

FyIde Marine Conservation Zones Baseline Survey Report 2015

Project Code: 201415_MCZ_011

Authors: Clare Miller & Ben Green

17th February 2017

Fylde Marine Conservation Zone Baseline Survey Report 2015

Project Code: 201415_MCZ_011

Authors: Clare Miller & Ben Green

Produced by:

Environment Agency
Estuarine and Coastal Monitoring & Assessment Service
Kingfisher House
Orton Goldhay
Peterborough
Cambridgeshire
PE2 5ZR

Email: enquiries@environment-agency.gov.uk Website: www.environment-agency.gov.uk

Acknowledgements

During the survey planning phase for the Fylde MCZ baseline survey, the following marine specialists generously contributed their valuable time and expertise:

Dr Mike Young Senior Specialist, Natural England

Table of Contents

Acknowledgements	iii
Table of Contents	iv
Tables	v
Figures	vi
Non-Technical Summary	
1. Introduction	
1.1 Survey Aim and Objectives	3
1.2 Survey Team	4
1.3 Site Description	5
2. Survey Design and Methods	7
2.1 Survey Design	7
2.2 Sample Collection Methodology	18
2.3 Sample Analysis	19
3. Results	21
3.1 Grab Samples	21
3.2 Particle Size Analysis	21
3.3 Macrobenthic Invertebrates	27
3.4 Community Structure and Biotope Classification	32
4. Discussion & Conclusions	
5. References	
6. General List of Abbreviations	
7. Annexes	
7.1 Coastal Survey Vessel General Information	
7.2 Survey Equipment	45
7.2.1 Navigation and Positioning	45
7.2.2 SeaSpyder Drop Camera System	
7.3 EA underwater video procedure_version 2.4 (STR Systems)	
7.4 Underwater Visibility Scale	51
7.5 MCZ Video Logsheet	52
7.6 Day Grab Sample Images	53
7.7 Seabed Images	71
7.8 Macrofauna Analysis Results	74
7.9 Sediment Particle Size Analysis (PSA) Results	76

Tables

Table 1. Presence and extent of subtidal features of Fylde MCZ listed in the SAD (Irish Seas Conservation Zones, 2011), and recorded in this baseline survey
Table 2. Sediment grade terms and size limits (Wentworth, 1922)
Table 3. Mean (± standard error) macrobenthic species abundance, richness, infaunal quality index (IQI) and other univariate indices of the Day grab samples for the three different broadscale habitats collected inside and outside of the Fylde MCZ
Table 4. The top 5 macrofauna species characterising (contributing to the Bray-Curtis similarity (%) the 11 significantly distinct groups identified by cluster analysis. The mean species richness (<i>S</i>) and predominant broadscale habitat is given for each group
Table 5. Power analysis: number of samples required to detect a 10% or 20% change from the mean (\bar{x}) of a benthic metric at a particular level of statistical power (where α = 0.05), using community data from A5.2 Subtidal Sand or A5.3 Subtidal Mud samples collected from inside Fylde MCZ during the 2015 baseline survey.
Table 6 . A representative selection of seabed images captured during the Fylde MCZ habitat verification survey. The field notes include preliminary habitat descriptions and epifauna observations (laser points and rope divisions spaced 10 cm apart)

Figures

Figure 1. Coastal survey vessel Mersey Guardian operated by Briggs Marine 4
Figure 2. Location of the Fylde Marine Conservation Zone (MCZ) in the context of other proposed MCZs and European designations off the north west of England6
Figure 3. The Fylde Marine Conservation Zone (MCZ) Winter 2015 baseline survey plan 7
Figure 4. Day grab (left) and equipment for sieving benthic fauna samples (right)
Figure 5. Simplified sediment classification of the Folk triangle for UK SeaMap 19
Figure 6. Fylde Marine Conservation Zone (MCZ) Winter 2015 baseline survey Day grab samples
Figure 7. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions. Particle size results categorised by EUNIS Level 3 habitat. The samples were collected from inside and outside the MCZ boundary for comparison 23
Figure 8 . The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions. Particle size results categorised by Folk Class. The samples were collected from inside and outside the MCZ boundary for comparison
Figure 9 . The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions (South East). Particle size results categorised by percentage fraction
Figure 10 . The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions for the (a, left) north East area of the MCZ and (b, right) western area outside of the site boundary. Particle size results categorised by percentage fraction. 26
Figure 11 . The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions. Invertebrate abundance (number of individuals) at each station is displayed using the Jenks natural breaks classification method
Figure 12. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m2 Day grab sampling positions. Species richness (number of taxa) at each station is displayed using the Jenks natural breaks classification method
Figure 13 . The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions. Ecological quality ratios were calculated (1 = pristine, 0 = fully-degraded) to produce a status for each sample according to the Water Framework Directive (WFD) Infaunal Quality Index (IQI) classification procedure (WFD-UKTAG, 2014)
Figure 14. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m ² Day grab sampling positions. The macrobenthic fauna and particle size data was combined to produce a level 5 biotope classification (JNCC v.04.06 and EUNIS) for each sample 34
Figure 15. nMDS plots of square-root transformed macrofauna communities by (a, top) broadscale habitat (determined by PSA), (b, middle) assigned JNCC 04.06 biotope and (c, bottom) distinct cluster group determined using the SIMPROF test

All figures in the following report are subject to:

Environment Agency copyright 2015. All rights reserved.

Natural England copyright 2015. All rights reserved.

Ordnance survey data layers:

© Crown copyright and database rights 2015 Ordnance Survey 100024198.

UK Hydrographic Office Admiralty Charts:

© Crown Copyright, 2012. All rights reserved. License No. EK001- 2012120.

NOT TO BE USED FOR NAVIGATION.

Non-Technical Summary

The Environment Agency conducted a subtidal baseline survey of the Fylde MCZ on behalf of Natural England between the 11th and 13th February 2015,

The aim was to undertake a grab survey of the designated sediment broadscale habitat features of the Fylde MCZ (Figure 1) (**A5.2 Subtidal Sand** and **A5.3 Subtidal Mud**) and other habitats, in order to obtain improved evidence, potentially ascribe condition and provide a baseline dataset which can then be used to detect macrofauna community change over time and support future monitoring. A drop-down camera survey was also attempted on the 16th August 2015, but was unsuccessful due to poor visibility.

The key findings of the baseline survey were:

- 52 faunal samples were collected inside of the MCZ, 30 outside of the site. Subtidal Mud (A5.3) was predominant in the north of the MCZ, and west of the site. Subtidal Sand was prevalent in the centre and south of the MCZ. This is different to the site assessment document (SAD), which reported that the site was 100% A5.2 subtidal sand (Table 1).
- 7239 individuals were sampled across 172 taxa. Subtidal mud sediments in the north of
 the survey area were significantly more diverse than the subtidal sand sediments in the
 south. Taxa richness was lower in the subtidal sand sediment near the mouth of the
 Ribble Estuary. Infaunal quality of subtidal sand samples from inside the MCZ
 (equivalent to 'good ecological status) was significantly lower than sand sampled from
 outside the MCZ boundary (equivalent to 'high ecological status').
- Eleven different biotopes were found across the survey area. Mud communities were characterised by varying abundances of *Amphiura*, *Kurtiella*, *Pholoe* and *Nucula*, whilst sand communities were characterised by varying combinations of bivalves *Kurtiella*, *Chamalea*, *Phaxus*, *Nucula* and *Corbula*.

Table 1. Presence and extent of subtidal features of Fylde MCZ listed in the SAD (Irish Seas Conservation Zones, 2011), and recorded in this baseline survey.

Feature Code / Name	Extent according to SAD (km²)	Presence according to the newly acquired data	Accordance between SAD and newly acquired data	General management approach
Broadscale Habitats				
Subtidal Sand (A5.2)	260.27 km ²	30 PSA records	✓	Maintain
Subtidal Mud (A5.3)	Not proposed	22 PSA records	×	N/A
Habitat FOCI				
Subtidal Sands & Gravels (not designated)	199.71 km²	30 PSA records	✓	N/A

1. Introduction

The Marine and Coastal Access Act 2009 requires the UK Government to create a coherent network of Marine Conservation Zones (MCZs) in British waters. MCZs will exist alongside other Marine Protected Areas (MPAs), including Special Areas of Conservation (SACs), Special Protection Areas (SPAs), Sites of Special Scientific Interest (SSSIs) and Ramsar sites to help conserve marine biodiversity, in particular habitats and species of European and national importance.

Through Defra, and with written advice from the Statutory Nature Conservation Bodies* (SNCBs), four regional projects were established to identify potential MCZs within the UK Exclusive Economic Zone (EEZ). These projects were called Net Gain (North Sea), Balanced Seas (South East waters), Finding Sanctuary (South West waters) and Irish Sea Conservation Zones (Irish Sea) (see http://jncc.defra.gov.uk/mczmap accessed 17 June 2015). They combined stakeholder consultation with existing scientific data to propose recommended MCZs and Reference Areas (rMCZ & rRA) in their region that would contribute to the MCZ network. The four projects reported in September 2011, each producing a 'final recommendations' report, which contained Site Assessment Documents (SADs) for each of the rMCZs (Irish Seas Conservation Zones, 2011). Following a report review by an independent scientific advisory panel, a programme of habitat verification surveys was commissioned by Defra to strengthen the scientific evidence base for some of the rMCZs. During the next two years, the programme was coordinated by Cefas and involved a range of service providers from both the public and private sector. The SNCBs considered the additional evidence and sent final site recommendations to the Environment Minister for formal designation.

On the 21st November 2013, the UK Government announced the designation of 27 MCZs in the first tranche, which included the Fylde MCZ. The site has been created to protect a species-rich Subtidal Sand broadscale habitat (A5.2).

On the 30th January 2015, the UK Government opened a public consultation on the designation of a second tranche of 23 proposed Marine Conservation Zones. In addition to the second tranche, the Fylde MCZ was included in a list of tranche 1 MCZs which would have additional features recommended for inclusion to help fill gaps in the network. The additional feature proposed for the Fylde MCZ was Subtidal Mud (A5.3), which was formally designated in January 2016, following interpretation of data from Kaiser et al. (2006) that was not used in the original MCZ recommendations.

Following designation, Natural England started a baseline monitoring programme across all Tranche 1 MCZs, specifically targeting the features present both inside and outside each site boundary. The initial datasets gathered will be used to inform future monitoring and management of the sites.

*Natural England and the Joint Nature Conservation Committee (JNCC)

1.1 Survey Aim and Objectives

Overall Survey Aim

To undertake a grab survey of the designated sediment broadscale habitat feature of the Fylde MCZ (Figure 1), **Subtidal Sand** and **Subtidal Mud** (which was only a proposed broadscale habitat at the time of the survey planning), in order to obtain improved evidence, potentially ascribe condition and provide a baseline dataset which can then be used to detect change in macrofauna community composition over time and support future monitoring.

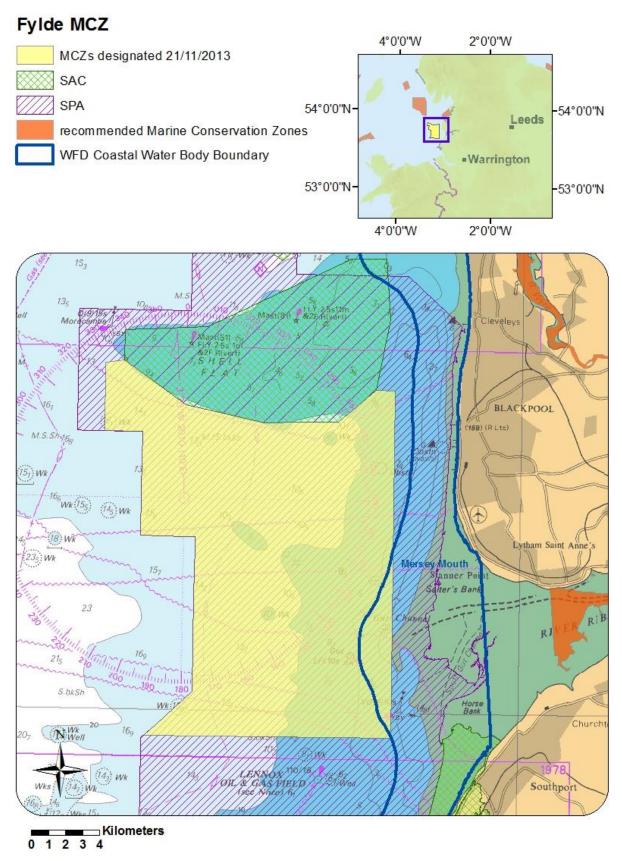
Survey objectives

- a) To undertake a survey which would support a statistically based comparison/ assessment of the designated broadscale habitats both over time and whether located inside or outside the site boundary.
- b) To provide incidental records of key characterising species present in the site.

1.2 Survey Team

The Fylde MCZ was surveyed between the 11th February and 16th August 2015. The survey team comprised of a collaboration of marine specialists from the Environment Agency and Natural England listed below. The coastal survey vessel *Mersey Guardian*, staffed and operated by Briggs Marine (Figure 1, Annex 7.1) was used to conduct the survey work reported here.

Environment Agency Estuarine and Coastal Monitoring and Assessment Service Survey Officers	Matt Emery Nina Godsell Clare Miller Richard Pritchard Graham Sloane
Natural England Marine Advisor	Emily Hardman


Figure 1. Coastal survey vessel Mersey Guardian operated by Briggs Marine.

