1508-021-97

A1

New Forest District Local Plan Objector Sites 15 and 18 Land at Ferndene Farm, New Milton Hampshire

Agricultural Land Classification ALC map and report February 1997

Ministry of Agriculture Fisheries and Food

A1

New Forest District Local Plan Objector Sites 15 and 18 Land at Ferndene Farm, New Milton Hampshire

Agricultural Land Classification ALC map and report February 1997

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference1508/021/97MAFF ReferenceEL 15/00315LUPU Commission02768

AGRICULTURAL LAND CLASSIFICATION REPORT

NEW FOREST DISTRICT LOCAL PLAN, OBJECTOR SITES 15 AND 18 LAND AT FERNDENE FARM, NEW MILTON, HAMPSHIRE

INTRODUCTION

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 40 hectares of land on the north-western edge of New Milton in Hampshire The survey was carried out during February 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food s (MAFF) Land Use Planning Unit in Reading in connection with its statutory input to the New Forest District Local Plan the site is one of a number of objector sites This survey supersedes previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group in ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the site was a mixture of permanent grassland and cereals

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 it is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	% surveyed area	% site area
3a	32	94	80
3b	310	90 6	77 5
Other land	58	N/A	14 5
Total surveyed area	34 2	100	85 5
Total site area	40 0		100

Table 1	Area	of	grades	and	other	land
1 4010 1	1 11 00	V I	Pranos	und a	outor	1041104

7 The fieldwork was conducted at an average density of 1 boring per hectare A total of 37 borings and 2 soil pits was described

8 Soil wetness is the main limiting factor across the site The majority of the land has been placed in Subgrade 3b (moderate quality land) as a result of the presence of subsoils that are poorly structured which inhibit drainage throughout the profiles and cause a wetness limitation. In the areas of Subgrade 3a (good quality land) the wetness limitation is less severe. This type of limitation will affect the flexibility of the land by limiting the number of days when the land is in a suitable condition for grazing by livestock, for trafficking with machinery or for cultivations as well as restricting the types of crops that are suited to these wet conditions

FACTORS INFLUENCING ALC GRADE

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units		/alues
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m AOD day°C (Jan June) mm days mm mm	SZ 242 964 45 1517 840 175 107 101	SZ 235 963 50 1511 846 175 106 100
Overall climatic grade	N/A	1	1

Table 2 Climatic and altitude data

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

13 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. There are also no significant local factors such as exposure or frost risk affecting the area. The site is climatically Grade 1 Additional interpolations show that the extreme north-western corner of the site lies at 176 field capacity days but because this is such a small area, the entire site is treated as lying at or below 175 FC days

Site

14 The site is flat or gently sloping throughout lying at 45-50 metres Gradient, microrelief and flooding do not affect the site

Geology and soils

15 – The most detailed published geological information for the site (BGS 1975) shows the area to be underlain by Plateau Gravel

16 The most detailed published soils information for the site (SSEW 1983 and 1984) shows the area to contain soils of the Shabbington Association These are described as deep fine loamy and fine loamy over sandy soils variably affected by groundwater Some slowly permeable seasonally waterlogged, fine loamy over clayey soils During fieldwork, clay loams over lower subsoils of clay were found throughout the site

AGRICULTURAL LAND CLASSIFICATION

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Subgrade 3a

A small area in the south-east of the site is placed in this subgrade (good quality agricultural land) Pit 2 is representative of these soils which experience a soil wetness limitation. Medium silty clay loam topsoils overlie an upper subsoil of heavy silty clay loam texture which changes into a heavy clay loam. The soils fall into Wetness Class III as a result of shallow gleying and the presence of a slowly permeable layer from approximately 55 cm. The structure in the lower subsoil is moderately developed coarse angular blocky.

