y	
	23-30	HCL	75YR46						0	O HR	60	M	Y	IMP LIMESTONE

COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

					M	OTTLE	S	PED		S	TONES-	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	2 (COL /	ABUN	CONT	COL.	GLEY :	>2 >6	LITH	TOT CONSIST	STR POR IMP	SPL CALC	
1 5	0-24	MCI	100043							3	л нр	20		v	
	24-30	HCI	107845							n	0 HR	40	м	v	TMP I THESTONE
-	24 30	THE .	101840							v	V UK			•	THE ETHEOTONE
16	0-28	HCL	10YR42							0	0 HR	5			
	28-45	C	10YR44							0	0 HR	3	M		
	45-55	С	10YR66							0	0 HR	30	м		IMP LIMESTONE
17	0-22	MCL	10YR44							3	0 HR	15			
	22-30	MCL	10YR46							0	0 HR	40	м	Y	IMP LIMESTONE
1 8	0-22	MCL	10VR43							0	0 HR	5		Y	
	22-40	HCL	75YR44							Ō	0 HR	60	м	Ŷ	IMP LIMESTONE
-										•				•	••••
19	0-25	MCL	10YR42							2	0 HR	12		Y	
	25-32	HCL	75YR46							0	0 HR	20	M	Ŷ	IMP LIMESTONE
20	0-22	MCL.	10YR44							3	0 HR	40		Y	
	22-30	SCL	10 YR46							0	0 HR	80	м	Ŷ	IMP LIMESTONE
21	0-25	MCL	10VP43							3	0 HR	15		v	
	25-30	MCL	10YR44							0	0 HR	40	м	Ŷ	IMP LIMESTONE
												-			
22	0-20	HCL	05Y 31	10)YR46	56 M	D		Y	0	0 ZR	10			
	20-70	ZC	05Y 61	10)YR46	58 M	D		Y	0	0 ZR	10	P	Y	WEATHERED ZR
23	0-30	MCL	10YR41	31 10)YR46	c	D		Y	0	0	0			
	30-120	С	05Y 61	62 75	5YR58	۲	D		Y	0	0	0	P	Ŷ	DENSE, PLASTIC
24	0-25	MCL	10YR42							2	0 HR	8		Y	
	25-47	HCL	75YR46							0	OHR	20	м	Y	
	47-50	HCL	75YR46							0	OHR	60	М	Ŷ	IMP LIMESTONE
25	0-25	MCL	10YR33							1	0 HR	5		Ŷ	
-	25-38	HCL	10YR44							0	0 HR	20	м	Y	
I	38-40	HCL	10YR44							0	0 HR	60	М	Y	IMP LIMESTONE
- 26	0-25	MZCL	10YR42							2	0 HR	8		Y	
	25-60	HCL	75YR46							0	0 HR	15	м	Y	
	60-80	HCL.	75YR46							0	0 HR	20	м	Y	
-	80-100	HCL	10YR56							0	0 HR	50	м	Y	IMP LIMESTONE
27	0-23	MCL	107643							3	2 HR	20		v	
•	23-40	HCL	10YR44							0	OHR	50	M	v v	IMP LIMESTONE
_			101117							·			.,	•	
28	0-35	MCL	10YR42			_				0	0	0			
-	35-43	C	05Y 63	10)YR46	58 M	D		Y	0	0 HR	2	M		
	43-90	С	05Y 51	52 75	5YR58	M	D		Y	0	0	0	Р	Y	DENSE, FIRM