1.3 Site Description

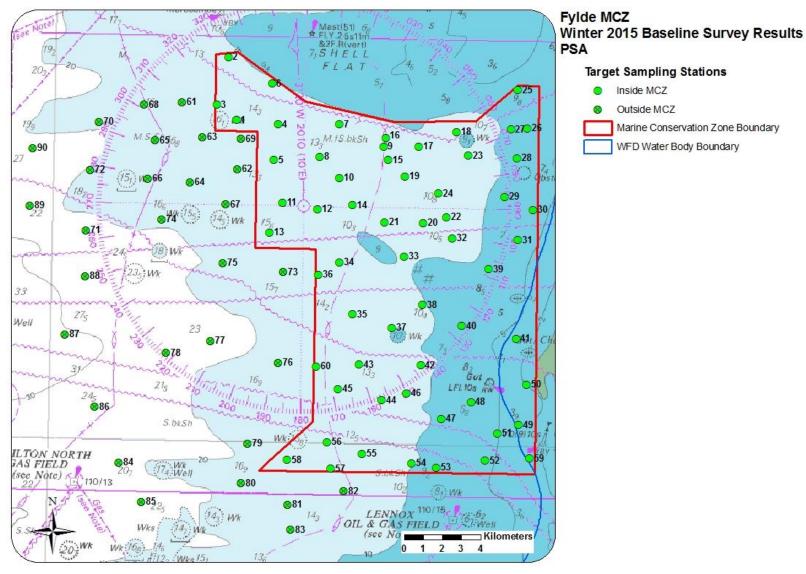
The Fylde MCZ is located in Liverpool Bay between 3 and 20 km off the Fylde coast and Ribble Estuary (Figure 2). The depth of the seabed within the site ranges from almost being exposed on low tide (approximately 35 cm depth) to 22 metres at its deepest (Defra, 2013). The MCZ is also adjacent to the Shell Flat and Lune Deep Special Area of Conservation (SAC) and is co-located within (and its western boundary aligns with) the Liverpool Bay Special Protection Area (SPA). This SPA provides protection for bird features including the common scoter (*Melanitta nigra*) and red-throated diver (*Gavia stellata*) and their supporting habitats. The Fylde MCZ also partially overlaps the Mersey Mouth Water Framework Directive (WFD) surveillance water body.

The MCZ protects an area of approximately 260 km² consisting of subtidal mud and sand sediment habitats. These habitats are known to support rich bivalve mollusc populations including the small nut-shell (*Nucula nitidosa*), razor shell (*Pharus legumen*) and the white furrow shell (*Abra alba*). The site also includes important nursery and spawning grounds for several commercially important fish species including sole (*Solea solea*), plaice (*Pleuronectes platessa*) and whiting (*Merlangius merlangus*).

Detailed site information can be found in Irish Seas Conservation Zones (2011) and Defra (2013).

Figure 2. Location of the Fylde Marine Conservation Zone (MCZ) in the context of other proposed MCZs and European designations off the north west of England.

2. Survey Design and Methods


2.1 Survey Design

No acoustic data or full infauna community datasets were available to assist in planning the survey. Sediment particle size and selected bivalve species abundance from data collected in 2003 by Kaiser *et al.* (2006) provided partial information on the broadscale habitats present in the site and was used to supplement the existing UKSeaMap 2010 modelled data (McBreen *et al.*, 2011) and to inform the survey design.

A systematic sampling approach was used to ensure adequate geographic coverage across the site, although sample positions were randomised. The survey was designed with a 'Before-After, Control-Impact' (BACI) approach. Although power analysis could not be undertaken due to the lack of available data, a representative number of stations were placed outside of the MCZ boundary (to the west and south of the MCZ, up to a distance of 11 km from the site boundary) to provide the 'before, impact' dataset in order to inform future monitoring surveys and management approaches. Ninety target sampling stations were selected for the baseline MCZ survey (Figure 3), thirty of which were outside the MCZ boundary and sixty within.

Numerous underwater obstructions, wrecks and submarine cables were identified by the Environment Agency Estuarine and Coastal Monitoring and Assessment Service on review of UKHO Admiralty charts, consequently sample points were not placed within 1 km of any hazard.

A 'notification of an exempt activity form' was submitted to the Marine Management Organisation prior to the survey being carried out.

Inside MCZ Outside MCZ

Marine Conservation Zone Boundary

WFD Water Body Boundary

Figure 3. The Fylde Marine Conservation Zone (MCZ) Winter 2015 baseline survey plan

7 Fylde MCZ Survey Report

2.2 Sample Collection Methodology

A Day grab (Figure 4), with a sampling area of 0.1 m² was deployed from the stern gantry of the survey vessel to recover sediment from the seabed as described in the Environment Agency Water Framework Directive (WFD) operational instructions (Environment Agency, 2012; 2014). Sampling positions were recorded (fixed) using Hydropro data acquisition software when the gear contacted the seabed. The mid-point of the vessel's stern gantry was used as the default offset for position fixing (see Annex 7.2.1 for further details).

The EA WFD sampling methodology required two similar samples; the first was used to obtain a fauna sample (minimum depth of 5 cm in sand habitat and 7 cm in mud habitat) and the second solely to obtain a sub-sample for particle size analysis. A general description of the sediment and a preliminary habitat assessment using a modified folk classification system (Long, 2006) was recorded.

The sample was also inspected for a Redox Potential Discontinuity (RPD) or 'black layer'; if present, the depth below the surface was recorded. The faunal sample was then processed, by washing over a sieve (1.0 mm mesh). The retained material was photographed on the sieve and preserved in a buffered 8 % formaldehyde solution for transfer ashore to a specialist laboratory for analysis. Further grab attempts were made to acquire a second sample containing similar material to the first (grabs with dissimilar material were discarded). A full depth-integrated core of sediment (approx. volume of 500 ml) was taken from the second sample for particle size analysis.

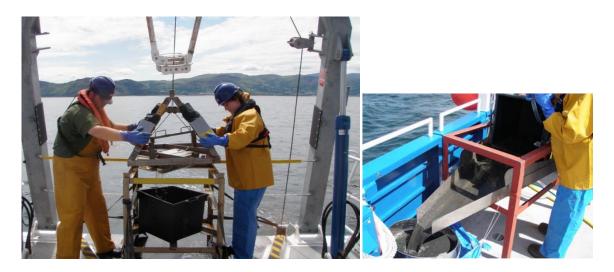
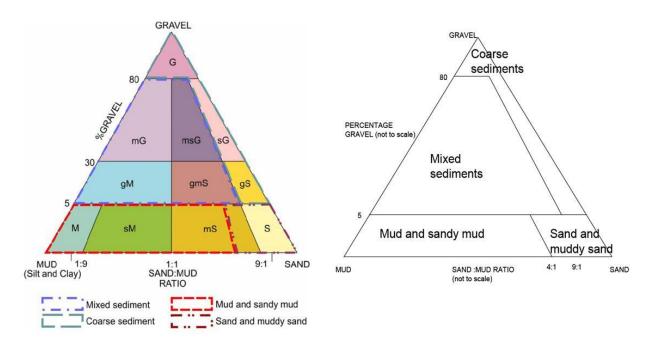



Figure 4. Day grab (left) and equipment for sieving benthic fauna samples (right).

2.3 Sample Analysis

2.3.1 Particle Size Analysis (PSA)

Full depth-integrated cores removed from the Day grab samples were analysed by the National Laboratory Service (NLS). The results of the particle size analysis were categorised into Folk classifications and EUNIS (European Nature Information System) Level 3 classifications based on the modified Folk seabed sediment classification system (Long, 2006) (Figure 5) and the Wentworth particle size boundaries (Table 2). Sample quality was controlled through the NMBAQC (National Marine Biological Analytical Quality Control) scheme managed by specialists at Cefas (Mason, 2011).

Figure 5. Simplified sediment classification of the Folk triangle for UK SeaMap (Long, 2006). Abbreviations are: G – gravel, mG – muddy gravel, msG – muddy sandy gravel, sG – sandy gravel, gM – gravelly mud, gmS – gravelly muddy sand, gS – gravelly sand, M – mud, sM – sandy mud, mS – muddy sand, S – sand.

Table 2. Sediment grade terms and size limits (Wentworth, 1922).

Size	Grade Terms
>256 mm	Boulder
64 - 256 mm	Cobble
4 - <64 mm	Pebble
>2000 μm - <4000 μm	Gravel
63 – 2000 µm	Sand
<63 µm	Mud

2.3.2 Macrobenthic Analysis and Biotope Classification

The macrobenthic analysis was undertaken by specialists at the Institute of Estuarine and Coastal Studies (IECS) following the NMBAQC guidelines for sample processing (Worsfold et al., 2010). Fauna were identified to the lowest taxonomic level possible and counted.

The performance of the laboratory undertaking the macrobenthic analysis was assessed through Natural England submitting two samples to Year 22 of the 'Macrobenthic Own Sample' module of the National Marine Biological Analytical Quality Control Scheme (NMBAQC).

All samples analysed were assigned to both the JNCC 04.06 (Connor et al., 2004) and EUNIS biotope classification schemes (level 5) by combining the biota data with the associated PSA results.

Univariate metrics calculated for each sample included number of taxa (richness) (S), total number of individuals (N) and Infaunal quality index (IQI, a multimetric index combining richness, species evenness and the AZTI Marine Biotic Index (AMBI)).

The IQI score falls into in to one of five ecological status classes used for Water Framework Directive assessment (WFD-UKTAG, 2014), the boundaries of which are as follows:

• High: > 0.75

• Good: 0.75 - 0.64 (> 0.64 could be considered equivalent to favourable condition)

Moderate: 0.64 - 0.44

• Poor: 0.44 - 0.24

• Bad: < 0.24

Non-parametric Mann-Whitney tests were used to identify if there were significant differences in univariate metrics for each broadscale habitat between samples collected inside and outside of the MCZ.

PERMANOVA analysis (Anderson et al. 2007) using Primer 6 software was used to identify changes in macrofauna community structure for each broadscale habitat between samples collected inside and outside of the MCZ.

SIMPER analysis was used to identify the species characterising the distinct communities identified through cluster analysis (combined with SIMPROF test to identify significantly different clusters of samples) of each broadscale habitat.

3. Results

3.1 Grab Samples

Viable grab samples for faunal and particle size analyses were collected from eighty one stations using a Day grab (Figure 6). Station 15 was repeated for fauna after a crack in the sample container was found. At four stations (28, 29, 30 and 32) only particle size analysis samples were collected due to insufficient sediment for faunal analysis. The fauna samples were photographed before and after the on-board processing phase; these images and supporting field notes are presented in Annex 7.6.

3.2 Particle Size Analysis

The EUNIS classification results (Figure 7) show the northern part of the MCZ to be predominately A5.3 Subtidal Mud broadscale habitat, which extends west outside of the site boundary. The southern area inside the MCZ boundary is dominated by A5.2 Subtidal Sand, which again extends south and west of the site boundary. Only one station (88) in the west outside the MCZ boundary was recorded as A5.4 Subtidal Mixed Sediments.

Folk classification results (Figure 8) and particle size fraction results (Figure 9, 10) show that slightly gravelly sand stations, with minimal mud (< 63 μ m) fractions were present in the south of the survey area. The percentage content of mud increased moving north in the MCZ, with muddy sands (between 10 – 20 % mud) present in the centre of the site. Moving further north, the mud fractions increased further to become sandy muds (> 50 % mud fraction) in the MCZ. This area of the MCZ had the highest proportion of mud sampled in the survey, with stations 13, 17 and 18 all containing more than 70 % mud (< 63 μ m particles).

To the west of the survey area, stations in deeper water had varied distribution of particle size fractions with station 88 the only station that contained a gravel fraction high enough to be classified as gravelly muddy sand.

The particle size fraction results (Figure 9, 10) show stations in the south of the survey area had a higher sand $(63 - 2000 \, \mu m)$ fraction than mud or gravel. Stations in the north of the survey area had wider fraction variation between mud, sand and gravel. Stations in deeper water in the west of the survey area had varied distribution of particle size fractions with station 88 the only station that contained a gravel fraction.

