Callowell, Stroud Agricultural Land Classification October 1997

Resource Planning Team Bristol FRCA Western Region Job Number 60/97

MAFF Reference EL 14/0362

- - -- -- CALLOWELL STROUD -- - -

AGRICULTURAL LAND CLASSIFICATION SURVEY

CONTENTS

		Page
INTRODUCTIO	N	1
SUMMARY		1
CLIMATE		2
RELIEF		2
GEOLOGY ANI	OSOILS	2
AGRICULTURA	AL LAND CLASSIFICATION AND MAP	3
REFERENCES		4
APPENDIX I	Description of the Grades and Subgrades	5
APPENDIX II	Definition of Soil Wetness Classes	7
APPENDIX III	Survey Data	8
	Sample Point Location Map	
	Pit Descriptions	
	Boring Profile Data	
	Boring Horizon Data	
	Abbreviations and Terms used	ın Survey Data

CALLOWELL STROUD

AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 15 2 ha of land at Callowell Farm Stroud Field survey was based on nine auger borings and one soil profile pit and was completed in October 1997
- The survey was conducted by the Resource Planning Team of FRCA Western Region on behalf of MAFF in its statutory role in the preparation of Stroud District Local Plan
- Information on climate geology and soils and from previous ALC surveys was considered and is presented in the relevant section. Apart from the published regional ALC map (MAFF 1977) which shows the site at a reconnaissance scale as Grade 3 with Grade 4 land along the western edge of the site the site had not been surveyed previously. The current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF 1988) and therefore supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I
- At the time of survey land cover was permanent pasture and mowing grass Other land which was not surveyed included agricultural buildings and a row of cottages

SUMMARY

The distribution of ALC grades is shown on the accompanying 1 10 000 scale ALC map. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas. Areas are summarised in the Table 1

Table 1 Distribution of ALC grades Callowell Stroud

Grade	Area (ha)	% Surveyed Area (14 8 ha)
3b Other land	14 8 0 4	100
Total site area	15 2	100

None of the site was mapped as best and most versatile. All of the site is graded as Subgrade 3b (moderate quality) mainly with a moderate drought limitation. The available water calculations show that the drought limitation is very close to leading to Subgrade 3a. The land above the technical college has a moderate limitation due to gradient and in places there may also be a moderate limitation due to soil depth.

CLIMATE

- Estimates of climatic variables for this site were derived from the published agricultural climate dataset. Climatological Data for Agricultural Land Classification. (Meteorological Office 1989) using standard interpolation procedures. Data for key points around the site are given in Table 2 below.
- Since the ALC grade of land is determined by the most limiting factor present overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions. Parameters used for assessing overall climate are accumulated temperature a measure of relative warmth and average annual rainfall a measure of overall wetness. The results shown in Table 2 indicate that there is no overall climatic limitation.
- Climatic variables also affect ALC grade through interactions with soil conditions. The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections

Table 2 Climatic Interpolations Callowell Stroud

Grid Reference	SO 846 060	SO 843 061	SO 843 064	
Altitude (m)	80	100	115	
Accumulated Temperature (day °C)	1438	1415	1398	
Average Annual Rainfall (mm)	846	853	854	
Overall Climatic Grade	1	1	1	
Field Capacity Days	175	176	1 <i>77</i>	
Moisture deficit (mm) Wheat	91	89	87	
Potatoes	79	76	74	

RELIEF

Altitude ranges from 70 metres at the bottom of the site near the technical college to 115 metres at the top of the site near the track running down to Callowell from The Plain Most of the site has gentle and moderate gradients except for the land immediately above the technical college where it is strongly sloping. This second area will have a moderate limitation to its agricultural versatility due to the steep gradient.

GEOLOGY AND SOILS

The underlying geology of the site is shown on the published geology map (IGS 1975) as being landslip and foundered strata. The soils found during the recent survey would indicate that the parent material is a shallow bedrock which from looking at similar locations in the area is probably Inferior Oolite.

- Soils across the whole site were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1 250 000 (SSEW 1983) as belonging to the Martock Association
- These are described as being slowly permeable seasonally waterlogged stoneless silty over clayey and clayey soils over siltstone or shale. Some similar soils have slowly permeable subsoils and slight seasonal waterlogging.
- The soils found during the recent survey were on the whole shallow well drained soils over bedrock which are more likely to belong to the Elmton Associations

AGRICULTURAL LAND CLASSIFICATION

The distribution of ALC grades found by the current survey is shown on the accompanying 1 10 000 scale map and areas are summarised in Table 1. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas.