1					MOTT	LES-		PED		5	TONES	STRUCT/	SUBS		
	SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABU	N	CONT	COL.	GLEY	>2 >6	LITH	OT CONSIST	STR POR IMP	SPL CALC	
	29	0-37	MCL	10YR21						0	0 HR	5			IMP LIMESTONE
	20	0.05		257 42						~	•	•			
_		0-25	MUL	237 42						0	0	0 2	м		
1		20 05		231 33 34	100046 50	м	~		v	0		2	n M		
		39-95	nuL C	201 03 02 05V 51 52	10YR40 30		U D		T V	0		о О	n D	v	
	_	33-120	C	031 31 32	TUTROD	m	U		Y	U	v	U	r	r	DENSE, FINA
	31	0-35	MCL	10YR42	10YR46	с	F		Y	o	0 HR	2			
		35-120	С	05Y 52	75YR58 46	M	D		Ŷ	0	0	Ō	Ρ	Y	DENSE, FIRM
1	32	0-35	MCL	10YR42						0	0	0			
		35-55	С	25Y 52 53	10YR58	M	F		Y	0	0	0	P	Y	DENSE
		55-120	С	05Y 62	10YR58	М	D		Y	0	0	0	Р	Y	FIRM
	33	0-28	MCL	10YR44						1	OHR	5		Ŷ	
	-	28-65	С	75YR46						0	0 HR	10	м	Y	
-		6580	HCL.	75YR44 54						0	OHR	35	м	Y	IMP LIMESTONE
•	34	0-25	MZCL	25Y 52	10YR58	С	D		Y	0	0	0			
_	_	25-43	С	25Y 62 63	10YR58	С	0		Y	0	٥	0	P	Y	DENSE
		43-90	ZC	05Y 61	10YR58	M	D		Y	0	0	0	Р	Ŷ	FIRM
		0.05								•	•	•			
	35	0-25	MZCL	10YR43						0		U • •	м		
ſ		25-42	MZUL	101K54	100050	м			v	0	U SLST	· 1		v	DENCE
		42~00 90 110	C C	237 33 02 057 61	101836	л м	D D		v v	0	0 3631	1	P	Ť	ETDM
		00-110	C	051 01	IVIKJO	51	U		T	U	U	U	F	r	I ING
f	36	020	MCI	107842						n	0	0			
		20-90	70	05V 51 52	757858	м	р		v	ň	ñ	0	Р	v	DENSE
	-	20 30	20		101100	••	0		•	Ť	•	•	·	•	52.002
	37	0-28	MCL.	10YR42						0	O HR	5		Y	
		28-40	MCL	10YR43						0	0 SLST	10	M	Y	
	•	40-50	с	25Y 53 54						0	O SLST	10	м	Y	IMP ZR
_															
	- 38	0-25	MZCL	10YR42						2	0 HR	6		Y	
		25-35	HZCL	10YR46						0	O HR	10	M	Y	IMP LIMESTONE
_	_														
	39	0-28	MCL	10YR42						1	O HR	5		Y	
	ŀ	28-30	MCL	10YR54						0	O HR	5	м	Y	IMP LIMESTONE
	40	0-30	MCL	10YR32						4	2 HR	8		Y	
		30-45	HCL	10YR43		_	_			0	0 HR	10	M	Y	
		45-78	C	25YR53	10YR56	С	F		Y	0	OHR	10	M	Y	
		78-80	SLST	10YR78						0	0	U	M	Ŷ	IMP LIMESTONE
		0.05		10/040						~	A 1/2	10			
	- 41	0-25		IUYK4Z						2		1U 20	M	v	
-	•	20-00	nu. uci	IUTK40						0	o nk	20	n M	T V	THE I THESTONE
	-	JV-33	CRAL	101840 00						0	U TK	رر	17	T	

rogram: ALCO11 COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

page 4

CALC

					-MOTTLES	S	PED	STONES STRUCT/	SUBS
MPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY >2 >6 LITH TOT CONSIST	STR POR IMP SPL
42	0-25	MCI	10VR43					A 1 SIST 25	