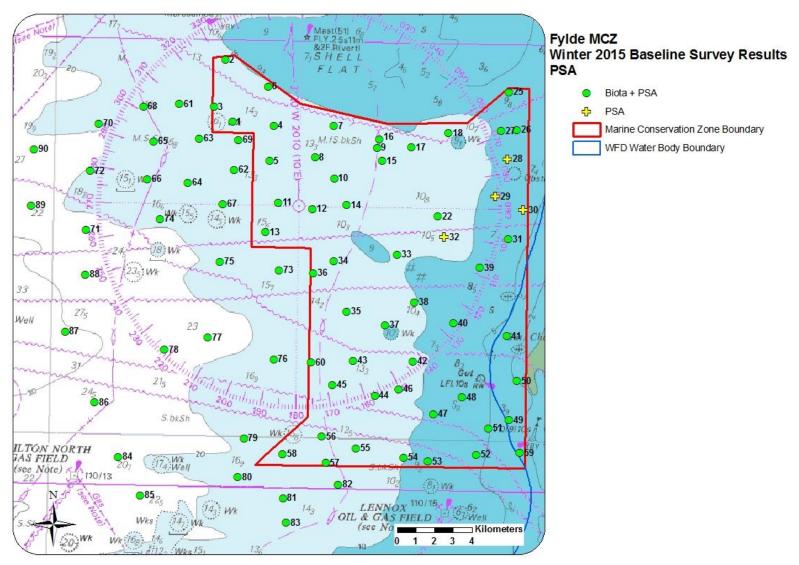
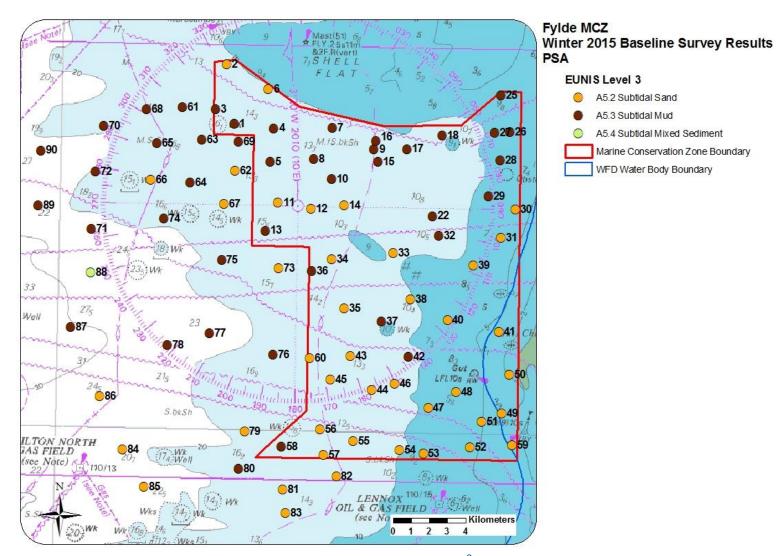
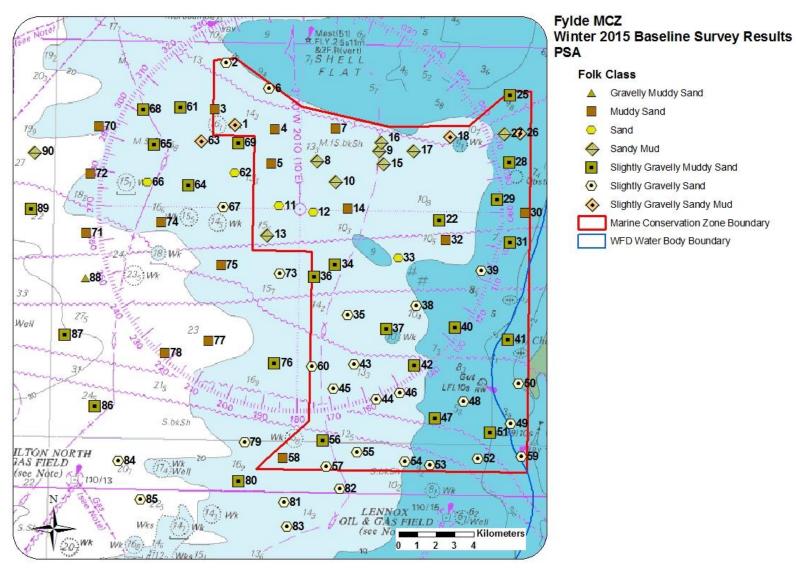
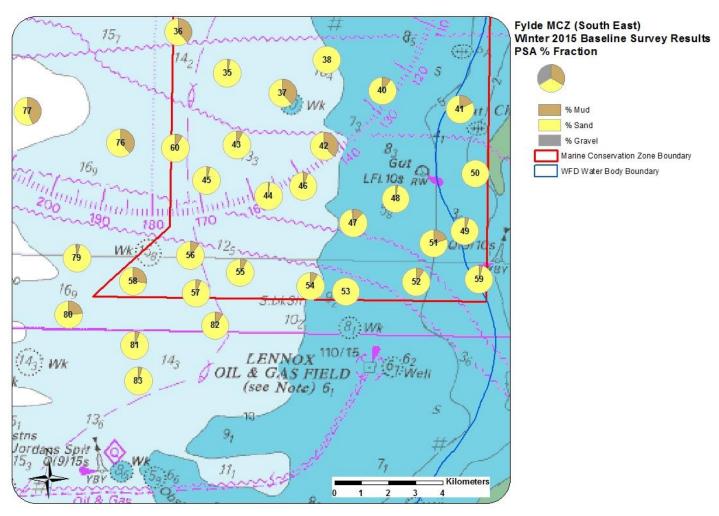




Figure 6. Fylde Marine Conservation Zone (MCZ) Winter 2015 baseline survey Day grab samples.


Fylde MCZ Baseline Survey Report

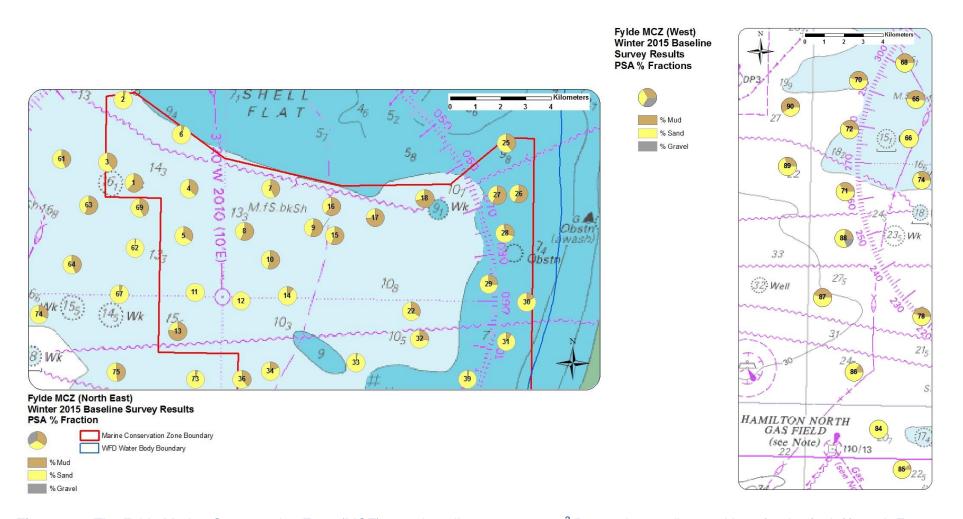

Figure 7. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions. Particle size results categorised by EUNIS Level 3 habitat. The samples were collected from inside and outside the MCZ boundary for comparison.

Figure 8. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions. Particle size results categorised by Folk Class. The samples were collected from inside and outside the MCZ boundary for comparison

Figure 9. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions (South East). Particle size results categorised by percentage fraction. The samples were collected from inside and outside the MCZ boundary for comparison.

Figure 10. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions for the (a, left) north East area of the MCZ and (b, right) western area outside of the site boundary. Particle size results categorised by percentage fraction. The samples were collected from inside and outside the MCZ boundary for comparison.

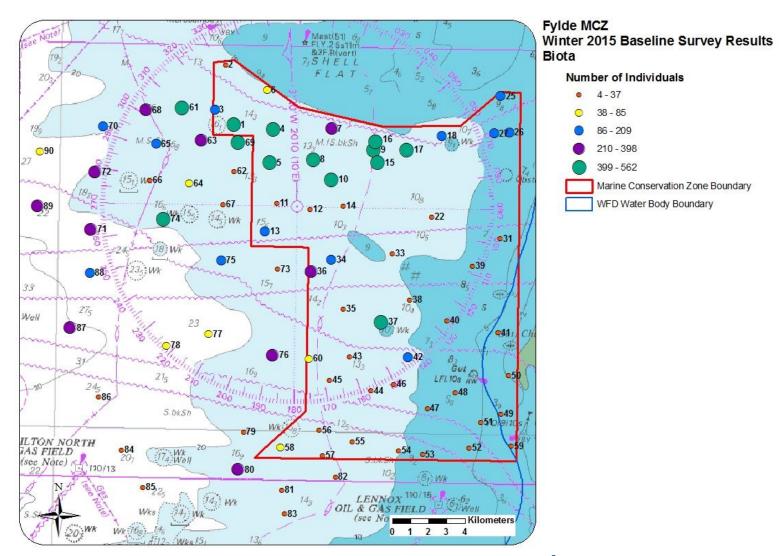
3.3 Macrobenthic Invertebrates

Invertebrate Abundance & Species Richness

A total of 7239 invertebrates were found in the 82 fauna grab samples collected from the Fylde baseline survey area and sieved over a 1 mm mesh (Figure 11). The highest number of individuals (562) was picked from the sample collected at station 15, located in the north of the MCZ. The samples collected within A5.3 Subtidal mud broadscale habitat contained significantly higher numbers of individuals than those collected in the A5.2 Subtidal Sand (W = 474.5, P < 0.001). There was no significant difference (P > 0.05) in abundance between samples collected inside and outside the MCZ for either broadscale habitat.

Overall, 172 individual taxa were identified across all the grab samples. The richest grab sample was collected from station 88, the single mixed sediment located in the west of the survey area, outside the MCZ (Figure 12). It was found to contain 41 different taxa including the only recording of *Sabellaria spinulosa* from this survey. Conversely, stations 51 and 52 (inside the MCZ) were found to be relatively species poor with four taxa found in each sample respectively. The number of taxa was found to be generally fewer in the south of the survey area near the mouth of the Ribble Estuary where subtidal sediment was classified as A5.2 subtidal sand. As with the abundance, there were significantly more species recorded in the Subtidal mud broadscale habitat inside the MCZ than in the Subtidal sand habitat (W = 489.5, P < 0.001). There was no significant difference (P > 0.05) in taxa richness between samples collected inside and outside the MCZ for either broadscale habitat.

Two nationally rare species were recorded (as listed by Sanderson, 1996). The hydroid *Obelia bidentata* was recorded at station 5 on muddy sand inside the MCZ. A single specimen of the thumbnail crab *Thia scutellata* was recorded at station 84, on slightly gravelly sand outside of the MCZ boundary.


No non-native species were recorded from the infauna samples.

Infaunal Quality Index and other indices

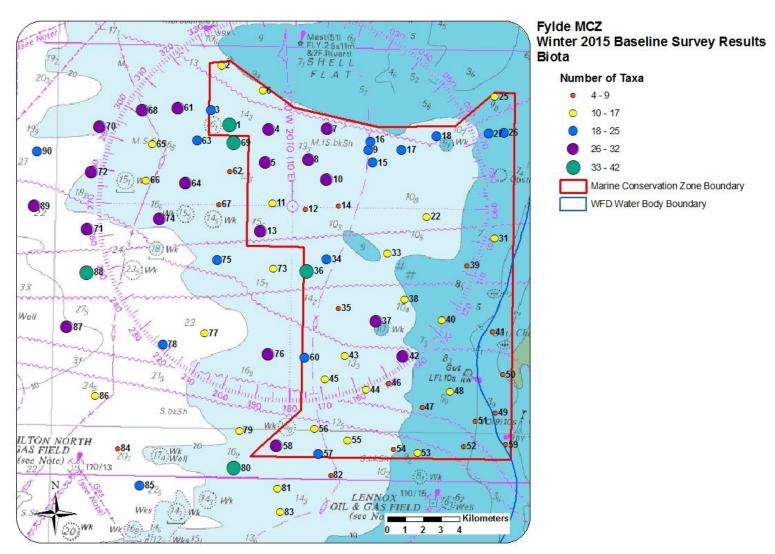

Fifty four stations were classified as good ecological status, seventeen as high and ten as moderate using the infaunal quality index (IQI, Figure 13). Stations with good and high status were distributed inside and outside of the MCZ boundary. However, all moderate status stations were found within the MCZ boundary, close to the mouth of the Ribble Estuary. Overall, the mean IQI status of the A5.2 Subtidal Sand broadscale habitat inside the MCZ was 0.68, equivalent to good ecological status. This was significantly lower than the subtidal sand sampled outside of the MCZ, which had a mean IQI status of 0.75 (high status) (W = 518.0, P < 0.001). There was no significant difference in the mean IQI status between A5.3 Subtidal Mud broadscale habitat stations sampled inside and outside the MCZ (W = 418.0, P = 0.377).

Table 3. Mean (± standard error) macrobenthic species abundance, richness, infaunal quality index (IQI) and other univariate indices of the Day grab samples for the three different broadscale habitats collected inside and outside of the Fylde MCZ.

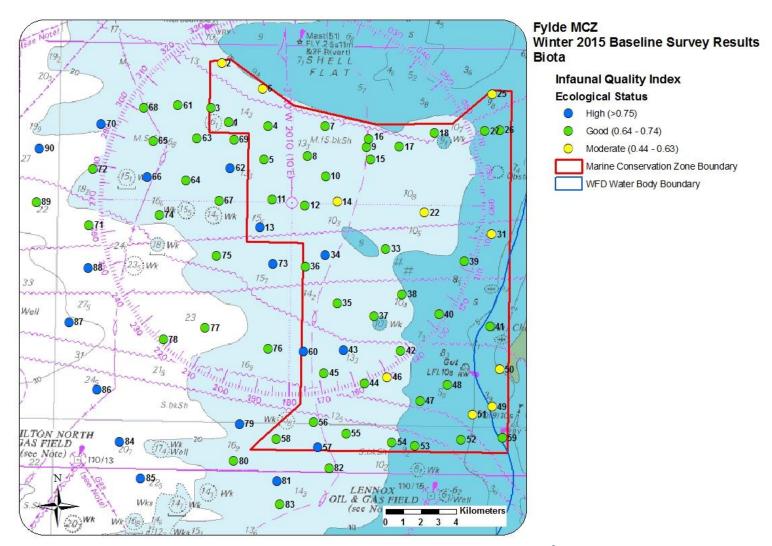

	Sample number	Taxa richness (S sample ⁻¹)	Abundance (<i>N</i> sample ⁻¹)	Shannon Index H'(log ^e)	Hill's N1	Simpson's Eveness (1-λ')	IQI
Inside MCZ							
A5.2 Subtidal Sand	30	10.60 ± 0.9	25.00 ± 4.1	1.97 ± 0.1	7.75 ± 0.6	0.87 ± 0.02	0.68 ± 0.01
A5.3 Subtidal Mud	22	25.82 ± 1.3	333.00 ± 37.2	1.81 ± 0.1	6.70 ± 0.4	0.71 ± 0.02	0.69 ± 0.01
Outside MCZ							
A5.2 Subtidal Sand	11	11.91 ± 1.3	21.2 ± 2.8	2.23 ± 0.1	9.89 ± 1.2	0.92 ± 0.02	0.75 ± 0.01
A5.3 Subtidal Mud	18	25.89 ± 1.3	267.10 ± 36.5	1.80 ± 0.1	6.76 ± 0.9	0.68 ± 0.03	0.71 ± 0.01
A5.4 Subtidal Mixed	1	42	154	3.16	23.51	0.94	0.76

Figure 11. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions. Invertebrate abundance (number of individuals) at each station is displayed using the Jenks natural breaks classification method. The samples were collected from inside and outside the MCZ boundary for comparison.

