LAND AT WILMINGTON, NEAR DARTFORD, KENT.

AGRICULTURAL LAND CLASSIFICATION
DETAILED SURVEY
JANUARY 1993

AGRICULTURAL LAND CLASSIFICATION

LAND AT WILMINGTON, NEAR DARTFORD, KENT

DETAILED SURVEY

1. INTRODUCTION

- 1.1 In January 1993, a detailed Agricultural Land Classification, (ALC) survey was carried out on 72.5 hectares of land at Wilmington, near Dartford in Kent. ADAS was commissioned by MAFF to determine the quality of land affected by proposals to develop the land as a 9-hole golf course.
- 1.2 The land was previously surveyed by the Resource Planning Team, ADAS Statutory Group in March 1992 at a reconnaissance scale of one boring per 4 ha. The later survey in January 1993 represents a more detailed level of one boring per hectare. A total of 64 borings (17 during the 1992 survey and 47 in 1993) were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land, (MAFF, 1988). These guidelines provide a framework for classifying land according to the extent to which its physical and chemical characteristics impose long term limitations on its agricultural use.
- 1.3 At the time of the survey, most of the area surveyed was in arable use, (winter cereals and oilseed rape) whilst small areas towards the west of the site were in permanent pasture some with scattered derelict orchard.
- 1.4 The distribution of grades is shown on the attached ALC map and the area and extent is given below. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement may be misleading. This map supersedes the previous ALC information for this site.

Table 1: Distribution of Grades and Sub-grades

		Area (ha)	<pre>% total agricultural land</pre>
Grade	2 3a 3b	34.4 24.7 5.3	53.4 38.4 8.2
Total a	agricultural area	<u>64.4</u>	<u>100</u>
Woodlar Urban	ricultural nd area of site	0.1 7.7 <u>0.3</u> 72.5 ha	

- 1.5 A description of the grades and land use categories identified in this survey is given in Appendix 1.
- 1.6 Grades 2, 3a and 3b have been mapped across the site, with small areas of woodland, non-agricultural and urban land in the vicinity of Rowhill Grange and Rowhill Wood towards the western boundary of the site.

The principal limitation to agricultural land quality on the site is that of soil droughtiness. The severity of the limitation varies according to the relative depths of soil over chalk, the textural characteristics of the soil and profile stoniness. The climatic regime at this locality is relatively warm and dry such that very shallow soils over chalk have been assigned to sub-grade 3b, whilst deep, stoneless profiles are generally graded 2. Less significantly, soil wetness and/or workability, or topsoil stone contents act as a limitation across localised parts of the site.

2. CLIMATE

- 2.1 Climatic criteria are considered first when classifying land since climate can be over-riding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 2.2 Estimates of climatic variables relevant to the assessment of land quality were obtained by interpolation from a 5km grid point dataset, (Met Office, 1989) for representative locations in the survey area.

Table 2: Climatic Interpolation

Grid Reference	TQ 529 71	8 TR 523 709
Altitude (m, AOD)	40	65
Accumulated Temperature		
(°days,Jan-June)	1459	1431
Average Annual Rainfall (mm)	589	605
Field Capacity Days	114	118
Moisture deficit, wheat (mm)	120	116
Moisture deficit, potatoes (mm)	116	111

- 2.3 The main parameters used in the assessment of an overall climatic limitation are, average annual rainfall, a measure of overall wetness, and accumulated temperature, as a measure of the relative warmth of a locality. In this instance, climate does not represent an overall limitation to agricultural land quality. In addition, no local climatic factors such as exposure or frost risk are significant.
- 2.4 However, climatic factors, specifically field capacity days and soil moisture deficits, do interact with soil factors to influence soil wetness and droughtiness limitations. At this locality, the climate is very dry in both a regional and national context. The low number of days when soils are at field capacity and the correspondingly high moisture deficits will increase the risk of soil droughtiness, although problems associated with soil wetness and workability are less likely to occur.

3. RELIEF

3.1 The site lies at an altitude of 40-65m AOD, the highest land occurring towards the south west around Rowhill Grange and falling gently north-eastwards. Nowhere on the site do altitude or gradient affect agricultural land quality.