Subgrade 3b

- The whole site has been graded as Subgrade 3b These profiles consist of well drained clay loams which are shallow over fractured bedrock. They were assessed as Wetness Class I (see Appendix II) Most of the site has a moderate drought limitation where the amount of available moisture in the profile is reduced and the soils are not able to meet the potential crop moisture requirements throughout the year. This is due to the shallow and stony nature of the soils. The soil profile pit which was examined during the survey showed that the subsoil horizons although containing 65% and 75% hard rock by volume are well rooted. The available water calculations show that the drought limitation is very close to leading to a Subgrade 3a mapping unit. Two profiles which are adjacent to Stratford Park were deeper Grade 2 and Subgrade 3a but at this scale of survey they are included in this mapping unit.
- The land in the southern part of the site next to the technical college and the school playing field has a moderate limitation to its agricultural use due to its gradient. The gradients found during the survey of 8 11 will restrict the safe and accurate use of some agricultural machinery thus restricting cropping practises

Other Land

Other land was found to occupy 0.4 ha of the site. This included traditional and modern agricultural buildings and a row of cottages

H C Lloyd Jones Resource Planning Team FRCA Bristol October 1997

REFERENCES

INSTITUTE OF GEOLOGICAL SCIENCES (1975) Sheet 234 Gloucester 1 50 000 series Solid and Drift edition IGS London

HODGSON J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 SSLRC Cranfield University

MAFF (1977) 1 250 000 series Agricultural Land Classification South West Region MAFF Publications Alnwick

MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for grading the quality of agricultural land MAFF Publications Alnwick

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification Meteorological Office Bracknell

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5 Soils of South West England 1 250 000 scale SSEW Harpenden

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England Bulletin No 14 SSEW Harpenden

APPENDIX I

- DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 excellent quality agricultural land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 very good quality agricultural land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1

Grade 3 good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Source MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land MAFF Publications Alnwick

6097RP DOC 6

APPENDIX IT

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 and 90 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

Notes The number of days specified is not necessarily a continuous period

In most years is defined as more than 10 out of 20 years

Source Hodgson J M (Ed) (1997) Soil Survey Field Handbook Soil Survey Technical Monograph No 5 SSLRC Cranfield University

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below. These conform to definitions contained in the Soil Survey Field Handbook (Hodgson 1997).

1 Terms used on computer database in order of occurrence

GRID REF National 100 km grid square and 8 figure grid reference

LAND USE At the time of survey

WHT	Wheat	SBT	Sugar Beet	HTH	Heathland
BAR	Barley	BRA	Brassicas	BOG	Bog or Marsh
OAT	Oats	FCD	Fodder Crops	DCW	Deciduous Wood
CER	Cereals	FRT	Soft and Top Fruit	CFW	Coniferous Woodland
MZE	Maıze	HRT	Horticultural Crops	PLO	Ploughed
OSR	Oilseed Rape	LEY	Ley Grass	FLW	Fallow (inc Set aside)
POT	Potatoes	PGR	Permanent Pasture	SAS	Set Aside (where known)
LIN	Linseed	RGR	Rough Grazing	OTH	Other
BEN	Field Beans	SCR	Scrub		

GRDNT Gradient as estimated or measured by hand held optical clinometer

GLEY SPL Depth in centimetres to gleying or slowly permeable layer

AP (WHEAT/POTS) Crop adjusted available water capacity

TX

8

MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop potential MD)

DRT Best grade according to soil droughtiness

If any of the following factors are considered significant Y will be entered in the relevant column

MREL EXP CHEM	Exposure limitat	ion F	ROST	Flood risk Frost prone	EROSN DIST	Disturbed land
LIMIT	The main limused	nitation to	land qua	lity The foll	owing abbro	eviations are
OC	Overall Climate	AE	Aspect	E	K Expos	sure
FR	Frost Risk	GR	Gradien	t M	R Micro	orelief

Topsoil Texture **DP**

Soil Depth

6097RP DOC

Flood Risk

FL

СН	Chemical	WE	Wetness	WK	Workability
----	----------	----	---------	----	-------------

DR Drought ER Erosion Risk WD Soil Wetness/Droughtiness

ST Topsoil Stoniness

TEXTURE Soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	\mathbf{SL}	Sandy Loam
SZL	Sandy Silt Loam	\mathbf{CL}	Clay Loam	ZCL	Silty Clay Loam
ZL	Sılt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy clay	ZC	Silty clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

Fine (more than 66% of the sand less than 0 2mm)

M Medium (less than 66% fine sand and less than 33% coarse sand)

C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (< 27% clay) H heavy (27 35% clay)

MOTTLE COL Mottle colour using Munsell notation

MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40%+

MOTTLE CONT Mottle contrast

F faint indistinct mottles evident only on close inspection

D distinct mottles are readily seen

P Prominent mottling is conspicuous and one of the outstanding features of the horizon

PED COL Ped face colour using Munsell notation

GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear

STONE LITH Stone Lithology One of the following is used

HR	All hard rocks and stones	SLST	Soft oolitic or dolimitic limestone
CH	Chalk	FSST	Soft fine grained sandstone
ZR	Soft argillaceous or silty rocks	GH	Gravel with non porous (hard) stones
MSST	Soft medium grained sandstone	GS	Gravel with porous (soft) stones