Figure 12. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m2 Day grab sampling positions. Species richness (number of taxa) at each station is displayed using the Jenks natural breaks classification method. The samples were collected from inside and outside the MCZ boundary for comparison.

Figure 13. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions. Ecological quality ratios were calculated (1 = pristine, 0 = fully-degraded) to produce a status for each sample according to the Water Framework Directive (WFD) Infaunal Quality Index (IQI) classification procedure (WFD-UKTAG, 2014).

3.4 Community Structure and Biotope Classification

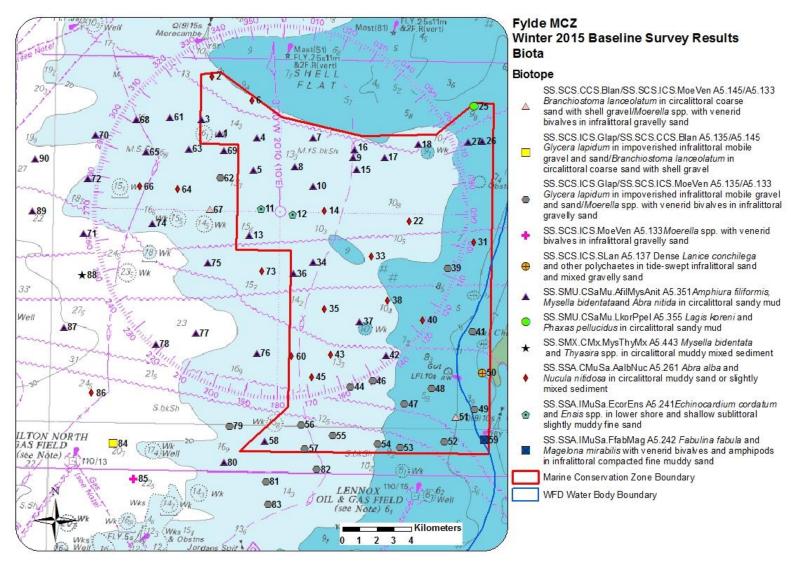
Biotopes

Eleven different biotopes were observed in total, seven within the MCZ boundary and four outside the boundary. There was distinct spatial variation in biotopes both inside and outside the MCZ boundary (Figure 14). The south of the survey area within the MCZ boundary was dominated by an infralittoral coarse sediment biotope complex (A5.135/A5.133 SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen) but was present in A5.2 subtidal sand sediment type. These stations were characterised by *Glycera lapidum or Moerella spp.*

The north of the survey area (inside and outside of the MCZ boundary) was dominated by SS.SMU.CSaMu.AfilMysAnit (A5.351 *Amphiura filiformis*, *Mysella bidentata* and *Abra nitida* in circalittoral sandy mud) biotope, present mostly in the A5.3 Subtidal Mud broadscale habitat.

The centre of the survey area, recorded a combination of biotopes present in the north and south of the MCZ, with the biotope SS.SSA.CMuSa.AalbNuc (A5.261, *Abra alba* and *Nucula nitidosa* in circalittoral muddy sand) frequently present.

Four stations recorded unique biotope classifications (59, 84, 85 and 88). Several stations differed in their broadscale habitat assigned through PSA analysis and through biotope characterisation. Stations 39, 41, 44, 46-49, 51-57, 62, 79, 67 and 81-85 were all identified as A5.2 subtidal sand through the PSA sample, but the communities were characterised as infralittoral and circalittoral subtidal coarse sediment biotopes (Blan, Glap, MoeVen, SLan).


Community Structure

Multi-dimensional scaling ordination (MDS) of the community data showed that the samples were coarsely grouped into broadscale habitats. The relative dispersion of the sample points indicated that subtidal sand samples had a significantly more varied macrofauna community than the subtidal mud samples (Figure 15a). There was a significant difference in community structure between samples collected from inside or outside the MCZ boundary for both the subtidal mud (t = 1.76, P < 0.007), and subtidal sand (t = 1.48, P < 0.006) broadscale habitats.

Cluster analysis of the whole dataset showed that there were 11 significantly distinct groups containing 2 or more samples (Figure 15c), which did not completely align with the assigned biotopes (Figure 15b). There were also 9 samples that were significantly distinct from all other samples collected (these were aggregated together as 'group 12' for displaying on MDS plots).

The groups that contained subtidal mud samples (groups 1 - 7) were primarily characterised by varying abundances of four key species - the brittlestar *A. filiformis*, the bivalves *Kurtiella bidentata* and *N. nitidosa* and the polychaete *Pholoe baltica* (Table 5). The four groups that contained mostly lower-diversity subtidal sand samples (8 - 11) were characterised by a

wider range of species, ranging from a low-abundance bivalve-dominated community (Group 10), to a mixed polychaete and bivalve community (Group 9).

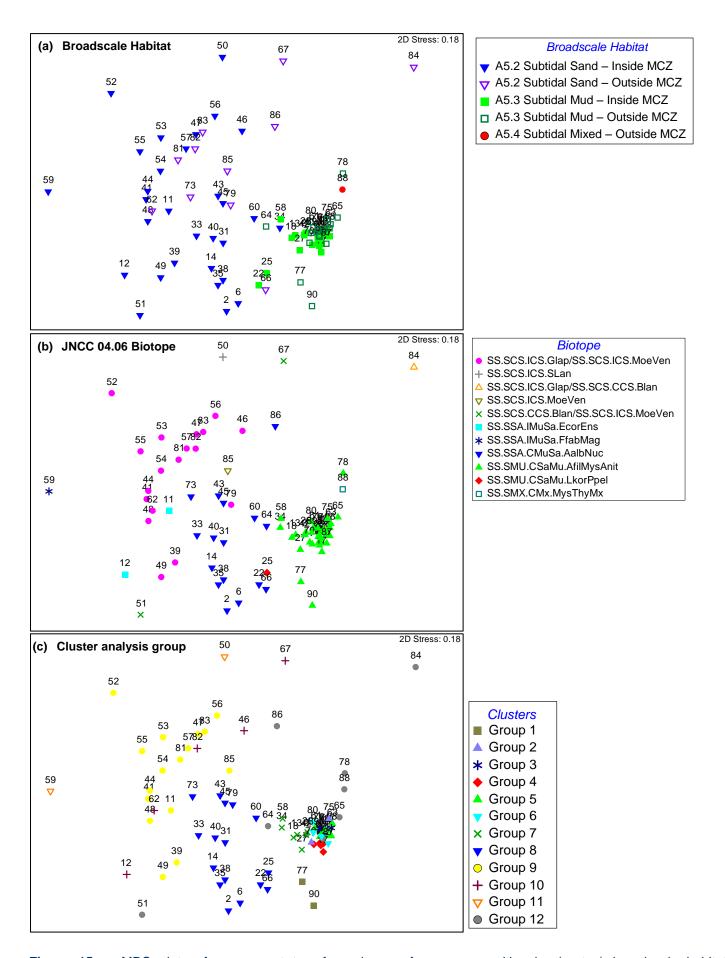


Figure 14. The Fylde Marine Conservation Zone (MCZ) 2015 baseline survey 0.1 m² Day grab sampling positions. The macrobenthic fauna and particle size data was combined to produce a level 5 biotope classification (JNCC v.04.06 and EUNIS) for each sample.

Table 4. The top 5 macrofauna species characterising (contributing to the Bray-Curtis similarity (%) the 11 significantly distinct groups identified by cluster analysis. The mean species richness (*S*) and predominant broadscale habitat is given for each group.

Species	Mean abundance (n sample ⁻¹)	% contribution	Species	Mean abundance (n sample ⁻¹)	% contribution	Species	Mean abundance (n sample ⁻¹)	% contribution
Group 1 - 2 samples, mean <i>S</i> = 18.5, subtidal mud			Group 2 - 2 samples, me	an $S = 25.5$ subtid	lal mud	Group 3 - 4 samples, me	an $S = 31.0$, sub	tidal mud
Phoronis	9.5	21.1	Amphiura filiformis	70.0	64.4	Amphiura filiformis	181.3	58.3
Nephtys incisa	5.5	10.5	Kurtiella bidentata	30.5	17.8	Phoronis	54.0	16.4
Magelona alleni	3.0	10.5	Magelona alleni	5.0	4.0	Kurtiella bidentata	41.3	11.5
Nucula nitidosa	2.5	10.5	Nemertea	3.5	2.0	Nucula nitidosa	9.0	1.9
Abra nitida	2.5	10.5	Leuckartiara octona	1.5	1.0	Pholoe baltica	7.8	1.7
Group 4 – 6 samples, mean <i>S</i> = 25.0, subtidal mud			Group 5 – 9 samples, mea	S = 29.9, subtide	dal mud	Group 6 – 4 samples, me	<u> </u> an <i>S</i> = 29.8, sub	l tidal mud
Kurtiella bidentata	251.0	58.3	Amphiura filiformis	234.6	57.0	Amphiura filiformis	166.0	61.1
Amphiura filiformis	133.5	28.1	Kurtiella bidentata	142.4	30.7	Kurtiella bidentata	89.0	23.5
Nucula nitidosa	13.5	2.9	Pholoe baltica	15.8	3.0	Pholoe baltica	10.3	2.3
Pholoe baltica	13.0	2.4				Nucula nitidosa	6.3	1.9
						Nemertea	4.3	1.3
Group 7 - 7 samples, r	mean $S = 23.9$, so	ub. mud & sand	Group 8 – 16 samples, mean S = 12.5, sub. sand & mud			Group 9 – 16 samples, mean $S = 11.1$ subtidal sand		
Amphiura filiformis	45.9	35.9	Nucula nitidosa	9.4	53.1	Ophelia	4.0	32.6
Kurtiella bidentata	25.9	22.5	Lumbrineris cingulata	2.2	7.9	Kurtiella bidentata	1.6	16.1
Nucula nitidosa	9.9	9.6	Kurtiella bidentata	9.1	7.0	Glycera tridactyla	1.3	11.7
Pholoe baltica	6.3	5.6	Chamelea striatula	1.7	7.0	Nephtys cirrosa	0.9	6.8
Nemertea	4.9	4.6	Phaxas pellucidus	1.5	5.4	Nucula nitidosa	0.7	5.5
Group 10 - 5 samples,	mean $S = 7.0$, so	ubtidal sand	Group 11 – 2 samples, mean $S = 7.0$, subtidal sand			Group 12 - 9 samples, subtidal mud, sand & mixed		
Corbula gibba	1.8	45.7	Glycera tridactyla	1.5	100.0	(combination of single-		
Chamelea striatula	1.2	21.7				sample clusters)		
Dosinia	0.8	10.2						
Ensis	0.4	5.4						
Nucula nitidosa	0.4	5.1						

	Hydroid	Echinoderm	Mollusc	Annelid	Other

Figure 15. nMDS plots of square-root transformed macrofauna communities by (a, top) broadscale habitat (determined by PSA), (b, middle) assigned JNCC 04.06 biotope and (c, bottom) distinct cluster group determined using the SIMPROF test. Note group 12 is an aggregation of single-sample clusters in order to facilitate viewing.

4. Discussion & Conclusions

The results presented in this report provide the first comprehensive macrofauna dataset from the Fylde Marine Conservation Zone. This data provides the theoretical 'Before' stage of the 'Before-after, control-impact (BACI) experimental design, with the 'Control' (outside MCZ) and 'Impact' (inside MCZ) samples which up to now have been subjected to the same measures and mechanisms. Following designation, measures could now be implemented within the site boundary that may change the macrofauna community, with the aim of maintaining favourable condition of the Subtidal Sand and Subtidal Mud broadscale habitats. Subsequent monitoring of the site may be able to identify any changes in the macrofaunal community to see if any implemented measures are benefitting the features. Power analysis was undertaken on the univariate metric results for each broadscale habitat (Table 5). This can be used to predict the number of samples that need to be collected in a future survey in order to have statistical confidence in any observed changes, e.g. 23 samples should be needed to detect a 20 % change in species richness at 80 % power in Subtidal Mud (α = 0.05).

This survey recorded the presence of the Subtidal Mud broadscale habitat across a large part of the northern sector of the MCZ, with samples of mud present in small areas across the rest of the site (Table 6). This differs significantly from the habitat distribution in the site assessment document (SAD), which recorded the entire site to be subtidal sand. Combining the results of this survey with suitable acoustic data will enable a detailed habitat map to be created, which will be able to provide updated extents for both the Subtidal Sand and Subtidal Mud broadscale habitats.

The macrofauna found in Fylde MCZ includes key characterising bivalve species identified by Kaiser et al. (2006) that are considered prey items for the common scoter *M. nigra*, a designated species of the overlapping Liverpool Bay SPA. These include the nut shell *N. nitidosa* (present in 63 out of 82 samples), the razor shells *Phaxus pellucidus* (present in 45 samples) and *Pharus legumen* (present in 14 samples), the clam *C.hamelea striatula* (present in 49 samples) and furrow shells *Abra* spp. (present in 38 samples). Also abundant were other key macrofaunal species that provide food for benthic predators such as flatfish, including the brittlestar *A. filiformis* (present in 50 samples) and bivalve *K. bidentata* (present in 62 samples). *A. filiformis*, *N. nitidosa* and *K. bidentata* frequently occurred in the subtidal mud samples, and their varying abundances drove the dissimilarity between the significantly different clusters even though they all fell under the same *Afil.Mys.Anit* biotope.

The Infaunal Quality Index scored both features of the site at 'Good Ecological Status', which could be considered equivalent to favourable condition. Stations from outside of the site boundary had a significantly higher IQI score. This may be because most of the samples collected from outside of the site boundary were further offshore than the samples collected from within the MCZ, and therefore could be subject to less pressure from the coast, such as organic enrichment or contaminants.