4. GEOLOGY AND SOILS

- 4.1 British Geological Survey, (1977) Sheet 271, Dartford shows the site to be underlain mainly be Cretaceous Upper Chalk deposits, although small areas of Thanet Beds are shown in the south-western and north-eastern parts of the site. A very small area of Boyn Hill Gravel overlies the outcrop of Thanet Beds towards the north-east part of the site.
- 4.2 Soil Survey of England and Wales, (1983) Sheet 6, Soils of South-East England, (1:250,000) shows the entire site to comprise soils of the Frilsham association. The accompanying legend describes these as 'well drained mainly fine loamy soils over chalk, some calcareous. Shallow calcareous fine loamy and fine silty in places', (SSEW, 1983).
- 4.3 Detailed field examination of the soils on the site indicates that the majority comprise varying depths of loamy and clayey drift over chalk. Most soils are well drained, although occasional profiles are affected by slight drainage imperfections.

5. AGRICULTURAL LAND CLASSIFICATION

- 5.1 The ALC grading of the site is largely determined by the interaction between soil and climatic factors. Grades 2, 3a and 3b have been mapped on the basis of soil droughtiness and/or soil wetness and workability limitations. Most of the land is primarily affected by varying degrees of soil droughtiness.
- 5.2 Table 1 provides details of the area and extent of each grade. The distribution of ALC grades is shown on the attached ALC map.
- 5.3 The location of the soil observation points is shown on the attached auger boring map.

5.4 <u>Grade 2</u>

Very good quality agricultural land has been mapped across much of the northern and central parts of the site, accounting for 53% of the total agricultural land surveyed.

It occurs broadly in two situations.

- Although soils have developed over chalk deposits, a number of profiles do not pass to chalk. They tend to be deep and well drained. Profiles typically comprise medium or heavy clay loam topsoils which may be non-calcareous but are more usually calcareous and contain up to 6% total flints by volume. Subsoils are similarly textured, although they tend to pass to heavier clay horizons with depth, and may contain between 10 and 30% flints by volume in the lower subsoil

or may pass to chalky drift low in the profile. In addition, occasional profiles contained sandier horizons of sandy clay loam or sandy loam in the subsoil.

The combination of soil factors and the dry climatic regime gives rise to a slight risk of soil droughtiness. Where topsoils of heavy clay loam were encountered, land is also limited by a slight workability restriction.

- Land is also graded as 2 where profiles similar to those described above were observed, but where soils rest over chalky horizons (ie, 50% + chalk) or chalk deep in the profile. Soils are well drained and typically pass to chalky horizons or chalk below about 65-85 cm depth. This land is limited by slight droughtiness resulting from a reduced water capacity available for plant growth.

5.5 Grade 3a

Land assigned to this grade has been mapped as two distinct units whose characteristics and limitations to agricultural use are different.

- The 3a mapping unit towards the north of the site comprises soils which are limited principally by wetness. Profiles comprise medium or sandy clay loam topsoils which may be calcareous or non-calcareous and which contain up to 20% total flints by volume, (< 15% > 2 cm). These overlie heavier textures in the subsoil, such as heavy clay loam or clay. Gleying is evident from below the topsoil and the clayey subsoil is slowly permeable. Wetness class III is appropriate to these profiles which equates to grade 3a in this climatic regime. Occasional profiles were found to be better drained, but limited by soil droughtiness as a result of subsoil stoniness of up to 25% flints by volume. Such stone contents have the effect of reducing the reserves of water available for plant growth to the extent that in this dry climatic area, grade 3a is appropriate.
- The larger area of grade 3a across the central and southern part of the site comprises soils which have developed over chalk and is thereby limited by soil droughtiness. Calcareous medium, or more usually, heavy clay loam topsoils containing between 1 and 4% total flints and up to 2% total chalk by volume occur across this area. These overlie similar textures, heavy silty clay loam or clay in the subsoil which becomes progressively more chalky with depth, passing to pure chalk, (usually impenetrable to soil auger) between 50 and 75 cm depth. Due to relatively restricted rooting into the chalk, profile available water capacity is reduced such that crops may experience slight drought stress to the extent that grade 3a is appropriate.

5.6 Grade 3b

The areas mapped as grade 3b represent land which is very shallow over chalk. Profiles comprise medium or heavy clay loam topsoils which are calcareous and contain 2-5% total flints and up to 10% chalk by volume. These directly overlie chalky horizons, (ie, 50% + chalk), or pure chalk from 25-30 cm depth. Relatively shallow rooting into the chalk causes a significant droughtiness limitation in this dry climatic regime.