42	0-25	MCL	10YR43					4	1 SLST	25			Y	
	25-40	SCL	10YR66 76	i				0	0 SLST	35	м		Y	IMP LIMESTONE
43	0-25	MZCL	10YR53	10YR58	F			0	0	0				
	25-50	MCL	25Y 53	10YR58	С		Y	0	0	0	м			
	50-80	С	05Y 51	10YR58	M		Y	0	0	0	Р	Y		DENSE, FIRM
_														
44	0-25	MZCL	10YR43					0	O SLST	2				
	25-60	MZCL	10YR54					0	0 SLST	2	M			
	60-120	с	25Y 62 54	10YR58	M		Y	0	O SLST	1	Р	Y		DENSE
45	0-22	MZCL	10YR43					0	0	0				
-	22-44	HZCL	10YR54	10YR56	с			0	0 SLST	1	Р	Y		
	44-90	С	05Y 51 54	10YR58	M		Y	0	0 SLST	1	P	Y		FIRM
46	0-26	MZCL	10YR42					1	0 HR	5			Y	
_	26-50	HZCL	10YR56					0	0 HR	8	М		Y	IMP LIMESTONE
47	0-26	HZCL	10YR42					0	0 HR	5			Y	
	26-38	С	10YR56					0	O HR	7	м		Y	IMP LIMESTONE
48	0-30	MCL	10YR32					5	2 SLST	15			Y	IMP LIMESTONE
49	0-20	MCL	10YR43					3	3 SLST	15			Y	
	20-40	С	10YR46					0	O SLST	5	M		Y	
•	40-45	SCL	10YR67 76					0	0 SLST	35	M		Y	IMP LIMESTONE
50	0-25	MZCL	10YR43					0	0	0				
6	25-45	MZCL	10YR54					0	0	0	М			
	45-60	С	25Y 62 53	10YR58	С		Y	0	0	0	Ρ	Y		DENSE
	60-90	С	05Y 61	10YR58	Μ		Y	0	0	0	Ρ	Y		FIRM
51	0-25	MZCL	10YR32					0	0	0			Y	
	25-40	С	25Y 52	10YR58	С	D	Y	0	0	0	Ρ			
	40-60	С	25Y 52	10YR58	С	Ð	Y	0	0 SLST	10	м		Y	IMP LIMESTONE
•														
52	0-25	MCL	10YR43					8	4 HR	20			Y	IMP LIMESTONE
53	0-28	HCL	10YR43					0	0 HR	5			Y	
	28-47	С	10YR56					0	0	0	M			
	47-80	С	10YR64	10YR56	С	F	Y	0	0	0	м	Y		
54	0-25	MCL	10YR42					1	0 HR	5			Y	
	25-35	HZCL	10YR44					0	O HR	5	м		Y	IMP LIMESTONE
[
55	0-30	HCL	10YR43					2	O SLST	10			Y	
	30-40	С	10YR56					0	0 SLST	5	м		Y	
	40-60	HCL	10YR64					0	0 SLST	25	м		Y	IMP LIMESTONE

COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

				M OT	TLES	PED	_	S	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	UN CONT	COL.	GLEY >	2 >6	LITH TO	OT CONSIST	STR POR IM	P SPL CALC	
56	0-30	NZCI	104032	10VP46	C D		v	Ô	Ó HR	5		Y	
~	30-40	MZCL	10YR42	101140			•	Ō	0 SLST	20	м	Ŷ	IMP LIMESTONE
57	0-25	H7C1	107043	107858	СВ		s	Ô	0	0			
- 37	25_50	C	107845	107050	C D		v	ň	ñ	۰ ٥	P	v	FTRM
J	50-100	c	25Y 62 53	10YR58	MD		Ŷ	Ō	0	0	P	Ŷ	DENSE
-	0 05		10/042					•	0 HD	F		v	
58	0-25		TUYR43					0		3 F	м	1	
,	25-50	HCL	10YR44					U		э С	M	r v	
	50-70	HCL	10YR44					U	0 нк	20	M	Ŧ	IMP LIMESTONE
59	0-25	MCL	10YR43					0	O HR	2		Y	
	25-35	MCL	10YR44					0	O SLST	15	м	Y	IMP LIMESTONE
60	0-28	MCL	10YR42					4	1 HR	8		Y	IMP LIMESTONE
61	0-28	MCL	10YR42					3	1 HR	9		Y	
	28-40	с	10YR54					0	0	0	м	Y	IMP LIMESTONE
) 62	0-28	MCL	10YR42					2	0 HR	7		Ŷ	
)	28-40	HCL	10YR64	10YR66	C D		Y	0	OHR	15	M	Y	IMP LIMESTONE
63	0.20		104043					•		F		v	
63	0-30		101643					0		5 F	м	, v	THE I THESTONE
	30-48		IUTR44					U	U NK	3	17	1	INF EINESTONE
64	0-30	MCL	10YR43					3	O HR	8			
	30-40	HCL	10YR44					0	O HR	10	M		IMP LIMESTONE
65	0-24	HCL	10YR43					3	O SLST	10		Y	
	24-35	HCL	10YR44					0	O SLST	50	м	Y	IMP LIMESTONE
66	0-20	HCL	10YR32					4	1 HR	10		Y	
)	20-60	C	25Y 52 53	10YR56	MD		Y	0	O SLST	20	P	Y	DENSE
	60-75	С	10YR53	10YR58	MD		Y	0	O SLST	30	Р	Y Y	FIRM
	75-120	с	25Y 63	10YR58	MD		Y	0	0 SLST	40	Ρ	Y	PLASTIC
, 67	0-30	MZCL	10YR42 43					3	1 SLST	5		Y	
}	30-40	HCL	10YR43 44					0	O SLST	20	м	Ŷ	IMP LIMESTONE
, 68	0-23	MCL	10YR32					4	1 HR	8		Y	IMP LIMESTONE
69	0-25	MCL	10YR42					6	2 HR	9		Y	IMP LIMESTONE
70	0-23	MCL	10YR42					16	6 HR	20		Y	3B T/S ST
	23-30	HCL	25YR54					0	0 HR	3	M	Y	
	30-38	C	25YR53					0	0 HR	5	м	¥	IMP LIMESTONE
71	A-25	MZCI	107042					7	3 HR	12		v	IMP LIMESTONE
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		IVINTE									•	

COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

page 6

.