Table 5. Power analysis: number of samples required to detect a 10% or 20% change from the mean (\vec{x}) of a benthic metric at a particular level of statistical power (where $\alpha = 0.05$), using community data from A5.2 Subtidal Sand or A5.3 Subtidal Mud samples collected from inside Fylde MCZ during the 2015 baseline survey.

		N	lumber of samples r	equired to detect			
	-	A5.2 Sub	tidal Sand	A5.3 Subtidal Mud			
Benthic metric	Power level	10 % change from $ar{X}$	20 % change from <i>X</i>	10 % change from \bar{x}	20 % change from \bar{X}		
Cuasias Diskussa	90 %	439	111	116	30		
Species Richness	80 %	329	83	87	23		
S	70 %	259	66	69	18		
Abundance	90 %	1722	432	578	146		
N Abundance	80 %	1287	323	432	109		
74	70 %	1012	254	340	86		
Shannon Index	90 %	88	23	114	30		
H'(log ^e)	80 %	66	18	86	23		
H (log)	70 %	52	14	68	18		
	90%	28	8	50	14		
Simpsons Index	80%	21	6	38	11		
(1-λ')	70%	17	5	30	9		
	90 %	25	8	15	5		
IQI	80 %	19	6	12	4		
IQI	70 %	15	5	10	1		

Conclusions

The Environment Agency conducted a grab survey of the sediment features of the Fylde MCZ between the 11th and 13th February 2015. The objectives of the survey were to obtain a baseline dataset of the designated feature both inside and outside of the MCZ boundary.

- During the 2015 baseline survey of the Fylde MCZ, viable samples were collected from 82 stations using a 0.1 m² Day. Two designated sediment broadscale habitats were recorded inside the MCZ boundary: Subtidal sand (30 records) and Subtidal Mud (22 records). Subtidal mud was predominately present in the northern quarter of the site, and extended outside of the site boundary to the west. Subtidal sand was predominant in the southern half of the site.
- 7,239 individuals across 172 taxa were recorded in the grab survey, including the nationally rare hydroid *O. bidentata* inside the site boundary. No non-native species were identified inside the site. The resulting communities roughly corresponded to twelve sediment biotopes or biotope complexes. The highest richness was recorded at station 88, a subtidal mixed sediments sample outside of the MCZ (subtidal mixed sediments were not found inside the MCZ). There was no significant difference in species richness or abundance between samples collected inside and outside the MCZ for either broadscale habitat.

 Infaunal quality index (IQI) classifications showed that both the Subtidal sand and Subtidal mud broadscale habitats inside the MCZ were assessed at good ecological status, which could be considered equivalent to favourable condition. Subtidal sand sampled outside of the MCZ had a significantly higher infaunal quality (assessed at high ecological status).

5. References

Anderson, M.J., Gorley, R.N., Clarke K.R., 2007. PERMANOVA+ for PRIMER: a guide to software and statistical methods, PRIMER-E, Plymouth.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. and Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05. In JNCC (2015) The Marine Habitat Classification for Britain and Ireland Version 15.03 [online] Available at: www.incc.defra.gov.uk/MarineHabitatClassification [Accessed: 22/07/2015].

Environment Agency, 2014. Sampling and processing marine benthic invertebrates. Operational Instruction 009_07 (internal document). Bristol, UK.

Environment Agency, 2012. Water Framework Directive (WFD) sampling of macrobenthic invertebrates in Transitional and Coastal Waters. Operational Instruction 104_10 (internal document). Bristol, UK.

Defra, 2013. Fylde MCZ Factsheet. 2013. [online]
Available from: http://publications.naturalengland.org.uk/publication/4933233460379648 [accessed 09/11/2015]

Irish Seas Conservation Zones. 2011. Final recommendations for Marine Conservation Zones in the Irish Sea, August 2011 [online].

Available from: http://www.irishseaconservation.org.uk/node/92 [Accessed 09/11/2015].

Kaiser, M.J., Galanidi, M., Showler, D.A., Elliott, A.J., Caldow, R.W.G., Rees, E.I.S., Stillman, R.A., Sutherland, W.J. 2006. Distribution and behaviour of Common Scoter *Melanitta nigra* relative to prey resources and environmental parameters. Ibis 148, 110-128.

Long, D. 2006. BGS detailed explanation of seabed sediment modified Folk classification. Mapping European Seabed Habitats (MESH) project document. Available at: http://www.searchmesh.net/PDF/GMHM3 Detailed explanation of seabed sediment class ification.pdf [Accessed 29/06/2015].

Mason, C., 2011. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological Analytical Quality Control Scheme Coordinating Committee, 72pp, December 2011.

McBreen, F., Askew, N., Cameron, A., Connor, D., Ellwood, H., Carter, A., 2011. UK SeaMap 2010 Predictive mapping of seabed habitats in UK waters. Joint Nature Conservation Committee Report 446.

Sanderson, W.G., 1996. Rare benthic marine flora and fauna in great Britain: the development of criteria for assessment. Joint Nature Conservation Committee Report No.. 240. JNCC, Peterborough, UK.

Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377-392.

WFD-UKTAG, 2014. UKTAG Transitional and Coastal Water Assessment Method: Benthic Invertebrate Fauna: Infaunal Quality Index. Water Framework Directive – United Kingdom Advisory Group (WFD-UKTAG). Available at: http://www.wfduk.org/resources%20/coastal-and-transitional-waters-benthic-invertebrate-fauna [Accessed 17/07/2015].

Worsfold, T. M., Hall, D. J. and O'Reilly, M. (Ed.) 2010. Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol version 1.0. National Marine Biological Analytical Quality Control Scheme Coordinating Committee. 33pp, June 2010.

Available at:

http://www.nmbagcs.org/scheme-components/invertebrates/reports/ [Accessed 21/07/2015].

6. General List of Abbreviations

BSH Broadscale Habitat

Cefas Centre for Environment, Fisheries and Aquaculture Science

CS Camera Sledge

CSV Coastal Survey Vessel

DC Drop Video Camera

Defra Department for Environment, Food and Rural Affairs

DG Day Grab

EA Environment Agency

ECMAS Estuarine and Coastal Monitoring and Assessment Service

ENG Ecological Network Guidance

EQR Ecological Quality Ratio

EQSD Environmental Quality Standards Directive

EUNIS European Nature Information System

FOCI Features Of Conservation Importance

JNCC Joint Nature Conservation Committee

IFCA Inshore Fisheries and Conservation Authority

IQI Infaunal Quality Index

MESH Mapping European Seabed Habitats

MHM Mini-Hamon Grab

mSNCI marine Sites of Nature Conservation Importance

NLS National Laboratory Services

NMBAQC National Marine Biological Analytical Quality Control Scheme

PSA Particle Size Analysis

REC Regional Environmental Characterisation

rMCZ recommended Marine Conservation Zone

rRA recommended Reference Area

RSG Regional Stakeholder Group

(c)SAC (Candidate) Special Area of Conservation

SAD Site Assessment Document

SEPA Scottish Environment Protection Agency

SNCB Statutory Nature Conservation Body

SOCI Species Of Conservation Importance

SOP Standard Operating Procedure

SPA Special Protection Area

SSSI Site of Special Scientific Interest

UKHO United Kingdom Hydrographic Office

UTC Coordinated Universal Time

WFD Water Framework Directive

7. Annexes

7.1 Coastal Survey Vessel General Information

Briggs Marine and Environmental Services Seaforth House, Seaforth Place, Burntisland, Fife, KY3 9AX

Tel: + 44 (0) 1592 872939 Email: marketing@briggsmarine.com

Email: <u>marketing@briggsmari</u> <u>www.briggsmarine.com</u>

Mersey Guardian

General Information

Length: 18.3m Beam: 6.3m

Draft (baseline): 1.15m

Draught (skegs): 2.2m

Displacement (light ship): 22T

Displacement (full load): 30T

Service Speed: 16 knots

Maximum Speed: 18 knots

Main Equipment

Main Engines: 2 x Volvo D9-MH 261bkW @ 2200rpm.

Twin Disc MGX-5075 integral vee-drive

Crew: 7

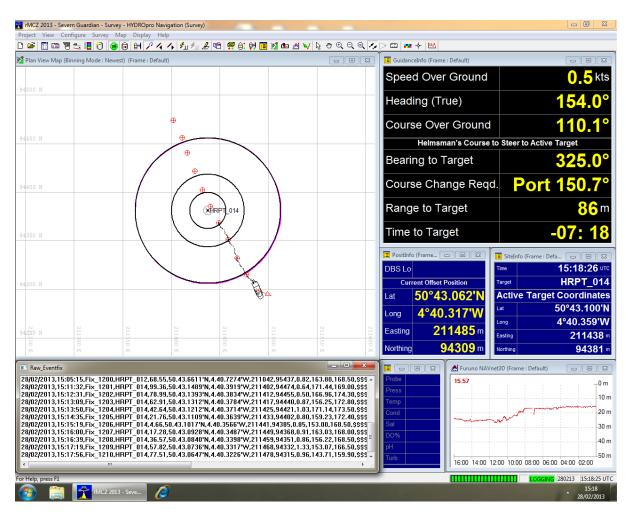
Scientific Officers: Up to 10

Accommodation: 3 x twin cabins and mess

Data network to share information around vessel

Wetlab/bench for processing water, sediment and ecology samples

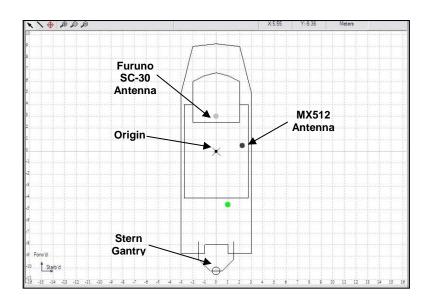
A fridge/freezer for sample storage


Dry lab space for two computers and data processing

Large aft deck working area

7.2 Survey Equipment

7.2.1 Navigation and Positioning


Trimble® HYDRO*pro*™ software is utilised for real-time navigation and survey data acquisition.

Trimble® HYDRO*pro*™ software screen grab displaying real-time navigation and survey data acquisition (manual fixes).

Navigational and survey equipment offsets on the Coastal Survey Vessel *Mersey Guardian* (Environment Agency Estuarine and Coastal Monitoring and Assessment Service).

NMEA Device	Make/Model	Offset Name	Offset (m)					
			X (Starb'd)	Y (Forw'd)	Z +ve (Up)			
Gyrocompass	Simrad Robertson RGC50	n/a	-	-	-			
Navigation Echosounder	Furuno DFF1, 525ST- MSD transducer	n/a	-	-	-			
Survey Echosounder	Kongsberg EA400	n/a	-	-	-			
Origin	n/a	Origin	0.0	0.0	0.0			
Navigation GPS (Secondary)	Furuno SC-30 DGPS	Furuno SC-30 Antenna	0.0	3.0	0.0			
Survey GPS (Primary)	SIMRAD MX512 DGPS	MX512 Antenna	2.25	0.5	0.0			
n/a	n/a	Sediment Grab (Stern Gantry)	0.0	-10.25	0.0			

Trimble® HYDROpro™ vessel editor screen showing survey equipment offsets from the origin (Environment Agency Estuarine and Coastal Monitoring and Assessment Service).

7.2.2 SeaSpyder Drop Camera System

SEASPYDER DROP CAMERA SYSTEM

The SeaSpyder Underwater Drop Camera System is part of a family of field proven camera systems manufactured by STR for the marine survey and environmental communities. The SeaSpyder is ideally suited for operation in shallowmedium water depths with the standard system having a working depth range of 500m. For applications demanding a deeper rating, a "telemetry" model is offered which operates over longer cable lengths for operation down to 1000m. Both models are fitted with a new generation digital SLR Camera offering high resolution digital stills and HD Video for the highest imagery detail. The high specification digital SLR Camera offers an impressive 18.0 mega pixels resolution and both manual and automatic focus for achieving the sharpest images. The captured digital stills are framed with the aid of dedicated real-time video and can be transferred to the topside 'on the fly' for rapid online review.

A 19" rack mount Surface Control Unit and powerful topside processor give full remote control of the camera via the easy to use SeaView GUI software. As standard, the purpose designed camera deployment frame is fitted with a subsea electronics and camera housing, high power underwater flash, an array of four high intensity LED lamps and dual scaling laser pointers to provide accurate imagery scaling. There is the option to install additional sensors with the availability of three user defined serial interfaces with optional power.

SYSTEM FEATURES

- · Latest generation 18 Mega Pixels Digital SLR Camera
- Full remote control of camera functions including automatic and manual focus control
- 'On-the-fly' image download
- Real time HD Video

- High Intensity LED Lamps
- · Dual lasers for precise imagery scaling
- High speed digital telemetry link to camera and sensors
- Additional user defined RS232 ports and 24VDC power interfaces

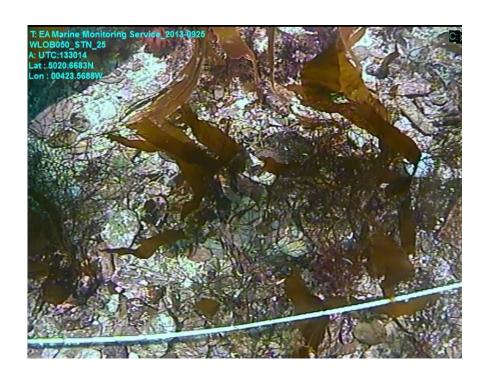
7.3 EA underwater video procedure_version 2.4 (STR Systems)

The procedure outlined below has developed through a series of discussions involving the Environment Agency, Cefas and Natural England. Due to the heterogeneous nature of the inshore coastal seabed habitat, strong tidal streams, various underwater hazards and no dynamic positioning system, a flexible approach is recommended for the underwater video camera deployment. The procedure <u>must</u> be used in accordance with the MESH 'recommended operating guidelines (ROG) for underwater video and photographic imaging techniques' (Coggan et al., 2007).