January 1993

ADAS Ref: 2003/133/92 MAFF Ref: EL 20/84 Resource Planning Team Guildford Statutory Team

ADAS Reading

SOURCES OF REFERENCE

- British Geological Survey (1977), Sheet 271, Dartford, 1:50,000.
- MAFF (1988) Agricultural Land Classification of England and Wales:
 Revised guidelines and criteria for grading the quality of agricultural land.
- Meteorological Office (1989) Climatic datasets for Agricultural Land Classification.
- Soil Survey of England and Wales (1983) Sheet 6, Soils of South-East England, 1:250,000 and accompanying legend.

program: ALCO11 COMPLETE LIST OF PROFILES 11/08/93 WILMINGTON DETAIL SURVEY page 1

					MOTTI ES		DED			e T	ONES		STRUCT/	SUBS	2				
CAMDLE	DEDTU	TEVTUDE	COLOUR		MOTTLES								CONSIST			TMD S	epi 1	CALC	
SAMPLE	DEPIH	TEXTURE	COLOUR	CUL	ABUN	CONT	CUL.	GLET	>2	>0	LIII	101	CON2121	SIK	PUR	THP 3	ort '	CALC	
2	0-32	mc1	10YR32 00						6	0	HR	8						Υ	
	32-50	hc1	10YR54 00						0	0	HR	20		M				Υ	
	50-60	c	10YR53 00	75YR5	8 00 C			γ	0	0	HR	20		M				Υ	Imp 60+, stones
4	0-28	mc1	10YR32 00								HR	4							
	28-120	hc1	10YR44 00						0	0	HR	5		М					
_	0.00		100042.00						•	^	HR	2						Y	
5	0-32	hc1	10YR42 00						2		CH	3		ы				Ÿ	Imp 45+, chalk
	32-45	hc1	10YR64 00							0	Cri	80		M P				Y	Rooting to 70
	45-70	ch							U	U		0		r				T	Rooting to 70
6	0-30	mc1	10YR32 00						2	0	HR	3						Y	
	30-42	С	10YR53 00						0	0	СН	5		М				Υ	
	42-60	С	10YR53 00	75YR6	8 00 M	1	0YR71	00 Y	0	0	СН	2		P			Y	Υ	
	60-90	С	25 Y62 00	05YR5	M 00 8			Υ	0	0		0		P			γ		Imp 90+, stones
7	0-30	hc1	10YR32 00						0	0		0							
	30-70	hc1	10YR54 00						0	0		0		М					
	70-120	sc1	10YR54 00						0	0		0		M					Few chalk frags.
0	0.00	1 4	100000 00						0	^	HR	1							
8	0-28	hc1	10YR32 00						0		пк СН	2 5		M				Υ	
	28-55	hc1	10YR44 00 10YR54 00						0	0	СП	0		M				T	
	55-120	hc1	101834 00						U	U		U		11					
9	0-28	mc1	10YR32 42						0	0	HR	2							
	28-75	С	25Y 42 00	10YR4	6 00 C			Υ	0	0		0		M			Υ		
	75-95	С	10YR56 00					Υ	0	0	HR	25		Ρ			Υ		Imp 95+, stones
10	0-26	mc1	10YR32 00						0	0	HR	2							
	26-60	mc1	10YR43 00						0	0	HR	5		М					
	60-120	С	75YR56 00						0	0		0		М					
12	0.22		100022.00						Λ	^	ЦĐ	2						Υ	
12	0-32 32-50	mc1	10YR32 00 10YR44 00								HR	2		м				7	
	50-70	c hcl	101R44 00						0			0		M M					Imp 70+, stones
	30-70	FIC I	1011134 00						·	Ŭ		•		• • •					Thip Fort Sources
14	0-25	mcl	10YR32 00						0	0	HR	2							
	25-35	hc1	10YR53 00						0		CH	5		М				Υ	
	35-55	hzcl	25 Y82 00						0	0	СН	90		Р				Υ	
	55-83	hc1	10YR56 82						0	0	СН	40		Р				Y	Imp 83+, chalk
	83-120	ch							0	0		0		P				Y	Rooting to 120
16	0-28	mc1	10YR32 00								HR	2							
	28-60	С	10YR56 00						٥	0		0		М					
	60–80	С	10YR56 00						0	0	HR	10		М					Imp 80+, stones
17	0-32	mc1	10YR32 00						3	Λ	HR	3						Y	
17	0-32 32-50	mc1	.10YR74 00								CH	80		Р				Y	Imp 50+, chalk
	50-70	ch							0		J. 1	0		P				Y	Rooting to 70
	50-70	.							•	J		v		•				٠	