						MOTTLE	S	PED		S	TON	ES	STRUCT/	SUBS		
SAH	IPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2 >6	LI	гн то	OT CONSIST	STR POR I	MP SPL CALC	
	72	0-20	MCL	10YR42						5	0	łR	10		Ŷ	IMP LIMESTONE
_	73	0-30	MCL	10YR43						5	2	HR	15		Y	IMP LIMESTONE
	74	0–28	HCL	10YR42						1	0 1	HR	3		Y	
		28-60	С	10YR44						0	0 1	ſR	2	М	Ŷ	IMP LIMESTONE
	75	0-28	MCL	25Y 4243						0	0 1	-IR	5		Y	
		28-65	c	10YR4446						0	0 1	-R	2	M	Y	
•		65-120	ć	05Y 6153	10YR5	58 C	D		Y	0	0 1	HR	2	Ρ	Y	PLASTIC, DENSE
	76	0-30	HCL	10YR42						0	0 1	HR	3		Y	
		30-50	С	10YR54						0	01	IR	5	м	Y	
1		50-120	С	10YR53						0	0		0	м		
	77	0-25	MCL	10YR43						5	31	IR	12		Y	
		25–50	С	10YR44						0	0 1	łR	10	M	Y	IMP LIMESTONE
	78	0-27	MCI	10VR43						ń	01	-IR	5		v	
		27-68	C	10YR44 46						Ō	01	-IR	5	м	•	IMP LIMESTONE
	79	0-24	HCL	10YR42						0	0		0			
		24-65	С	10YR54	10YR5	8 C	D		S	0	0 5	SLST	2	Р	Y	FIRM, DENSE
		65-90	С	10YR53 54	10YR5	8 C	D		Y	0	0 3	SLST	2	P	Y	PLASTIC
		90-95	с	10YR54 66						0	0 \$	SLST	40	Ρ	Ŷ	IMP LIMESTONE
	80	0-30	MCL	10YR42 43						2	01	IR	10		Y	IMP LIMESTONE
	81	0-28	MCL	10YR43						2	0 1	IR	12		Y	
_		28-30	MCL	10YR44						0	0 1	IR	50	м	Ŷ	IMP LIMESTONE
	82	0-30	MCL	10YR42						7	4 I	IR	10		Y	IMP LIMESTONE
	82A	0-25	MZCL	10YR42						6	1	IR	10		Y	IMP LIMESTONE
8	83	0_25		100042						2	11	ar	5		v	
—		25-35	HCI	107R43						0	0,1	IR IR	50	м	Ŷ	TMP TMESTONE
										•	• .		••		·	
	84	0-25	HCL	10YR43						2	1 H	IR	5		Y	
_		25-70	HCL	10YR54						0	0 5	SLST	10	м	Y	IMP LIMESTONE
	85	0-28	HCI	10VR42						٥	0 1	IR	5		v	
		28-35	C	10YR54						0	0		0	м	Ŷ	IMP LIMESTONE
•		•								_			-			
	66	0-28	HCL	10YR42						0	0 6	ſŔ	3		Y	
-		28-4U	C	10YR54						0	U		U	м	Ŷ	IMP LIMESTONE
	87	0-30	MCL	10YR43						0	0 F	IR	10		Y	IMP LIMESTONE