Subgrade 3b

Elsewhere on the site the soils are wetter and fall into Subgrade 3b (moderate quality agricultural land) For most profiles in this mapping unit, the slowly permeable layer occurs at a shallower depth (approximately 45 cm see Pit 1 where the structures are described as coarse platy) and the soils are placed in Wetness Class IV as a result Occasional borings within this unit are impenetrable at shallow depths and show evidence of the water table very close to the surface in parts of the site particularly where the topsoil had been cultivated, the ground was saturated from the surface during fieldwork These soils have also been placed in Wetness Class IV and Subgrade 3b Given this degree of soil wetness there will be a significant restriction on the flexibility of this land there will be a limit on the number of days when the soil is in a suitable condition for trafficking by machinery for grazing by livestock of for cultivations and the range of crops that can tolerate such conditions will also be affected

> DE Black Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1975) Sheet No 330 Lymington BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) *Sheet 6 South East England* SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels)

Database Printout - Horizon Level Information

•

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand, loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft, argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape ⁻	S [–] – GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0 5% biopores >0 5 mm, a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations
 - APW available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted for potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

i

LIST OF BORINGS HEADERS 24/02/97 NFDLP SITES 15/18

	SAMPI	LE	A	SPECT				WET	NESS	-HH	EAT-	-PC	TS-	м	REL	EROSN	FROS	π	CHEM	ALC	
	NO	GRID REF	USE		GRONT	GLE	y spl	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	E	ХP	DIST	LIMIT		COMMENTS
	1P	SZ23509605	CER	s	01	028	045	4	3B	103	-4	112	11	3A					WE	3B	
	2	SZ23509650	ARA			000	040	4	3B	089	-18	095	-6	3A					WE	3B	WET35
	2P	SZ24209600	PGR	SH		030	055	3	3A	119	12	121	20	2					WE	3A	
	5	SZ23809650	PGR			000		4	38	088	-19	088	-13	3A					_ WE .	_3B	_NOSPL ~
	6	SZ23909650	PGR	S		028	050	3	3 A	000	0	000	0						WE	3A	WT50
	A	\$724109650	909	ç		030	045	۸	38	096	_11	108	7	34					WF	R	
	ä	5724209650	PGR	s		030	040	3	30	063	-44	063	_39.	38					WF	34	TMPOWC
	10	\$723409640	PGR	Ŭ		000		4	38	064	-43	064	-37	38					WE	38	IMPWET30
	11	SZ23509640	ARA			000		4	38	081	-26	081	-20	3B					WE	3B	IMPWET38
	12	SZ23609640	ARA	s		028		4	38	062	-45	062	-39	3B					DR	3B	
-	13	SZ23709640	ARA			030	040	4	3B	089	-18	095	-6	3A					WE	3B	SPLWET30
	15	SZ23909640	PGR	s		065	065	2	2	000	0	000	0						WE	2	
	16	SZ24009640	PGR	S		033	055	3	3A	000	0	000	0						WE	3A	
-	17	SZ24109640	PGR	S	01	035	045	4	3B	000	0	000	0						WE	3B	
_	18	SZ24209640	PGR	S		042	060	3	3A	000	0	000	0						WÉ	ЗA	
	19	SZ23409630	PGR			000		4	3B	000	0	000	0						WE	3B	WT30
	20	SZ23509630	CER	S	01	000		4	3B	000	0	000	0						WE	38	POSS SPL
	21	SZ23609630	CER	S	01	000	045	4	3B	000	0	000	0						WE	3B	QUERYSPL
	22	SZ23709630	ARA	-		028	050	3	3A	101	-6	113	12	3A					WE	3A	
	24	SZ23909630	HRT	S	01	030		4	38	100	-7	108	7	3A					WE	3B	EDIT SPL
	0E	6724000620	UDT	c		000	045		20	000		111	10	74					LIF.	20	
	23	5224009030		с С		000	045	4	20	099	-0	000	10	AC					WE L	20	ANAEKUDI
	20	5724200630	DCD	с с		000	045	ч л	38	000	0	000	0							38	
	28	5724309630	PCP	5		000	045	4	30 38	000	0 0	000	ň						WF	38	TMP600WC
	30	SZ23509620		s		030	065	3	34	114	7	115	14	2					WF	34	111 00010
_				•			•••	•			•			-							
	31	SZ23609620	CER	s	01	025	040	4	3B	000	0	000	0						WE	3B	WT20
	32	SZ23709620	ARA			000	045	4	3B	094	-13	102	1	3A					WE	3B	
-	33	SZ24009620	PGR	S		000	047	4	38	000	0	000	0						WE	38	IMP 90CM
_	34	SZ24109620	PGR	SW	01	035	055	3	3A	120	13	118	17	2					WE	3A	IMP 90CM
	35	SZ24209620	PGR	S		042	080	2	2	000	0	000	0						WE	2	
•																					
_	36	SZ23509610	ARA			028	045	4	3B	094	-13	103	2	3A					WE	38	
	37	SZ23609610	ARA	_		000	045	4	3B	095	-12	103	2	3A					WE	38	
	38	SZ24109610	PGR	SW	01	030	045	4	3B	109	2	114	13	3A					WE	3B	QHZCL 45
	39	SZ24209610	PGR	S		025	043	4	3B	000	0	000	0	•••					WE	38	IMP
	40	SZ23509600	ARA			028	028	4	38	086	-21	091	-10	38					WE	JB	
	A 1	\$724109600	PCP	ŝ	01	በጓን	060	٦	34	126	10	120	10	2					W۲	34	TMP
	42	5724209600	PCP	S		035	055	3	34	000	د ، م	000	0	L					WF	34	TMP
	42	S724309600	PGP	s		058	058	3	34	000	n	000	n						WF	34	IMP
	44	SZ	PGR	SM	01	045	075	2	2	000	ő	000	Õ						WE	2	
-	45	SZ	PGR	S		050	065	2	2	000	0	000	Ō						WE	2	IMP

