Northway Mill Agricultural Land Classification

February 1999

Resource Planning Team Bristol FRCA Western Region Job Number 6/99

MAFF Ref EL14/271

NORTHWAY MILL

AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 30 4 ha of land at Northway Mill Northway Field survey was based on 32 auger borings and 1 soil profile pit and was completed in February 1999
- The survey was conducted by the Resource Planning Team of FRCA Western Region on behalf of MAFF in its statutory role in the preparation of the Tewkesbury Local Plan
- Information on climate geology and soils and from previous ALC surveys was considered and presented in the relevant sections. Apart from the published regional ALC map (MAFF 1977) which shows the site at a reconnaissance scale as Grade 3 the site was previously surveyed in 1979 at a scale of 1 25 000 (ADAS 1979) which showed Subgrades 3b and 3c. The current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF 1988) and supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I
- At the time of survey land cover was pasture and cereals Other land which was not surveyed included the buildings at Northway Mill and a small copse

SUMMARY

The distribution of ALC grades is shown on the accompanying 1 10 000 scale ALC map. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas. Areas are summarised in the Table 1

Table 1 Distribution of ALC grades Northway Mill

Grade	Area (ha)	% Surveyed Area (29 1 ha)
3a	3 4	12
3b	25 7	88
Other land	1 3	
Total site area	30 4	

The majority of the site has been mapped as Subgrade 3b with a moderate wetness limitation. Heavy clay loams lie over slowly permeable clays. Two small areas have been mapped as best and most versatile land. Subgrade 3a. In the west the slowly permeable layer is lower in the profile and in the centre of the site there are stony horizons above the deeper slowly permeable layer.

CLIMATE

- Estimates of climatic variables for this site were derived from the published agricultural climate dataset. Climatological Data for Agricultural Land Classification. (Meteorological Office 1989) using standard interpolation procedures. Data for key points around the site are given in Table 2 below.
- Since the ALC grade of land is determined by the most limiting factor present overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions. Parameters used for assessing overall climate are accumulated temperature a measure of relative warmth and average annual rainfall a measure of overall wetness. The results shown in Table 2 indicate that there is no overall climatic limitation.
- Climatic variables also affect the ALC grade through interactions with soil conditions. The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections

Table 2 Climatic Interpolations Northway Mill

Grid Reference	SO 924 347
Altitude (m)	20
Accumulated Temperature (day °C)	1492
Average Annual Rainfall (mm)	640
Overall Climatic Grade	1
Field Capacity Days	139
Moisture deficit (mm) Wheat	112
Potatoes	106

RELIEF

Altitude ranges from 15 metres at Northway Mill to 20 metres in the east with generally flat land apart from some fields which have ridge and furrow drainage which may cause a micro relief limitation in the field to the west of the small copse limiting the land to Subgrade 3b

GEOLOGY AND SOILS

The underlying geology of the site is shown on the published geology map (BGS 1988) as drift deposits from the River Avon second terrace on the slightly higher land overlying Lower Lias Clay which is over the rest of the site. The recent survey found poorly drained clays with only two auger borings showing any evidence of stony drift deposits.

- Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1 250 000 (SSEW 1983) as Evesham 2 Association Evesham 2 is described as slowly permeable calcareous clayey soils with some slowly permeable seasonally waterlogged non calcareous clayey and fine loamy or fine silty over clayey soils
- 14 The soils found in the recent survey were not calcareous and heavy clay loam and heavy silty clay loam topsoils lay over slowly permeable clays. In places the slowly permeable layers were slightly deeper

AGRICULTURAL LAND CLASSIFICATION

The distribution of ALC grades found by the current survey is shown on the accompanying 1 10 000 scale map and areas are summarised in Table 1. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas.

Subgrade 3a

Two small areas have been mapped as Subgrade 3a good quality land experiencing a moderate wetness limitation. In the west the heavy clay loam topsoils lie over clays which become gleyed and slowly permeable at 50 cm. In the centre of the site there is a small area where the stony horizon above the deeper slowly permeable clay. These soils are Wetness Class II (see Appendix II)

Subgrade 3b

The majority of the site is mapped as Subgrade 3b moderate quality land. Heavy silty clay loam and heavy clay loams lie over slowly permeable clays. Gleying is seen high in the profile and the presence of the slowly permeable subsoils was confirmed in a soil profile pit. These soils are assessed as Wetness Class IV and have a moderate wetness limitation restricting the land to Subgrade 3b.

Other Land

Areas mapped as other land include a small copse and the buildings associated with Northway Mill

G M Shaw Resource Planning Team FRCA Bristol February 1999

REFERENCES

ADAS RESOURCE PLANNING TEAM (1979) Agricultural Land Classification Survey of Tewkesbury Villages Scale 1 25 000 Reference 37 & 38 ADAS Bristol

BRITISH GEOLOGICAL SURVEY (1988) Sheet 216 Tewkesbury 1 50 000 series Solid and Drift edition BGS London

HODGSON J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 Silsoe

MAFF (1977) 1 250 000 series Agricultural Land Classification South West Region MAFF Publications Alnwick

MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for grading the quality of agricultural land MAFF Publications Alnwick

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification Meteorological Office Bracknell

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5 Soils of South West England 1 250 000 scale SSEW Harpenden

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England Bulletin No 14 SSEW Harpenden

APPENDIX I

DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 excellent quality agricultural land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 very good quality agricultural land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1

Grade 3 good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Source MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land MAFF Publications Alnwick

APPENDIX II

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 and 90 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

Notes The number of days specified is not necessarily a continuous period

In most years is defined as more than 10 out of 20 years

Source Hodgson J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 Silsoe

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below. These conform to definitions contained in the Soil Survey Field Handbook (Hodgson 1997).