Important points to remember:

- Select stern gantry offset in Hydropro
- Synchronise <u>all</u> survey equipment (camera, laptops, etc.) with primary survey GPS time (UTC).
- Ensure the correct date, station code, STN number, time and position are displayed on the video overlay and Clapperboard.

Overlay Example:


EA Marine Monitoring Service_2013-0925

WLOB050_STN_25 (annotate if station has been attempted on a previous occasion)

UTC: 133014 (real time feed from survey GPS)

Lat: 5020.6683N (real time feed from survey GPS)

Lon: 00423.5688W (real time feed from survey GPS)

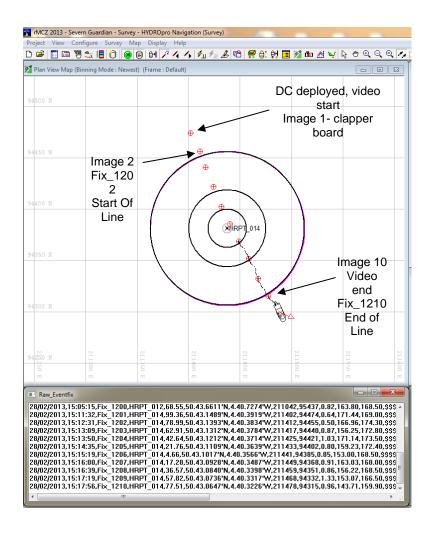
Clapperboard Example:

Alter the stills prefix to the correct station code.

PBSR096_STN_? (? = sequential 'STN or event' number expressed as an integer i.e. no leading zeros – refer to previous survey period for starting number)

The software will then automatically add '_01, _02, _03......' as the stills are captured – you may need to adjust the number of leading zeros.

Final stills code format saved to the laptop:


PBSR096_STN_12_01 PBSR096_STN_12_02 PBSR096_STN_12_03

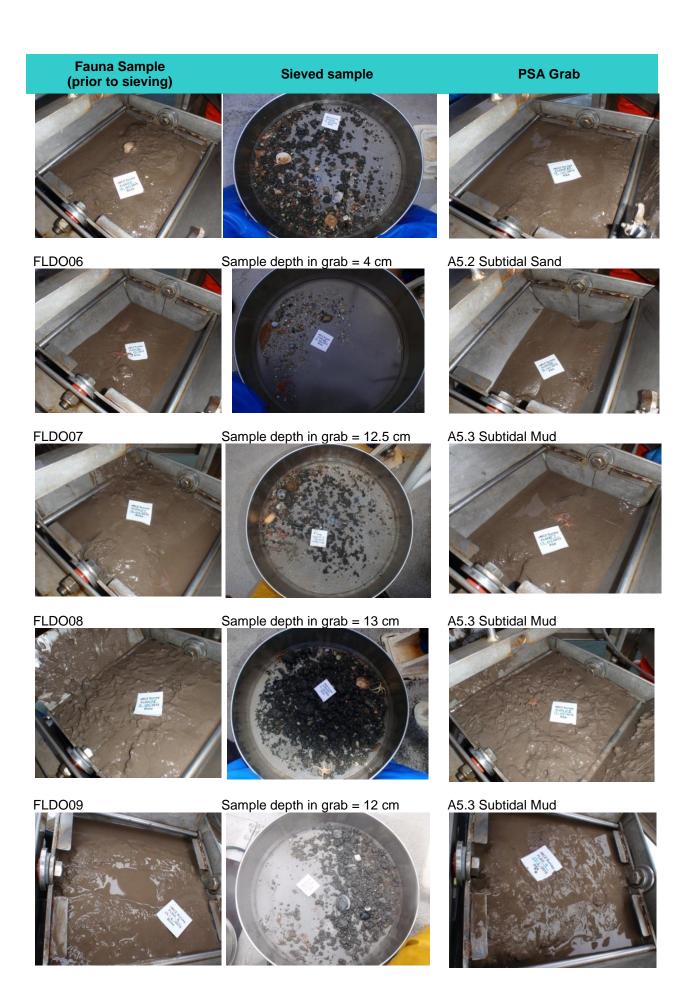
- The field of view scale bar/laser points should be set up/calibrated prior to the survey commencing. Laser pointers are ineffective in moderate/poor visibility conditions; a rope with a visible scale will be required as a replacement
- Set the image resolution to Large Normal (14.7 Mega Pixels, 18 sec upload time)
- Check that he camera settings are appropriate for the conditions; that the LED lights are on if required and ensure the video is recording throughout the deployment.

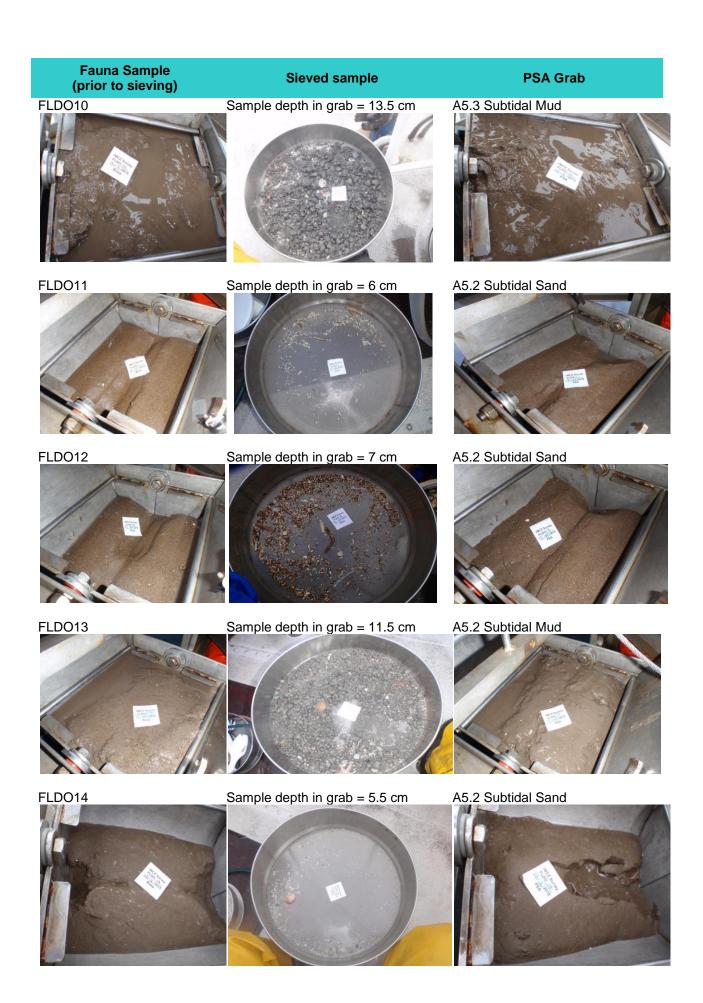
- If a broad-scale habitat (BSH) boundary is detected extend the deployment to gather as much information on habitat extent as possible.
- Take extra stills if habitat/species FOCI are observed note these in the survey log.
- If possible, work a downhill seabed profile to avoid slack cable during deployment.
- Beware of sudden depth changes when surveying rocky areas.
- Abandon the station if survey conditions are hazardous.

Video Camera Type	Survey Conditions	Deployment
Drop down	Good visibility	*Deploy camera initially working across the Hydropro 75 m radius target area, as shown in the diagram below. Hover/rest camera above/on the seabed; take a still every 15 m. If tide/wind conditions do not allow a survey line to be followed across the bull ring, use the outer circle as a guide to ensure a distance of 150 m is covered (minimum) nearby.
	Poor visibility	Hover/rest camera above/on the seabed, take a still every 15 m. If the visibility is very poor, retrieve the equipment after taking 3-4 stills.

7.4 Underwater Visibility Scale

Example image	Scale	Definition
	Excellent	clear, sharp images - no suspended particulate matter
	Good	seabed features and epifauna clearly discernible
	Moderate	seabed features discernible - epifauna difficult to discern
	Poor	both seabed features and epifauna difficult to discern, low confidence in preliminary habitat assessment
	Very Poor	no seabed features or epifauna visible


7.5 MCZ Video Logsheet


		MCZ Vide	o Logsheet (v1)		i
tation data				-0.000	u landon
ontract Code:	\	/essel:Mc_l	sey Guardian		Date: 16 08 201
ICZ Name:	ylde			Station Code:	FLDO_90
av-Log filename:	3 2 2		Sampling Gear:	DC	Water Depth: 34
able Out:	34	(metres).	Speed	d Over Ground (SC	OG): <u>0.44</u> (knots
otes on Station: ncluding any time	es & adjustmen	ts to Cable O	Position Refer	rence Point: St	ern Gantry
· Pons i	visimbility				
1001	visasorus J				
Sample data Digital Video Tap	oe label:			., .,	
Filename on Har	d-Drive: FLD	0-2FG1L	40815_GT090	-3TN_1-A1	0012-132627
No. of camera st	ills:12_	Stills f	folder name: <u>Wilk</u> fL	00-2-FGL40	0815-GT090-S
	GPS Time hh:mm	Fix No	Position in Lat/Lo	ong (WGS84)	DV tape counter Mins Secs
Start of Video (SOV)	13 10	1965	53 · 48·17n; 03	3 · 3 · 0 w/#	
End of Video (EOV)	13 28	1978	53 · 48·20 N; 03	3°31·20 w/®	
			in, visibility, species, FO		
oor vis -	- hard t	o distin	guish habite	at Ispecies	
road-scale habi					
Proad-scale habi	k Circalitte	oral Rock	Sediment habitats	Others	
Froad-scale habi	k Circalitte high en	oral Rock ergy	subtidal mixed	macrophyte	
Proad-scale habi	k Circalitte	oral Rock ergy ergy			5

7.6 Day Grab Sample Images

Day grab sample images captured during the Fylde MCZ 2015 baseline survey. Fauna samples were photographed before and after sieving over a 1 mm mesh. Field notes include sample depths, EUNIS code and Folk sediment descriptions. A 0.5 litre full-depth core of material was removed from a second grab for particle size analysis.

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO15 Sample depth in grab = 12.5cm A5.3 Subtidal Mud FLDO15b Sample depth in grab = 9.5 cm No PSA taken due to replicate site Sample depth in grab = 12 cm FLDO16 A5.3 Subtidal Mud FLDO17 Sample depth in grab = 11.5 cm A5.3 Subtidal Mud FLDO18 Sample depth in grab = 12 cm A5.3 Subtidal Mud

Fauna Sample (prior to sieving)

Sieved sample

PSA Grab

FLDO22

Sample depth in grab = 5.5 cm

A5.3 Subtidal Mud

FLDO25

Sample depth in grab = 12.5 cm

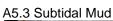
A5.3 Subtidal Mud

FLDO26

Sample depth in grab = 7.5 cm

A5.3 Subtidal Mud

FLDO27



Sample depth in grab = 12 cm No sieve photograph

FLDO28 PSA only

Sample depth in grab = 6 cm PSA only

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO29 Sample depth in grab = 2.5 cm A5.3 Subtidal Mud PSA only PSA only FLDO30 Sample depth in grab = 4 cm A5.2 Subtidal Sand PSA only PSA only A5.2 Subtidal Sand FLDO31 Sample depth in grab = 4.5 cmFLDO32 Sample depth in grab = 4 cm A5.3 Subtidal Mud PSA only PSA only FLDO33 Sample depth in grab = 6 cm A5.2 Subtidal Sand

Fauna Sample (prior to sieving) **PSA Grab** Sieved sample FLDO34 Sample depth in grab = 10.5 cm A5.2 Subtidal Sand FLDO35 Sample depth in grab = 6.5 cm A5.2 Subtidal Sand FLDO36 Sample depth in grab = 11 cm A5.3 Subtidal Mud FLDO37 A5.3 Subtidal Mud Sample depth in grab = 11.5 cm FLDO38 Sample depth in grab = 5.5 cm A5.2 Subtidal Sand

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO44 Sample depth in grab = 6 cm A5.2 Subtidal Sand FLDO45 Sample depth in grab = 7.5 cm A5.2 Subtidal Sand FLDO46 A5.2 Subtidal Sand Sample depth in grab = 6.5 cm Sample depth in grab = 5.5 cm FLDO47 A5.2 Subtidal Sand FLDO48 Sample depth in grab = 5 cm A5.2 Subtidal Sand

Fauna Sample (prior to sieving)

Sieved sample

PSA Grab

FLDO49

Sample depth in grab = 4 cm

A5.2 Subtidal Sand

FLDO50

Sample depth in grab = 5 cm

A5.2 Subtidal Sand

FLDO51

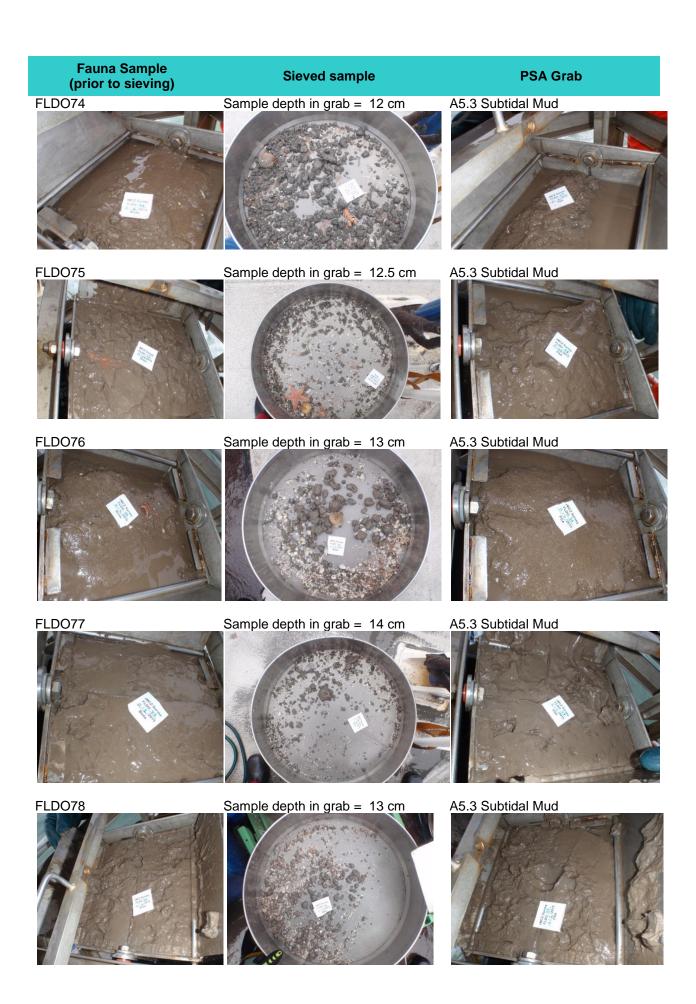
Sample depth in grab = 5.5 cm No sieve photograph