					MOTTLES		050			•	-050			0			
SAMPLE	DEPTH	TEXTURE	COLOUR		MOTTLES ABUN		PED						STRUCT/	SUBS	THE DE	241.2	
GALIF CL	OLPIN	ICATORE	COLOUR	COL	ADUN	CONT	WL.	GLEY	>2	>0	LIII	101	CONSIST	SIK POR	IMP SPL	CALC	
18	0-30	mcl	10YR42 00						0	0	HR	1				Y	
	30-60	hc1	10YR44 00						0	0		0		M		γ	
	60-75	С	10YR54 00						0	0	HR	2		М		γ	
	75-80	С	10YR54 00						0	0	CH	10		М		Υ	
	80-120	hc1	10YR74 00						0	0	СН	20		M		Y	Chalky drift
19	0-33	hc1	10YR32 00						0	0	HR	1				Y	
	33-60	hc1	10YR74 00						0	0	CH	5		М		Υ	+2% flints
	60-68	hc1	10YR74 00						0	0	CH	20		М		γ	Imp 68+, chalk
	68–110	ch							0	0		0		Р		Υ	Rooting to 110
20	0-30	mcl	10YR32 00						0	0	HR	2				Υ	
	30-55	hcl	10YR43 00						0	0	HR	2		M		Υ	
	55-80	hc1	10YR74 00						0	0	CH	20		М		Υ	+2% flints
	80-120	ch							0	0		0		Р		Y	Rooting to 120
21	0-30	hc1	10YR32 00						0	0	HR	2				Y	
	30-45	hc1	10YR43 00						0	0		0		M		Υ	
	45-70	hcl	10YR54 00						0	0		0		M		Υ	
	70-120	c	75YR56 00						0	0		0		M		Υ	
22	0-33	mcl	10YR42 00						0	0	HR	1					
	33-50	hc1	10YR44 54						0	0		0		M		Y	
	50-67	С	75YR56 00						0	0		0		M		Υ	
	67-120	hc1	10YR74 00						0	0	СН	20		M		Υ	Chalky drift
24	0-30	mc1	10YR42 00						0	0	HR	2				Υ	
	30-45	ch	10YR82 00						0	0		0		Р		Υ	Imp 45+, chalk
	45–70	ch							0	0		0		Р		Y	Rooting to 70
26	0-32	mc1	10YR42 00						٥	n		0				Υ	
	32-60	hc1	10YR54 00								HR	2		М		Ÿ	Few chalk frags.
	60-65	hc1	10YR64 00							0		10		M		Y	Tow one in the
	65-80	hcl	10YR74 00						0			80		P		Ý	Imp 80+, chalk
	80-110								0			0		P		Y	Rooting to 110
28	0-30	hc1	10YR42 00						0	0	HR	2				Y	
	30-65	hc1	10YR54 00						0	0		0		М		Y	
	65-90	С	75YR56 00							0	HR	2		М		Y	Imp 90+, stones
30	0-30	hc1	10YR42 00						٥	ο	HR	2				Y	
	30-75	С	10YR53 00						0	0		0		М		Υ	Few chalk frags
	75–90	С	10YR53 00	75YR68	00 C	25	5Y 63 0	0 Y	0	0	HR	2		Р	Υ	Y	Imp 90+, stones
31	0-30	hcl	10YR42 00						0	0	HR	4					
	30-45	c	75YR46 00							0		ο		м		Y	
	45–65	С	10YR64 00							0	СН	20		M		Y	
	65-89	hzc1	10YR56 00							0		70		Р		Υ	Imp 89+, chalk
	89–120	ch								0		0		P		Υ	Rooting to 120