SI Soft weathered igneous or metamorphic rock

Stone contents are given in % by volume for sizes >2cm >6cm and total stone >2mm

STRUCT The degree of development size and shape of soil peds are described using the following notation

Degree of development	WA Adher MD	Weakly developed ent Moderately	WK	Weakly developed	
	develo	•	ST	Strongly developed	
Ped size	F	Fine	M	Medium	
	С	Coarse	VC	Very coarse	
Ped Shape	S	Single grain	M	Massive	
	GR	Granular	AB	Angular blocky	
	SAB PL	Sub angular blocky Platy	PR	Prismatic	

CONSIST Soil consistence is described using the following notation

L Loose VF Very Friable FR Friable FM Firm VM Very firm EM Extremely firm EH Extremely Hard

SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G Good M Moderate P Poor

POR Soil porosity If a soil horizon has poor porosity with less than 0.5% biopores >0.5mm a Y will appear in this column

IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon

SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column

CALC If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a Y will appear this column

2 Additional terms and abbreviations used mainly in soil pit descriptions

STONE ASSESSMENT

VIS Visual S Sieve D Displacement

MOTTLE SIZE

EF Extremely fine <1mm - M Medium 5 15mm
VF Very fine 1 2mm> C Coarse >15mm

F Fine 2 5mm

MOTTLE COLOUR May be described by Munsell notation or as ochreous

(OM) or grey (GM)

ROOT CHANNELS In topsoil the presence of rusty root channels should

also be noted

MANGANESE CONCRETIONS Assessed by volume

 N
 None
 M
 Many
 20 40%

 F
 Few
 <2%</th>
 VM
 Very Many
 >40%

C Common 2 20%

POROSITY

Poor less than 0 5% biopores at least 0 5mm in diameter
 Good more than 0 5% biopores at least 0 5mm in diameter

ROOT ABUNDANCE

The number of	roots per 100cm ²	Very Fine and Fine	Medium and Coars			
F	Few	1 10	1 or 2			
C	Common	10 25	2 5			
M	Many	25 200	>5			
A	Abundant	>200				

ROOT SIZE

VF	Very fine	<1mm	M	Medium	2 5mm
\mathbf{F}	Fine	1 2mm	C	Coarse	>5mm

HORIZON BOUNDARY DISTINCTNESS

 Sharp
 <0 5cm</th>
 Gradual
 6 13cm

 Abrupt
 0 5 2 5cm
 Diffuse
 >13cm

Clear 2 5 6cm

HORIZON BOUNDARY FORM Smooth wavy irregular or broken *

^{*} See Soil Survey Field Handbook (Hodgson 1997) for details

SITE NA	ME	PF	OFILE NO	SLOPE	AND ASPE	CT	LA	ND USE		Av	/ Rainfall	853 mm		PARENT MA	TERIAL	
Callowell	Stroud	Pı	1 (ASP 6)	5 Sout	h East		Per	manent Grass	s		го	1415 day	С	Landslip and foundered strata (probably Inferior Oolite)		ta
JOB NO		D,	ATE	GRID I	REFERENCI	E	DE	SCRIBED B	Y	rc	C Days	176		PSD SAMPLE		
60/97		2/	10/97	SO 843	061		HL	J		ľ	imatic Grade	1		None	None	
Horizon No	Lowest Av Depth (cm)	Textur	Matrix (Ped Face) Colours	Stonine Size Ty Field M	pe and lethod	Mottling Abundance Contrast Size and Colour	æ	Mangan Concs	Structure Developme Size and Shape	Ped	Consistence	Structural Condition	Pores (Fissures)	Roots Abundance and Size	Calcium Carbonate Content	Horizon Boundary Distinctness and form
1	27	MCI	. 10YR42	30% HR	2 m (S+D) T (I	None		None					Good	MF + VI		Clear smooth
2	38	HCI	10YR45		> 2 m (S) 2 m (S D) T tal	None		None	MMSA	В	I riable	Good	Good	Cr+MVr		Clear smooth
3	65+	HCL	10YR64	75% HR	Tı!(ViS)	None	None MMS.		MMSA	в	Friable	Good	Good	FF + MVC		
Profile G	leyed Fror	n No	gleyed	•	Available	Water V	Vheat	t 50 mi	m		(78)	Final ALC	Grade	3b		
Permeabl	Depth to Slowly Permeable Horizon No SPL Wetness Class I			Moisture I	Potatocs 47 mm Moisture Deficit Wheat 89 mm Potatoes 76 mm		m		(63)	Main Limi	ting Factor(s	s) Drought				
wemess	Orace	2			Moisture I	Balance V	Vhea	t 39 m	ım		(11)	Remarks	, 3b	depth		
						Potatoes 29 mm				(13)	If 75% HR is used in H3 then the figures in			figures in		
					Droughtin	ess Grade	3b (Calculated to 120 o		0 сп	n) (3a)	brackets are calculated		ea			