1 Terms used on computer database in order of occurrence

GRID REF National 100 km grid square and 8 figure grid reference

LAND USE At the time of survey

WHT	Wheat	SBT	Sugar Beet	HTH	Heathland
BAR	Barley	BRA	Brassicas	BOG	Bog or Marsh
OAT	Oats	FCD	Fodder Crops	DCW	Deciduous Wood
CER	Cereals	FRT	Soft and Top Fruit	CFW	Coniferous Woodland
MZE	Maıze	HRT	Horticultural Crops	PLO	Ploughed
OSR	Oilseed Rape	LEY	Ley Grass	FLW	Fallow (inc Set aside)
POT	Potatoes	PGR	Permanent Pasture	SAS	Set Aside (where known)
LIN	Linseed	RGR	Rough Grazing	OTH	Other
BEN	Field Beans	SCR	Scrub		

GRDNT Gradient as estimated or measured by hand held optical clinometer

GLEY SPL Depth in centimetres to gleying or slowly permeable layer

AP (WHEAT/POTS) Crop adjusted available water capacity

MB (WHEAT/POTS)

Moisture Balance (Crop adjusted AP crop potential MD)

DRT Best grade according to soil droughtiness

If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP CHEM	Exposure limitation Chemical limitation	FROST	Frost prone	DIST	Disturbed land
LIMIT	The main limitation	n to land qu	ality The foll	owing abbro	eviations are

OC	Overall Climate	\mathbf{AE}	Aspect	$\mathbf{E}\mathbf{X}$	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth

0699 doc 8

used

CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stoniness				2

TEXTURE Soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	\mathbf{CL}	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy clay	ZC	Silty clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (< 27% clay) H heavy (27 35% clay)

MOTTLE COL Mottle colour using Munsell notation

MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40%+

MOTTLE CONT Mottle contrast

- **F** faint indistinct mottles evident only on close inspection
- **D** distinct mottles are readily seen
- P Prominent mottling is conspicuous and one of the outstanding features of the horizon

PED COL Ped face colour using Munsell notation

GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear

STONE LITH Stone Lithology One of the following is used

HR	All hard rocks and stones	SLST	Soft oolitic or dolimitic limestone
СН	Chalk	FSST	Soft fine grained sandstone
ZR	Soft argillaceous or silty rocks	GH	Gravel with non porous (hard) stones
MSST	Soft medium grained sandstone	GS	Gravel with porous (soft) stones

SI Soft weathered igneous or metamorphic rock

Stone contents are given in % by volume for sizes >2cm >6cm and total stone >2mm

STRUCT The degree of development size and shape of soil peds are described using the following notation

Degree of development	WA Adhei	Weakly developed	WK	Weakly developed
	MD develo	Moderately oped	ST	Strongly developed
Ped size	F C	Fine Coarse	M VC	Medium Very coarse
Ped Shape	S GR SAB PL	Single grain Granular Sub angular blocky Platy	M AB PR	Massive Angular blocky Prismatic

CONSIST Soil consistence is described using the following notation

L	Loose	VF	Very Friable	FR	Friable	FM	Fırm
VM	Very firm	\mathbf{EM}	Extremely firm	EH	Extremely	Hard	

SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G Good M Moderate P Poor

POR Soil porosity If a soil horizon has poor porosity with less than 0 5% biopores >0 5mm a Y will appear in this column

IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon

SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column

CALC If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a Y will appear this column

2 Additional terms and abbreviations used mainly in soil pit descriptions

STONE ASSESSMENT

V Visual S Sieved D Displacement

MOTTLE SIZE

EF Extremely fine <1mm M Medium 5 15mm VF Very fine 1 2mm> C Coarse >15mm

F Fine 2 5mm

MOTTLE COLOUR May be described by Munsell notation or as ochreous

(OM) or grey (GM)

ROOT CHANNELS In topsoil the presence of rusty root channels might be

noted as RRC

MANGANESE CONCRETIONS Assessed by volume

 N
 None
 M
 Many
 20 40%

 F
 Few
 2%
 VM
 Very Many
 >40%

C Common 2 20%

POROSITY

P Poor less than 0 5% biopores at least 0 5mm in diameter G Good more than 0 5% biopores at least 0 5mm in diameter

ROOT ABUNDANCE

The number of roots per 100cm ²		Very Fine and Fine	Medium and Coarse
F	Few	1 10	1 or 2
C	Common	10 25	2 5
M	Many	25 200	>5
A	Abundant	>200	

ROOT SIZE

VF	Very fine	<1mm	M	Medium	2 5mm
F	Fine	1 2mm	C	Coarse	>5mm

HORIZON BOUNDARY DISTINCTNESS

Sharp	<0.5cm	Gradual	6 13cm
Abrupt	0 5 2 5cm	Diffuse	>13cm
Classi	0.5 (

Clear 2.5 6cm

HORIZON BOUNDARY FORM Smooth wavy irregular or broken *

^{*} See Soil Survey Field Handbook (Hodgson 1997) for details