							DCD.				FONES		CTDUCT/	CUDE			
SAMDI E	DEDTU	TEVTUDE	COL OUR		MOTTLES		PED			_			STRUCT/	SUBS STR POR	TMD SDI	CALC	
SAMPLE	DEPIH	TEXTURE	COLOUR	WL	ABUN	CONT	COL.	GLET	>2	>0	LIII	101	CO43131	SIK FOR	THE SEC	CALC	
32	0-30	hcl	10YR42 00						0	0	HR	2				Υ	
	30-42	c	10YR64 00						0		CH	10		М		Υ	
	42-49	hzcl	10YR74 00						0		СН	80		P		Y	Imp 49+, chalk
	49-80	ch							0	0		0		P		Υ	Rooting to 80
																	-
33	0-30	hcl	10YR32 42						0	0	HR	2				Υ	
	30-45	С	10YR64 00						0	0	СН	20		М		Υ	
	45-52	hzc1	10YR74 81						0	0	СН	80		Р		Y	Imp 52+, chalk
	52-85	ch							0	0		0		Р		Y	Rooting to 85
34	0-20	mcl	10YR42 00						0	0	HR	2					
	20-30	hc1	10YR42 00						0	0	HR	2		М			
	30-45	С	10YR46 56						0	0		0		М			
	45-70	C	10YR64 74						0		CH	40		М		Υ	
	70-85	hzcl	10YR74 81						0	0	СН	60		Р		Y	Imp 85+, chalk
	85-120	ch							0	0		0		Ρ.		Υ	Rooting to 120
35	0-28	hc1	10YR42 00						0		HR	2				Y	
	28-37	hc1	10YR44 54						0		CH	10		M		Y	T
	37-65	hcl	10YR54 64						0		СН	40		P		Y	Imp 65+, chalk
	65-100	ch							0	0		0		Р		Y	Rooting to 100
36	0-28	ho1	10YR42 00						0	۸	HR	2				Y	
30	28-35	hc1 c	10YR42 50						0		СН	20		М		Ϋ́	
	25-35 35-75	hzc1	101R73 81						0		СН	90		., Р		Ÿ	Imp 75+, chalk
	75-80	ch	101175 01						0			0		Р		Ÿ	Rooting to 80
									•								-
37	0-28	hc1	10YR42 00						0	0	HR	2				Υ	
	28-35	С	10YR54 00						0	0	СН	10		М		Υ	
	35-60	С	10YR64 00						0	0	CH	30		M		Υ	
	60-90	С	05 Y42 00	10YR4	6 00 M			Y	0	0	СН	50		Р	Υ	Y	Imp 90+, chalk
	90-120	ch						Y	0	0		0		P	Y	Y	Rooting to 120
3 9	0-30	hc1	10YR42 00								HR	1				Y	
	30-65	С	10YR53 00	10YR5	6 00 F						CH	30		М		Y	Imp 65+, chalk
	65–100	ch							0	0		0		P		Y	Rooting to 100
			400040 00						_	_		_				v	
41	0-30	hc1	10YR42 00								HR	2				Y Y	
	30-38	c	10YR54 00	00000	NA AA F						CH CH	20		М		Y	
	38-70	c	25Y 64 00					v	0	0	СН	40 0		M P		•	
	70-80 80-120	c hzcl	05Y 52 53 10YR72 00	/31K4	4 00 C			Y			СН	80		M		Υ	Chalky drift
	00-120	11201	101872 00					1	٠	Ū	М	00		.,		•	onarny arriv
43	0-30	mcl	10YR42 32						0	0	HR	2				Υ	
	30-45	c	10YR54 44						0		СН	10		M		Υ	
	45-85	hzcl	10YR74 00						0		СН	35		М		Y	Imp 85+, chalk
45	0-30	hc1	10YR42 32						0	0	HR	3				Y	
	30-52	c	10YR44 00						0	0	HR	5		М			
	52-65	С	10YR54 00	75YR5	6 00 C	0	OMNOO	00	0	0	HR	1		М			Imp 65+, chalk
	65-100	ch							0	0	HR	3		Р		Y	Rooting to 100

program: ALC011

......