SOIL PIT DESCRIPTION

Site Name	e NFDLP S	SITES 15/1	8	Pit Number	1	P				
Grid Refe	erence SZ	23509605	Average Ann Accumulated Field Capad Land Use Slope and A	nual Rainfall I Temperature Hity Level Aspect	84 151 175 Cer 01	0 mm 7 degree 6 days veals degrees S	days			
-				—			-			
HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 28	MZCL	10YR42 0	0 0	2	HR	F				
28- 45	HCL.	10YR53 0	0 0	0		M			м	
45- 75	С	10YR63 0	0 0	0		M	WCPLAT	FR	Ρ	
Wetness (Grade 38		Wetness Cla Gleying SPL	uss IV 028 045	cm cm					
Drought (Grade 3A		APW 103mm APP 112mm	MBW - MBP 1	4 mm 1 mm					
FINAL ALC	C GRADE	3B								

MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Nan	e NFD	LP S	ITES 15/1	8		Pit	Number	r 2	P.				
Grid Ref	erence	SZ2	4209600	Avera	ige Ann	ual R	ainfal'	84	0 mm				
				Accur	ulated	Тепр	erature	∋ 151	7 degree	days			
				Field	l Capac	ity L	evel	175	days				
				Land	Use			Per	manent Gr	ass			
				Slope	e and A	spect			degrees S	W			
		_										-	
HORIZON	TEXTU	IRE	COLOUR	ST	NES >2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MZC	۶L	10YR33 0	0	0		2	HR					
30- 55	HZC	L.	10YR53 0	0	0		2	HR	м	MCSAB	FM	м	
55- 80	HCL		10YR62 5	3	0		2	HR	M	MCAB	FR	м	
Watnass	Grade	30		Hetor	ess Cla	ISS	T	r					
	0.000			Glev	ina		030	- Cm					
				SPL			055	cm					
	_	2		APW	119mm	MB	Μ.	12 mm					
Drought	Grade	~											