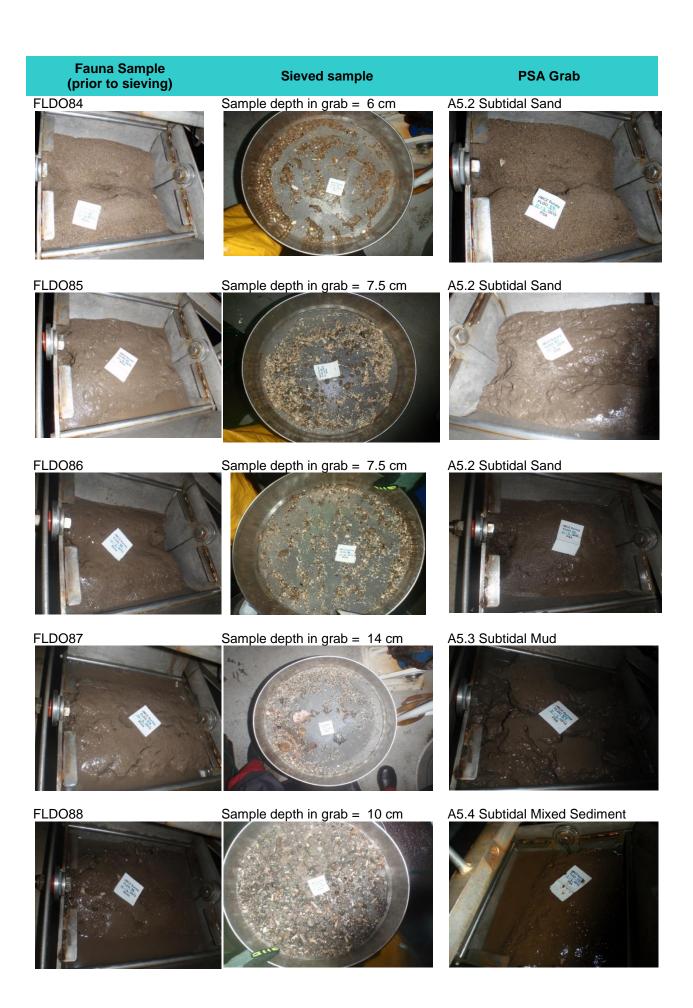
Sample depth in grab = 6 cm

A5.2 Subtidal Sand


FLDO53

Sample depth in grab = 7 cm No sieve photograph


62


Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO59 Sample depth in grab = 5 cm A5.2 Subtidal Sand FLDO60 A5.2 Subtidal Sand Sample depth in grab = 6 cm FLDO61 Sample depth in grab = 12 cm A5.3 Subtidal Mud FLDO62 Sample depth in grab = 7 cm A5.2 Subtidal Sand FLDO63 A5.3 Subtidal Mud Sample depth in grab = 13.5 cm No sieve photograph

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** Sample depth in grab = 8 cm FLDO64 A5.3 Subtidal Mud FLDO65 Sample depth in grab = 12.5cm A5.3 Subtidal Mud FLDO66 Sample depth in grab = 9.5 cm A5.2 Subtidal Sand Sample depth in grab = 5.5 cm FLDO67 A5.2 Subtidal Sand FLDO68 Sample depth in grab = 12.5 cm A5.3 Subtidal Mud

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO69 Sample depth in grab = 11.5 cm A5.3 Subtidal Mud Sample depth in grab = 12.5 cm No sieve photograph FLDO70 A5.3 Subtidal Mud FLDO71 Sample depth in grab = 12 cm A5.3 Subtidal Mud FLDO72 Sample depth in grab = 14 cm A5.3 Subtidal Mud Sample depth in grab = 7 cm FLDO73 A5.2 Subtidal Sand

Fauna Sample (prior to sieving) Sieved sample **PSA Grab** FLDO79 Sample depth in grab = 7.5 cm A5.2 Subtidal Sand FLDO80 Sample depth in grab = 12 cm A5.3 Subtidal Mud Sample depth in grab = 8 cm FLDO81 A5.2 Subtidal Sand FLDO82 Sample depth in grab = 6.5 cm A5.2 Subtidal Sand FLDO83 Sample depth in grab = 6.5 cm A5.2 Subtidal Sand

Fauna Sample (prior to sieving) Sample depth in grab = 13 cm A5.3 Subtidal Mud FLDO90 Sample depth in grab = 14 cm A5.3 Subtidal Mud A5.3 Subtidal Mud

7.7 Seabed Images

Video footage and digital photographs of the seabed were collected for broadscale habitat characterisation at ten stations within the Fylde MCZ targeting A5.3 subtidal mud and associated epifauna. Throughout the survey, the underwater visibility encountered was poor to very poor (see Annex 7.4 for the visibility assessment scale). Where possible, a preliminary field assessment of the sediment typology was carried out for each station using the method described in Section 2.2.

A representative selection of the survey images is presented below. Due to the poor visibility, no preliminary habitat data was available to map.

Table 6. A representative selection of seabed images captured during the Fylde MCZ habitat verification survey. The field notes include preliminary habitat descriptions and epifauna observations (laser points and rope divisions spaced 10 cm apart).

Station	Field Notes	Image
FLDO01	Very poor visibility	
FLDO08	Very poor visibility	

7.8 Macrofauna Analysis Results

Station (FLDO_)	OSGB36 Easting	OSGB36 Northing	Taxa richness (S)	No. of individuals (abundance) (N)	Shannon Index (H' log ^e)	Simpson's Evenness (1-λ')	Hills N1 Index	Infaunal Quality Index (IQI)	EUNIS L3 Broadscale Habitat (derived from PSA)	Associated JNCC 04.06 Biotope (derived from community data)	Station Inside/Outside MCZ Boundary?
1	310872	436675	34	511	1.55	0.64	4.73	0.71	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
2	310470	439992	10	37	1.57	0.67	4.80	0.63	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
3	309854	437480	22	209	1.52	0.61	4.59	0.66	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
4	313094	436448	32	447	1.62	0.68	5.07	0.68	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
5	312861	434563	31	440	1.43	0.61	4.19	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
6	312789	438570	12	45	1.99	0.83	7.34	0.63	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
7	316323	436442	28	399	1.96	0.73	7.13	0.66	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
8	315305	434747	30	538	1.50	0.65	4.50	0.70	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
9	318652	435272	24	475	1.54	0.66	4.64	0.67	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
10	316326	433619	29	460	1.58	0.66	4.86	0.72	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
11	313328	432322	11	11	2.40	1.00	11.00	0.71	A5.2 Subtidal Sand	SS.SSA.IMuSa.EcorEns	Inside
12	315174	431976	6	7	1.75	0.95	5.74	0.68	A5.2 Subtidal Sand	SS.SSA.IMuSa.EcorEns	Inside
13	312632	430734	27	127	2.20	0.79	8.99	0.83	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
14	316995	432180	6	17	1.61	0.82	5.01	0.58	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
15	318895	434560	27	435	1.48	0.61	4.37	0.68	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
15b	318874	434575	23	563	1.30	0.59	3.69	0.66	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
16	318764	435740	25	505	1.63	0.67	5.11	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
17	320483	435289	23	487	1.36	0.58	3.90	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
18	322461	436055	20	129	2.33	0.84	10.27	0.70	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
22	321915	431576	11	30	2.01	0.84	7.45	0.62	A5.3 Subtidal Mud	SS.SSA.CMuSa.AalbNuc	Inside
25	325721	438247	14	154	1.24	0.51	3.47	0.53	A5.3 Subtidal Mud	SS.SMU.CSaMu.LkorPpel	Inside
26	326142	436230	23	187	2.16	0.79	8.65	0.72	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
27	325315	436166	23	121	2.48	0.88	11.93	0.73	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
31	325691	430342	13	36	1.92	0.79	6.80	0.63	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
33	319726	429520	11	30	1.72	0.71	5.59	0.71	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
34	316322	429172	20	123	2.37	0.88	10.65	0.79	A5.2 Subtidal Sand	SS.SMU.CSaMu.AfilMysAnit	Inside
35	316989	426458	6	13	1.41	0.72	4.10	0.73	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
36	315196	428536	37	357	2.20	0.78	8.99	0.74	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
37	319053	425737	31	464	1.95	0.77	7.02	0.73	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
38	320649	426954	13	35	2.00	0.80	7.38	0.70	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
39	324148	428821	9	13	2.03	0.91	7.63	0.67	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
40	322733	425824	12	25	2.10	0.86	8.16	0.69	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
41	325595	425147	8	9	2.04	0.97	7.72	0.67	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
42	320562	423778	27	202	2.06	0.73	7.87	0.72	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Inside
43	317342	423820	13	28	2.15	0.87	8.61	0.76	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
44	318510	421945	11	11	2.40	1.00	11.00	0.71	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
45	316247	422515	13	29	2.35	0.92	10.54	0.72	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside
46	319807	422297	7	13	1.73	0.85	5.66	0.56	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
47	321653	420948	8	19	1.68	0.77	5.39	0.69	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
48	323201	421841	16	25	2.58	0.94	13.17	0.70	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
49	325728	420628	6	17	1.38	0.72	3.98	0.53	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
50	326140	422734	7	7	1.95	1.00	7.00	0.58	A5.2 Subtidal Sand	SS.SCS.ICS.SLan	Inside
51	324603	420193	4	4	1.39	1.00	4.00	0.50	A5.2 Subtidal Sand	SS.SCS.CCS.Blan/SS.SCS.ICS.MoeVen	Inside
52	323973	418765	4	6	1.33	0.87	3.78	0.65	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
53	321369	418395	10	22	1.67	0.71	5.33	0.73	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
54	320076	418622	7	15	1.84	0.89	6.31	0.67	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
55	317494	419106	10	25	2.05	0.89	7.75	0.70	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
56	315639	419742	13	18	2.43	0.95	11.34	0.73	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
57	315868	418328	21	36	2.78	0.94	16.08	0.75	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Inside
58	313548	418796	27	86	2.78	0.94	16.10	0.74	A5.2 Subtidal Sand	SS.SMU.CSaMu.AfilMysAnit	Inside
59	326288	418863	7	13	1.73	0.85	5.66	0.65	A5.2 Subtidal Nud	SS.SSA.IMuSa.FfabMaq	Inside
JJ	320200	423729	24	61	2.71	0.85	15.03	0.78	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Inside

61	308004	437621	28	513	1.48	0.61	4.41	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
62	310961	434090	8	10	2.03	0.96	7.58	0.76	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Outside
63	309084	435770	24	314	1.55	0.64	4.71	0.67	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
64	308454	433390	26	64	2.81	0.93	16.63	0.73	A5.3 Subtidal Mud	SS.SSA.CMuSa.AalbNuc	Outside
65	306615	435609	15	164	1.14	0.46	3.13	0.66	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
66	306272	433583	12	34	2.14	0.88	8.51	0.76	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Outside
67	310325	432236	6	6	1.79	1.00	6.00	0.68	A5.2 Subtidal Sand	SS.SCS.CCS.Blan/SS.SCS.ICS.MoeVen	Outside
68	306065	437488	31	335	1.64	0.63	5.16	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
69	311162	435683	33	492	1.53	0.63	4.61	0.70	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
70	303686	436583	28	143	2.19	0.77	8.92	0.75	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
71	302995	430861	28	326	1.78	0.68	5.95	0.71	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
72	303209	434029	28	338	1.74	0.63	5.70	0.71	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
73	313362	428674	13	20	2.46	0.95	11.68	0.80	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Outside
74	306962	431441	28	442	1.51	0.57	4.52	0.69	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
75	310197	429149	23	149	1.63	0.66	5.12	0.72	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
76	313072	423901	28	387	1.73	0.67	5.62	0.71	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
77	309535	425073	15	51	2.02	0.81	7.52	0.70	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
78	307185	424417	18	61	1.95	0.74	7.00	0.65	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
79	311462	419657	17	24	2.73	0.97	15.33	0.75	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Outside
80	311151	417568	33	387	1.67	0.68	5.33	0.71	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
81	313571	416424	12	25	2.08	0.84	7.97	0.76	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Outside
82	316528	417153	8	13	1.93	0.90	6.86	0.73	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Outside
83	313744	415113	11	22	2.18	0.90	8.82	0.70	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.ICS.MoeVen	Outside
84	304714	418658	9	23	1.81	0.80	6.11	0.80	A5.2 Subtidal Sand	SS.SCS.ICS.Glap/SS.SCS.CCS.Blan	Outside
85	305902	416589	21	37	2.92	0.97	18.59	0.76	A5.2 Subtidal Sand	SS.SCS.ICS.MoeVen	Outside
86	303440	421588	14	20	2.43	0.93	11.34	0.76	A5.2 Subtidal Sand	SS.SSA.CMuSa.AalbNuc	Outside
87	301853	425394	27	321	1.69	0.70	5.43	0.75	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
88	302942	428464	42	154	3.16	0.94	23.51	0.76	A5.4 Subtidal Mixed Sediment	SS.SMX.CMx.MysThyMx	Outside
89	300025	432177	31	275	1.56	0.57	4.74	0.70	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside
90	300189	435199	22	46	2.84	0.94	17.20	0.81	A5.3 Subtidal Mud	SS.SMU.CSaMu.AfilMysAnit	Outside