					10TTLES	;	PED			-STONE	:S	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	ΩL								CONSIST		IMP SPL	CALC	
48	0-34	hc1	10YR42 00						n	O HR	3					
10	34-70	c	10YR54 00							O HR	1		М			
	70-90	c	10YR54 56		1 00 F					O HR	1		M			
	90-120		05Y 63 00					Υ		O HR	1		P			
	30 .20	•	00, 00 00	TOTAG				,	•	• • • • • • • • • • • • • • • • • • • •	•		•			
49	0-35	hc1	10YR42 00						0	O HR	2					
	35-50	С	10YR54 00							0 HR	1		М			
	50-78	С	10YR54 00							0 CH	20		М		Y	
	78-95	hzcl	05Y 64 00							0 CH	60		Р		Y	Imp 95+, chalk
	95-120	ch							0	O HR	2		Р		Y	Rooting to 120
50	0-29	mcl	10YR42 32						0	O HR	2				Y	
	29-50	С	10YR54 00						0	0 CH	15		M		Y	
	50-75	С	10YR64 66						0	0 CH	40		М		Υ	Imp 75+, chalk
	75–120	ch							0	O HR	2		P		Y	Rooting to 120
51	0.00	4 3	10/040 20							0.110	•				v	
51	0-29 29-39	hc1	10YR42 32						0	0 HR	2				Y	
		C	10YR54 00						0	0 CH	60 60		P		Y	Imp 90+, chalk
	39-90 90-120	hzc1	10YR73 00	ļ!						0	0		P P		Y	Rooting to 120
	90-120	ch							U	U	U		•		Ţ	ROOLING to 120
52	0-28	hc1	10YR42 32						0	O HR	2				Y	
	28-50	С	10YR46 00						0	O HR	2		М		Y	
	50-80	hzcl	10YR64 00						0	0 CH	20		М		Y	Imp 80+, chalk
	80-120	ch							0	O HR	2		Р		Y	Rooting to 120
53	0-28	hc1	10YR42 32						0	O HR	4				Y	
	28-50	hzcl	10YR72 73						0	O CH	70		Р		Υ	Imp 50+, chalk
	50-90	ch							0	O HR	3		P		Υ	Rooting to 90
55	0-34	mc1	10YR42 00						0	0 HR	1					
	34-55	hc]	10YR54 56						0	0	0		M		Y	
	55-80	C	05Y 53 00	10YR56	5 00 M			Y	0	0	0		Р	Y	Y	
57	0-29	hc1	10YR42 00	ı					0	O HR	1				Y	
	29-55	hc1	10YR66 76						0	0 CH	10		M		Υ	
	55-80	hzcl	10YR73 00	I I					0	0 CH	55		Р		Υ	Imp 80+, chalk
	80-120	ch							0	O HR	2		Р		Y	Rooting to 120
59	0-28	hc1	10YR42 32						0	O HR	2				Y	
	28-35	C	101R42 32							0 CH	25		м		Ÿ	
	35–50	hzcl	101R73 00						0	0 CH	60		P		Ÿ	Imp 50+, chalk
	50-90	ch	1018/3 00							O HR	2		P		Ý	Rooting to 90
	J. 30	5 .1							•	• III	_		•		•	
61	0-30	hc1	10YR42 32						0	O HR	3				Y	
	30-35	c	10YR54 00						0	0 CH	20		М		Υ	
	35-70	hzc1	10YR73 00						0	0 CH	30		М		Y	Imp 70+, chalk
	70–110	ch							0	0 HR	2		P		Y	Rooting to 110

COMPLETE LIST OF PROFILES 11/08/93 WILMINGTON DETAIL SURVEY

					MOTTLES		PED	DSTONES S			STRUCT/	SUBS	3					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY >2	>6	LITH	н тот	CONSIST	STR	POR	IMP	SPL	CALC	
65	0-28	hc1	10YR42 00					0	0	HR	2						Y	Imp 28+, chalk
	28-68	ch						0	0	HR	5		Р				Y	Rooting to 68
66	0-26	hc1	10YR42 00					0	0	HR	2						Y	
	26-58	hzcl	05Y 73 00					0	0	CH	55		Ρ				Y	Imp 58+, chalk
	58-98	ch						0	0	HR	2		Ρ				Y	Rooting to 98
67	0-37	hcl	10YR42 00					0	0	HR	2						Y	
	37-50	hzcl	10YR73 00					0	0	CH	60		Ρ				Υ	Imp 50+, chalk
	50-90	ch						0	0	HR	3		Р				Υ	Rooting to 90
68	0-28	hcl	10YR32 42					0	0) HR	5						Y	
	28-43	hzc1	10YR73 00					0	0	CH	60		Р				Υ	Imp 43+, chalk
	43-83	ch						0	0	HR	3		₽				Y	Rooting to 83
69	0-30	hc1	10YR42 00					0	C	HR	2						Υ	
	30~57	hcl	10YR54 00					0	0	HR	1		М					
	57-65	С	10YR54 00	75YR5	6 00 C			0	0	HR	5		М				Υ	Imp 65+, stones