MAIN LIMITATION Wetness

COMPLETE LIST OF PROFILES 24/02/97 NFDLP SITES 15/18 _____

					OTTLE	5	PED			~STC	NES	- STRUCT	r/ su	IBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	CO L	GLEY	>2	>6 L	ITH TO	CONSIS	ST ST	'r por	IMP	SPL	CALC
1P	0-28	mzcl	10YR42 00	000000	00 F				0	0 н	IR 2						
	28-45	hc1	10YR53 00	10YR58	3 00 M			Y	0	0	0		м	i			
	45-75	с	10YR63 00	75YR58	3 00 M			Y	0	0	0	HCPLAT	FR P	Y		Y	
- 2	0-30	mzcl	10YR42 00	000000	00 C			Y	0	0 H	IR 5						-
	30-40	hzcl	10YR52 00	000000	00 M			Y	0	0 H	IR 10		M	I			
	40-60	c	10YR52 00	000000	00 M			Y	0	0 H	IR 5		P	Y		Y	
2P	0-30	mzcl	10YR33 00						0	0 н	IR 2						
	30-55	hzc1	10YR53 00	10YR56	5 00 M			Y	0	0 Н	IR 2	MCSAB	FM M	I			
	55-80	hcl	10YR62 53	75YR58	3 00 M			۷	0	0 H	IR 2	MCAB	FR M	I Y		Y	
5	0+30	hzc1	10YR52 00	000000) 00 M			Y	1	0 н	IR 5						
	30-50	hzcl	10YR62 00	000000	00 M			Y	0	0 H	ir 2		M	I			
6	0-28	zl	10YR33 00						0	0	0						
_	28-50	hzcl	25 Y62 O0	10YR58	3 00 M			Y	0	0	0		M	i			
	50-100	c	25 Y61 63	10YR58	3 00 M			Y	0	0 H	IR 10		P	1		Y	
8	0-30	mcl	10YR43 00						o	он	IR 2						
	30-45	hzcl	10YR53 00	000000) 00 M			Y	0	0	0		M	ł			
	45-70	hzcl	10YR53 00	000000) 00 M			Y	0	0	0		P	Y		Y	
9	0-30	mcl	10YR42 00						0	0 H	R 10						
	30-40	mzcl	10YR52 00	000000	00 C			Ŷ	0	0 H	R 20		М				
10	0-28	mcl	10YR42 00	000000	00 M			Y	0	0 н	R 5						
	28-40	mcl	10YR52 00	000000	00 M			Ŷ	0	0 Н	R 20		М	ł			
1 1	0-30	mzcl	10YR42 00	000000	00 C			Y	2	0 H	R 7						
	30-40	hzcl	10YR52 00	000000	00 M			Y	0	0 Н	R 15		м	ļ			
	40-50	hzc1	10YR52 00	000000	00 M			Y	0	0 H	R 25		M	I			
12	0-28	mzcl	10YR42 00						6	0 н	R 15						
	28-40	hzcl	10YR53 00	000000	00 C			Y	0	0 н	R 20		М	I			
13	0-30	mzcl	10YR52 00						1	0 н	R 5						
	30-40	hzc1	10YR52 00	000000	00 C			Ŷ	0	0 H	R 10		M	l			
l	40-60	c	10YR53 00	000000	00 M			Ŷ	0	0 Н	R 2		P	Y		Y	
15	0-35	zl	10YR33 00						0	0 н	R 2						
	35–65	hzc1	10YR54 00						0	0	0		M	I.			
•	65–90	c	10YR53 00	10YR56	00 M			Y	0	0	0		Ρ			Y	
16	0-33	zì	10YR42 00						0	0 н	R 2						
l	33–55	hzc1	25 Y62 63	10YR58	00 M			Y	0	0	0		М				
	55-80	zc	25 Y61 63	10YR58	M 00			Y	0	0 н	R 10		Р			Y	