program: ALCO11 COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

page 7

-----MOTTLES----- PED -----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

88	3 0-25	HCL	10YR43				8	2 HR	10			Y	IMP LIMESTONE
89	9 0-30	MCL	10YR42				3	2 HR	10			Y	IMP LIMESTONE
90	0 0-26	MCL	10YR4243				0	0 HR	5		_	Ŷ	
-	26-80	HCL	10YR4446				0	0 HR	2	۲	1	Ŷ	LOOSE
	80-120	С	10YR4446 10YR	58 F	D		0	0 HR	2	ħ	1	Ŷ	FIRM, DENSE
91	I 0-28	MCL	10YR42 43				0	0 HR	2			Y	
	28-45	HCL	10YR43 44				0	0 HR	5	h	1	Y	
	45-120	С	10YR44 46				0	O SL	ST 2	١	1	γ	
92	2 0-21	MCL	10YR42 43				0	0 HR	2			Y	
	21-40	MCL	10YR43 44				0	0 SL	ST 5	1	1	Y	IMP LIMESTONE
93	3 0-30	MCL	10YR42 43				0	0 HR	2			Y	
	30-40	HCL	10YR43				0	0	0	١	1	Y	
	40-65	С	10YR44 46				0	0	0	P	1		
	65-80	С	25Y 52 10YR	46 58 C	D	Y	0	0	0	I	י <	1	IMP LIMESTONE
94	4 0-28	MCL	10YR43				4	2 HR	5			Y	
	28-45	HCL	75YR44				0	0 HR	5	1	1	Y	IMP LIMESTONE
_													
95	5 0-30	MCL.	10YR43			-	4	2 HR	14			Ŷ	
	30-50	HCL.	10YR54				0	0 SL	ST 20	I	4	Ŷ	IMP LIMESTONE
-	- 0.0r		10/043					2 110				v	
90	0 0-25	MUL	104843				*					v	
	25-40	HCL	IUAKOA				U		50		7	1	
97	7 ೧_25	нсі	107843				3	1 HR	6			Y	
n	25-30	HCL	107854				0	0 HR	20		4	Ŷ	IMP LIMESTONE
							-						
99	3 0-28	HZCL	10YR43				0	0 HR	1			Y	
	28-40	С	10YR44				0	0 HR	1		4	Y	
	40-50	с	10YR56				0	0 SL	ST 25	1	4	Y	IMP LIMESTONE
99	0-28	HCL.	10YR42				5	1 HR	8			Y	IMP LIMESTONE
100) 0-25	HCL	10Y#43				11	2 HR	13			Y	IMP LIMESTONE
101	0-37	MCL	10YR4243				5	2 HR	12			Y	IMP LIMESTONE
							_	_ .	_				
- 102	2 0-28	HCL	10YR42				2	1 HR	3			Y	
	2870	HCL	10YR54				0	0 HR	10	I	1	Ŷ	IMP LIMESTONE
			10/04040				10	3 115				v	
103	s 0-30	MCL	10784243				10	3 HR	20			T	TWE LINESTONE
n 104	0.00		10/042				16	£ UD	26			v	THE I THESTONE
104	r u−,3U	mul	IVIR4C				10	v nK	. 20			1	TUR FTUESTORE