7.9 Sediment Particle Size Analysis (PSA) Results

Sample (FLDO_)	Water depth (m)	PSA grab OSGB36 Easting	PSA grab OSGB36 Northing	Mud/Silt (<63 µm) fraction	Very fine sand (63- 125 µm)	Fine sand (125-250 µm)	Medium sand (250- 500 μm)	Coarse sand (500- 1000 µm)	Very coarse sand (1-2 mm)	Very fine gravel (2-4 mm)	Fine gravel (4-8 mm)	Medium gravel (>8 mm)	Folk Classification	EUNIS L3 Broadscale Habitat
1	22.41	310903	436667	61.49	24.60	9.70	3.20	0.58	0.05	0.05	0.08	0.27	Slightly Gravelly Sandy Mud	A5.3 Subtidal Mud
2	19.14	310471	439978	3.70	30.49	44.60	20.62	0.29	0.13	0.10	0.11	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
3	21.54	309855	437484	39.67	38.10	20.87	1.35	0.00	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
4	19.72	313092	436428	37.88	39.10	20.84	2.06	0.17	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
5	20.30	312879	434555	34.54	5.52	36.70	23.20	0.00	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
6	15.30	312787	438584	5.21	48.80	44.40	0.79	0.00	0.29	0.24	0.24	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
7	16.55	316333	436435	42.18	42.50	15.29	0.00	0.00	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
8	18.28	315296	434736	57.65	22.80	16.00	3.56	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
9	18.47	318656	435265	55.61	40.80	3.60	0.00	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
10	19.05	316322	433614	54.20	14.95	23.80	7.04	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
11	18.18	313331	432314	0.99	0.00	11.88	71.40	15.52	0.19	0.04	0.04	0.00	Sand	A5.2 Subtidal Sand
12	16.36	315159	431973	0.00	0.00	20.39	62.00	17.55	0.00	0.00	0.00	0.00	Sand	A5.2 Subtidal Sand
13	20.78	312644	430761	76.77	6.55	11.87	3.84	0.00	0.26	0.06	0.09	0.57	Sandy Mud	A5.3 Subtidal Mud
14	18.18	316999	432177	11.30	0.57	54.70	33.49	0.00	0.00	0.00	0.00	0.00	Muddy Sand	A5.2 Subtidal Sand
15	18.47	318876	434568	56.27	30.30	11.76	1.64	0.05	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
16	18.09	318747	435723	61.26	26.60	11.41	0.81	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
17	18.09	320484	435280	73.73	16.88	6.19	2.81	0.38	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
18	16.26	322448	436041	71.12	21.10	5.35	1.97	0.36	0.00	0.08	0.00	0.06	Slightly Gravelly Sandy Mud	A5.3 Subtidal Mud
22	16.26	321915	431566	33.79	39.00	24.20	2.48	0.30	0.09	0.08	0.13	0.00	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
				39.44		28.10		0.30		0.09		0.00	- 3 - 7 7	
25	14.63	325698	438235		24.90		7.21		0.06		0.06		Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
26	15.21	326185	436227	57.23	31.50	8.16	2.35	0.06	0.09	0.11	0.17	0.33	Slightly Gravelly Sandy Mud	A5.3 Subtidal Mud
27	16.17	325335	436178	59.08	32.50	8.42	0.00	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud
28	15.11	325636	434664	30.52	39.40	16.02	7.95	3.41	0.39	0.34	0.33	1.61	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
29	15.21	324991	432640	25.82	52.30	16.62	3.04	1.55	0.39	0.19	0.10	0.02	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
30	13.00	326506	431928	15.54	24.09	39.10	20.59	0.73	0.00	0.00	0.00	0.00	Muddy Sand	A5.2 Subtidal Sand
31	13.00	325685	430352	9.76	24.92	46.20	17.03	0.98	0.62	0.41	0.09	0.03	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
32	15.30	322246	430461	26.89	31.60	34.90	6.65	0.00	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
33	15.98	319720	429527	2.12	0.01	41.15	56.73	0.00	0.00	0.00	0.00	0.00	Sand	A5.2 Subtidal Sand
34	19.05	316320	429188	18.38	2.57	9.71	41.60	27.08	0.17	0.13	0.17	0.14	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
35	17.99	317005	426469	3.26	0.05	8.66	64.00	23.15	0.78	0.10	0.00	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
36	19.75	315195	428538	38.15	5.48	28.10	24.60	2.12	0.54	0.50	0.34	0.15	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
37	16.65	319049	425730	38.42	9.18	18.95	24.50	7.43	0.67	0.34	0.27	0.24	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
38	15.50	320676	426960	0.82	1.95	39.30	48.40	7.82	0.80	0.58	0.26	0.10	Slightly Gravelly Sand	A5.2 Subtidal Sand
39	14.06	324152	428841	3.07	8.60	54.40	32.20	1.00	0.34	0.13	0.06	0.19	Slightly Gravelly Sand	A5.2 Subtidal Sand
40	14.25	322723	425820	10.49	3.03	46.50	37.80	1.40	0.34	0.17	0.19	0.09	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
41	9.64	325587	425143	16.62	8.43	49.80	24.26	0.00	0.16	0.27	0.17	0.27	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
42	15.88	320573	423776	38.12	10.86	25.80	20.45	4.35	0.16	0.10	0.08	0.08	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
43	18.38	317357	423820	6.45	0.46	15.63	62.50	14.10	0.40	0.23	0.15	0.06	Slightly Gravelly Sand	A5.2 Subtidal Sand
44	17.42	318520	421932	1.70	0.28	16.15	62.40	19.03	0.15	0.09	0.13	0.13	Slightly Gravelly Sand	A5.2 Subtidal Sand
45	18.86	316238	422516	3.83	0.45	10.69	60.10	24.20	0.35	0.18	0.14	0.07	Slightly Gravelly Sand	A5.2 Subtidal Sand
46	16.55	319802	422292	5.56	0.76	8.86	48.80	34.90	0.73	0.25	0.16	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
47	14.54	321648	420939	12.33	2.86	8.15	44.80	28.56	1.74	1.07	0.39	0.14	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
48	11.46	323217	421831	2.50	3.46	52.30	39.70	1.25	0.42	0.19	0.14	0.08	Slightly Gravelly Sand	A5.2 Subtidal Sand
49	8.30	325738	420634	4.70	9.74	55.70	28.34	0.20	0.32	0.33	0.18	0.43	Slightly Gravelly Sand	A5.2 Subtidal Sand
50	7.91	326157	422763	0.55	9.88	56.90	31.31	1.02	0.19	0.07	0.05	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
51	9.64	324620	420184	19.62	4.96	38.70	34.70	1.12	0.13	0.14	0.04	0.45	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
52	10.41	323971	418758	8.96	1.16	25.27	49.70	13.62	0.27	0.33	0.04	0.45	Slightly Gravelly Sand	A5.2 Subtidal Sand A5.2 Subtidal Sand
53	14.06	321381	418404	0.59	0.69	29.41	56.90	12.05	0.81	0.09	0.11	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand A5.2 Subtidal Sand
54		320075	418608			-			0.19		0.01		0 , ,	
55 55	15.40 17.22	320075 317481	418608	8.67 7.96	3.08 0.57	37.60 33.10	42.30 51.80	7.69 5.28	0.25	0.17	0.05	0.17	Slightly Gravelly Sand Slightly Gravelly Sand	A5.2 Subtidal Sand A5.2 Subtidal Sand

56	18.47	315645	419735	10.03	0.60	7.88	55.50	25.43	0.18	0.11	0.07	0.20	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
57	17.90	315852	418346	5.47	0.07	25.92	60.80	7.37	0.21	0.12	0.04	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
58	20.58	313529	418793	26.74	1.31	27.42	40.80	3.69	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
59	7.34	326289	418861	4.10	7.87	48.60	37.00	1.93	0.28	0.19	0.09	0.04	Slightly Gravelly Sand	A5.2 Subtidal Sand
60	19.91	315087	423706	8.17	0.64	18.75	57.60	13.71	0.39	0.29	0.32	0.13	Slightly Gravelly Sand	A5.2 Subtidal Sand
61	22.98	308028	437612	42.99	13.36	10.79	26.70	5.81	0.09	0.14	0.10	0.09	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
62	20.39	310942	434075	1.04	0.00	8.12	64.90	25.79	0.10	0.04	0.03	0.00	Sand	A5.2 Subtidal Sand
63	23.65	309104	435781	56.63	13.89	16.95	12.19	0.13	0.08	0.09	0.05	0.00	Slightly Gravelly Sandy Mud	A5.3 Subtidal Mud
64	22.98	308442	433420	43.48	3.15	17.10	32.40	3.50	0.21	0.07	0.02	0.19	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
65	25.67	306619	435591	48.84	14.67	12.70	18.25	3.99	0.22	0.18	0.16	1.00	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
66	21.93	306260	433583	0.86	0.00	16.82	70.00	12.02	0.13	0.04	0.02	0.00	Sand	A5.2 Subtidal Sand
67	20.49	310324	432238	5.08	0.66	7.44	58.10	28.45	0.13	0.06	0.04	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
68	22.50	306040	437471	41.39	11.14	25.20	20.70	1.03	0.19	0.14	0.03	0.17	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
69	22.70	311135	435673	41.68	7.37	28.30	21.77	0.12	0.13	0.14	0.17	0.21	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
70	23.56	303682	436572	45.25	3.61	21.26	28.20	1.72	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
71	27.78	302989	430864	35.85	2.94	7.09	46.00	8.16	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
72	24.52	303219	434046	39.30	2.87	18.46	35.20	4.16	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
73	20.49	313348	428658	3.33	0.06	11.18	60.90	23.61	0.54	0.26	0.19	0.03	Slightly Gravelly Sand	A5.2 Subtidal Sand
74	22.5	307003	431442	32.45	0.89	18.78	44.50	3.33	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
75	23.56	310201	429147	47.71	7.37	12.23	22.50	10.12	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
76	21.54	313063	423893	37.74	6.72	17.34	30.10	7.45	0.22	0.17	0.20	0.04	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
77	26.63	309525	425064	43.82	21.39	26.00	7.37	1.38	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
78	28.84	307180	424433	43.57	16.04	27.60	10.99	1.77	0.00	0.00	0.00	0.00	Muddy Sand	A5.3 Subtidal Mud
79	23.27	311462	419649	3.46	1.00	5.41	48.00	37.20	3.30	0.99	0.30	0.36	Slightly Gravelly Sand	A5.2 Subtidal Sand
80	22.70	311146	417554	23.06	3.12	26.22	37.90	8.51	0.67	0.17	0.03	0.30	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
81	20.10	313588	416431	5.98	1.03	14.98	51.30	25.72	0.40	0.26	0.26	0.05	Slightly Gravelly Sand	A5.2 Subtidal Sand
82	17.32	316555	417154	9.23	1.63	17.47	47.60	23.06	0.58	0.20	0.13	0.08	Slightly Gravelly Sand	A5.2 Subtidal Sand
83	19.53	313728	415112	4.45	0.04	14.35	61.50	18.81	0.36	0.22	0.10	0.10	Slightly Gravelly Sand	A5.2 Subtidal Sand
84	25.67	304714	418652	0.00	0.00	5.04	46.00	47.50	1.05	0.34	0.08	0.00	Slightly Gravelly Sand	A5.2 Subtidal Sand
85	28.26	305901	416584	9.24	2.02	29.80	41.70	16.03	0.62	0.34	0.14	0.08	Slightly Gravelly Sand	A5.2 Subtidal Sand
86	31.05	303448	421589	15.57	4.26	25.70	34.30	18.24	1.09	0.56	0.12	0.11	Slightly Gravelly Muddy Sand	A5.2 Subtidal Sand
87	37.77	301836	425415	45.25	6.49	24.80	15.44	6.90	0.96	0.17	0.01	0.00	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
88	32.97	302927	428453	22.66	8.05	20.03	17.36	8.39	3.45	3.50	4.27	12.29	Gravelly Muddy Sand	A5.4 Subtidal Mixed Sediment
89	28.36	300032	432156	30.06	3.81	34.50	30.48	0.65	0.09	0.08	0.10	0.22	Slightly Gravelly Muddy Sand	A5.3 Subtidal Mud
90	33.45	300191	435204	59.83	19.43	18.31	2.42	0.00	0.00	0.00	0.00	0.00	Sandy Mud	A5.3 Subtidal Mud

Would you like to find out more about us, or about your environment?

Then call us on

03708 506 506 (Mon-Fri 8-6)

Calls to 03 numbers cost the same as calls to standard geographic numbers (i.e. numbers beginning with 01 or 02).

email

enquiries@environment-agency.gov.uk

or visit our website

www.environment-agency.gov.uk

incident hotline 0800 80 70 60 (24hrs) floodline 0845 988 1188

Environment first: Are you viewing this on screen? Please consider the environment and only print if absolutely necessary. If you are reading a paper copy, please don't forget to reuse and recycle if possible.

Further information

Natural England evidence can be downloaded from our **Access to Evidence Catalogue**. For more information about Natural England and our work see **Gov.UK**. For any queries contact the Natural England Enquiry Service on 0300 060 3900 or e-mail **enquiries@naturalengland.org.uk**.

Copyright

This report is published by Natural England under the Open Government Licence - OGLv3.0 for public sector information. You are encouraged to use, and reuse, information subject to certain conditions. For details of the licence visit **Copyright**. Natural England photographs are only available for non-commercial purposes. If any other information such as maps or data cannot be used commercially this will be made clear within the report.

© Natural England and other parties 2017

Report number RP04112 ISBN 978-1-78354-412-7