page 1

-

-

_

COMPLETE LIST OF PROFILES 24/02/97 NFDLP SITES 15/18

				M	OTTLES	;	- PED			STONES				STRUCT/	CT/ SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	Y >2	2 >	6	LITH	тот	CONSIST	STR I	POR	IMP	SPL	CALC
17	0-35	zì	10YR31 00						()	0	HR	2						
	35-45	hzc]	25 Y61 63	75YR58	00 C			Y	' ()	0	HR	10		M				
-	45-70	с	25 Y61 63	75YR58	00 M			Y	, ()	0	HR	20		P			Y	
		_			-								_	_					
18	0-30	mcl	10YR43 00						()	0	HR	2						
-	30-42	hc1	75YR54 00						()	0		0		м				
-	42-60	hc]	75YR63 00	000000	00 C			Y	' ()	0		0		Μ				
	60-80	hc1	75YR53 00	000000	00 M			Y	' ()	0		0		Ρ			Y	
— 19	0-30	mcl	10YR42 00	10YR46	00 C			Y	' ()	0	HR	5						
	30-55	mzcl	25 Y52 00	10YR46	00 C			Y	' ()	0	HR	5		м				
20	0-38	mcl	10YR42 00	10YR46	00 C			Y	, ;	3	0	HR	10						
	38-50	с	25 Y61 00	25 Y66	00 C			Y	' ()	0	HR	15		м				
21	0-35	mcl	10YR42 00	10YR46	00 C			Y	' :	3	0	HR	10						
-	35-45	mcl	25 Y42 00	25 Y56	00 C			Ŷ	' ()	0	HR	10		Μ				
	45-70	c	25 Y61 00	10YR58	00 M			Y	' ()	0	HR	10		Ρ			Y	
22	0-28	mzc]	10YR52 00						()	0	HR	5						
	28-50	hzcl	10YR53 00	000000	00 C			Y	' ()	0	HR	2		M				
	50-70	c	75YR53 00					Y	' ()	0		0		Ρ	Y		Y	
2 4	0-30	mzcl	10YR42 00							I	0	HR	2						
	30-40	mzc]	10YR42 00	10YR46	00 C			Y	' ()	0	HR	2		М				
-	40-75	c	10YR62 00	10YR58	00 M			Y	' ()	0	HR	10		Р				
25	0-30	mzc]	05Y 42 00					Y	' '	2	0	HR	4						
	30-45	mzcl	05Y 42 00					Y	' (כ	0	HR	2		Μ				
_	45-70	c	10YR62 00	10YR58	00 M			Y	' (נ	0	HR	5		Ρ			Y	
26	0-35	zl	10YR42 00	10YR46	00 C	(DOMNOO	00 Y	, ()	0		0						
-	35-45	hzc]	10YR53 00	10YR56	00 C			Y	' ()	0		0		м				
	45-70	с	25 Y61 00	10YR58	00 M			Y	' ()	0	HR	10		Ρ			Y	
27	0-28	mzc]	10YR42 00	10YR46	00 C			Y	, ()	0		0						
	28-45	hzcl	10YR52 00	10YR58	00 M			Y	' ()	0		0		м				
1	45-70	c	25 Y62 00	10YR68	00 M			Y	' ()	0	HR	10		Ρ			Y	
28	0-35	mcl	10YR31 00						()	0	HR	2						
	35–60	hc1	25 Y63 00	25 Y56	00 M			Y	' ()	0	HR	15		M				
30	0-30	mzcl	10YR42 00						()	0	HR	5						
-	30-40	hc1	25Y 53 00	000000	00 C			Y	· ()	0	HR	2		M				
	40-65	hc1	25Y 53 00	000000	00 M			Ŷ	' ()	0	HR	2		M				
	65-85	hcl	25Y 53 00	000000	00 M			Y	' (0		0		P			Y	
31	0-25	mcl	10YR43 00	10YR46	00 F				1		0	HR	5						
	25-40	hc1	10YR52 00	10YR46	00 M	C	OOMNOO	00 Y	' ()	0	HR	2		м				
	40-110	с	25 Y53 00	75YR58	00 M	C	00 MN00	00 Y	' ()	0	HR	2		Ρ			Y	