5

COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

					MOTTLE	S	PED	8	TON	ES	s	TRUCT/	SUB	s		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	00L.	GLEY >2 >6	i LI	тн то	о то	ONSIST	STR	POR IMP	SPL CALC	
105	0_25	MZCI	107043					6	2	ЦD	q				v	
105	25-33	HCL	75YR54					0	0	HR	10			м	Ŷ	IMP LIMESTONE
-								•	•							
1 06	0-25	MCL	10YR43					2	1	HR	4				Y	
	25-35	HCL	10YR44					0	0	HR	5			M	Y	IMP LIMESTONE
-																
107	0-25	MCL.	10YR43					3	1	HR	5				Y	
	25-35	HCL	10YR44					0	0	HR	5			M	Ŷ	IMP LIMESTONE
108	0_30	MZCI	107043					5	2	пр	10				v	IMP I IMESTONE
	0-30	FILCE	101845					5	2	UK.	10				1	the Ellicorone
109	0-25	HCL	10YR43					3	1	HR	5				Y	
	25-40	HCL	10YR63 64					0	0	SLST	50			м	Ŷ	IMP LIMESTONE
110	0-25	HCL.	10YR42					0	0	HR	2				Ŷ	
-	25-40	HCL	10YR44					0	0	HR	2			M	Ŷ	
	40-60	HCL	10YR44					0	0	SLST	50			м,	Ŷ	IMP LIMESTONE
	0.00	MZCI	10/042					•	~		2				v	
4	29 40		107K43					0	0	nk ND	5				Ť V	
-	40 50		101K34					0	0	กร. มอ	5			ri M	· ·	
	40-30 50-60		75VR54	10785	я ғ	F		0	n	HR HR	5			M	v v	TMP I THESTONE
•	30-00		7511654	TOTAS	• •	•		Ŭ	Ŭ		Ť					
— 112	0-30	MCL	10YR4243					16	6	HR	25				Ŷ	IMP LIMESTONE
113	0-28	MCL	10YR43					1	4	HR	10				Ŷ	
-	28-45	HCL	10YR44					0	0	HR	15		i	M	Y	IMP LIMESTONE
	0.05		10/010					-			-0				v	
114	0-25	MCL	IUYK43						4	HK	10				Y	
-	20-00		731834					U	Ų	пк	50			M	T	
115	0-30	HCL	10YR43					4	2	HR	6				Ŷ	
	30-40	HCL	10YR54					0	0	HR	20			M	Ŷ	IMP LIMESTONE
-																
116	0-25	MCL	10YR43					0	0	HR	3				Y	
	25-35	HCL	10YR43					0	0	HR	10			м	Ŷ	IMP LIMESTONE
•								_	_							
117	0-30	MCL	10YR4243					4	0	HR	10				Ŷ	
	30~40	HCL	10YK 44					U	U	нк	10		i	m	Ŷ	IMP LIMESTUNE
— P1	0-27	MCI	10VR42 43					13	5	HR	20				Ŷ	OVER SOLID LST
	27-34	HR	101842 40					0	ñ		0			P	Ŷ	ROOTS TO 34CM
•									~		÷				•	
P2	0-28	MCL	10YR32					4	1	HR	10				Ŷ	
	28-48	HCL	10YR43 44					0	0	HR	35		FR	м	Ŷ	HARD, DRY
	48-61	С	25Y 53					0	0	HR	5	MDMPR	VM	P	Ŷ	
_	61-77	С	10YR54					0	0	HR	5	MDCSAB	FM	M	Y	
	77-85	HR	10YR76					0	0		0			M	Y	LST, ROOTS TO 850M

COMPLETE LIST OF PROFILES 11/12/98 W.OX DLP CHIPPING NORTON

					MOTTLE	5	PED		S	TONES		STRU	ст/	SU85	;				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2 >6	LITH	тот	CONS	IST	STR	POR 1	imp sp	n C	ALC	
P3	0-25	MCL	10YR43 42						0	O HR	: ;	2						Y	
	25-57	HCL	10YR46						0	O HR	: 1	6 MD	CSAB	FR N	I			Y	HRD PLATED LST
_	57-80	HCL	10YR44 46						0	O HR	4	3		ŀ	l			Y	ROOTS TO 570M
P4	0-21	MCL	10YR44						0	O HR		7						Y	
-	21-27	HCL	10YR45						0	O HR	2	5 MD	CSAB	FR N	I			Y	
_	27-44	HCL	10YR56 66						0	O HR	3	5		FR N	I			Y	DRY, HARD
	44-82	HCL	10YR66						0	O HR	6	0		FR N	I			Y	ROOTS TO 780M
— Р5	0-21	MCL	10YR42						0	O HR	: 1	8						Y	
	21-38	MCL	10YR44						0	0 HR	1	5 MD	CSAB	FR N	l			Y	
	38-82	MCL	10YR46						0	0 HR	6	5		F	1			Y	ROOTS TO 720M
P6	0-23	MCL.	10YR42 43						2	0 HR	1	6						Y	
	23-44	HCL.	10YR44						0	0 HR	60	0 M		١	I			Y	DRY, HARD, STONY
	44-55	MCL	10YR66						0	0 HR	5	7 M		ŀ	I			Y	DRY, HARD, STONY
	55-60	HCL	10YR66						0	O HR	6	4 M		١	l			Y	ROOTS TO 550M
P7	0-22	MCL.	10YR44						6	O HR	10	0						Y	
_	22-47	HR							0	0	(0		F	,			۷	CLAY MATRIX
P8	0-23	MZCL	10YR43						0	0		O MD	CSAB	FR					
_	23-42	HZCL	25Y 53	10YR5	6 C	F		Y	0	O HR	: :	2 MD	CSAB	FR N	I				
	42-80	ZC	05Y 52	75YR5	8 M	D		Y	0	0	(0 MD	CPR	FM F	Y Y		Y		
P9	0-28	MCL	10YR43						0	O HR	:	3						Y	
	28-80	HCL	10YR46						0	O HR	: :	2 MD	CSAB	FR N	1			Y	
	80-120	с	10YR5453	10YR5	6 F	D		Y	0	O HR		2 MD	CSAB	FM N	1			Y	