ł

					MOTTLES	5	PED			-Sto	NES	STRUCT/	SUBS	\$		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL G	SLEY	>2	>6 L	.1тн тот	CONSIST	STR	POR	IMP SPL	CALC
32	0-30	mzcl	10YR42 00	00000	0 00 C			Y	0	0 н	IR 5					
	30-45	hc1	75YR53 00	00000	0 00 C			Y	0	0 н	IR 2		м			
_	45-65	hcl	75YR53 00	00000	0 00 M			Y	0	0	0		Ρ	Y	Ŷ	
33	0-28	mzc]	10YR42 00		с			Y	0	0	0					
	28-35	mzcl	25Y 64 00	10YR5	8 00 C			Y	0	0	0		м			
_	35-47	hzc1	25Y 62 64	25Y 5	M 00 8			Y	0	0	0		м			
	47-90	c	10YR61 00	10YR5	8 00 M			Y	0	0 H	IR 10		Р		Y	
34	0-35	azcl	10YR42 00						0	0	0					
	35-55	hzcl	10YR53 00	10YR5	8 00 M			Y	0	0	0		M			
l	55-90	zC	10YR53 00	10YR5	8 00 M			Y	0	0 H	IR 5		Ρ		Y	
35	0-35	mzcl	10YR42 00						0	0	0					
	35-42	hzc1	10YR44 00						0	0	0		М			
•	42-60	hzc1	10YR64 54	10YR5	8 00 C			Y	0	0	0		M			
•	60-80	mzcl	25 Y62 64	10YR5	8 00 M			Y	0	0	O		M			
	80-100	с	10YR61 00	10YR5	8 00 M			Y	0	0	0		Ρ		Y	
- 36	0-28	mzcl	10YR42 00						0	0 н	R 5					
	28-45	hc1	10YR42 00	00000	0 00 C			Y	0	ОН	IR 2		M			
	45-65	с	75YR53 00	00000	0 00 M			Y	0	0	0		Ρ	Ŷ	Y	
37	0-28	mzcl	10YR52 00	00000	0 00 C			۲	0	0 н	IR 2					
	28-45	mcl	10YR53 00	00000	0 00 C			Y	0	0 H	IR 2		M			
•	45-65	hcl	10YR53 00	00000	0 00 M			Y	0	0	0		Ρ	Y	Ŷ	
38	0-30	mzc]	25Y 42 00						0	0	0					
ļ	30-35	mzc]	25Y 52 00	10YR4	6 00 C			Y	0	0	0		M			
	35-45	hzc}	10YR53 00	10YR5	8 00 M			Y	0	0	0		M			
	45-80	c	10YR61 00	10YR5	8 00 M			Y	0	0 H	ir 2		Р		Ŷ	
39	0-25	mzcl	10YR41 00		F	0	000000 00)	0	0 н	IR 1					
	25-43	hzcl	10YR53 00	10YR5	8000			Ŷ	0	UH	R 1		M			
	43~60	c	10YR53 00	10YR5	8 00 M			Y	D	ОН	R 20		Р		Ŷ	
40	0-28	mzcl	10YR42 00	00000	o oo				0	ОН	R 2		_			
ļ	28-60	nc i	257 63 00	00000	U UU M			Y	U	υ	0		Ч	Y	Ŷ	
41	0-30	mzcl	10YR42 00						0	0	Ó					
	30-37	mzcl	10YR52 00						0	0	0		Μ			
	37-60	hzc1	25Y 62 64	10YR5	8 00 C			Y	0	0	0		Μ			
•	60-100	с	10YR61 00	10YR5	8 00 M			Y	0	0 H	R 10		Ρ		Y	
42	0-35	mzcl	10YR33 00						0	0	0					
ł	35-55	hzcl	10YR53 00	10YR5	6 00 C			Y	0	0	0					
	55-80	c	10YR63 00	10YR5	8 00 M			Y	0	0 Н	R 5		Ρ		Y	

COMPLETE LIST OF PROFILES 24/02/97 NFDLP SITES 15/18

SAMPL	.е дертн	TEXTURE	COLOUR	; COL	NOTTLES ABUN	S CONT	ped Col	GLEY	 >2	-S >6	IONES	тот	STRUCT/ CONSIST	subs Str Por	IMP	SPL CA	4LC
43	3 0-30	mzcl	10YR32 00						0	0		0					
-	30-58 58-90	mzc i zC	10YR42 00 10YR53 00	10YR56	5 00 M			Y	0	0	hr Hr	1 15		M P		Y	
4 4	0–28 28–45 45–75 75–90	mzcl mzcl hzcl c	10YR42 00 10YU54 00 10YR53 54 10YR61 00	10YR56 10YR56 10YR56	300 F 300 C 300 M	_		Y Y	0 0 0 0	0 0 0	HR	0 0 0 10	-	M M P	-	¥	
4:	5 0-30 30-50 50-65 65-110	mzcl mzcl hzcl c	10YR42 00 10YR54 00 10YR53 54 10YR53 54	10YR56 10YR56	3 00 C 3 00 M			Y Y	0 0 0 0	0 0 0 0	HR HR HR	0 2 2 5		M M P		Y	