SAMP	l F	Δ:	SPECT				WFT	NESS	_WH	EAT-	-P0	TS-	M.	REL	EROSN	FRO	ST	CHEM	ALC	
NO.	GRID REF	USE	0, 50,	GRONT	GLEV	/ SPI	CLASS			MB		MB	DRT	FLOOD		XΡ	DIST	LIMIT		COMMENTS
,,,,,	GRID KEI	USL		GRUNT	GLE 1	J. L	CLAGG	divide	Α.		~"		DICI	1 2005	_	· · ·	0.0			••••
2	TQ52707190	CER			050		1	1	83	-37	90	-26	3B					DR	ЗА	
4	TQ53107190		NE	01			1	1	149		113	-3	2					DR	2	
5	TQ52607180		N	01			1	2	90	-30		-20	3B					DR	3B	
6	TQ52707180		s	01	042	042	2	2	110		108	-8	3A					DR	ЗА	
7	TQ52807180		•	•	٠.٠	•	1	2	156		118	2	2					WD	2	
,	1002007100	OLIK					•	-	, 50	-		_	-							
8	TQ52907180	RAP	N	01			1	2	154	34	116	0	2					WD	2	
9	TQ53007180		NE	01	028	กรล	3	<u>-</u> ЗА	115		117	1	- 3А					WE	3A	
10	TQ53107180		N	01	020	VLO	1	1	140		114	-2	2					DR	2	
12	TQ52707170		NE	01			i	1	105		117	1	3A					DR	2	
14	TQ52907170		N	01			i	1	124		97	-19	3A					DR	2	
17	1032307170	DAK	14	٠,			•	•	124	7	31	-13	JA						-	
16	TQ53107170	RAD	ΝE	01			1	1	107	_13	115	-1	3A					DR	2	
17	TQ52507160		E	02			1	1	89	-31		-21	3A					DR	3A	
			NE	01			1	1	149		117	1	2					DR	2	
18	TQ52607160											-1	2					WD	2	
19	TQ52707160		N NE	02			1	2	132		115							DR	2	
20	TQ52807160	CER	NE	02			1	1	141	21	114	-2	2					UK	2	
21	T052007160	OCD	N	01			4	2	145	25	117	•	2					WD	2	
21	TQ52907160		N	01			1	2	145		117	1	2					DR	2	
22	TQ53007160		N	02			1	1	149		118	2	2					DR	2 3B	
24	TQ52507150		E	01			1	1	87	-33		-23	3B					DR DR	2	
26-	TQ52707150		NM NM	02			1	1	132		114	-2	2					WD	2	
28	TQ52907150	USK	NE	01			1	2	120	U	117	1	3A					MU	2	
20	T0E21071E0	OCD	kn.i	01	075	075	2	2	115	E	117	1	3A					DR	ЗА	
30	TQ53107150		NW NE	01	0/3	0/3	2	2				1						WD	2	
31	TQ52507140		NE	02			1	2	133		111	-5	2					DR	3A	
32	TQ52607140		NE	02			1	2	101		100	-16	3A					DR	3A	
33	TQ52707140		N	02			1	2	105		100	-16	3A					DR	2	
34	TQ52807140	USK	N	01			1	1	131	11	109	-7	2					DK	2	
25	T052007140	ocn					,	2	112	7	100	16	24					DR	ЗА	
35	TQ52907140		N	01			1	2	113		100	-16	3A					DR	3A	
35	TQ53007140		N	01	000	000	1	2	96	-24		-20	3B					WD	2	
37	TQ53107140		N	01	060	000	2	2	131		107	-9	2					DR	2 3A	
39	TQ52507130				070		1	2	118	-	108	-8	3A							
41	TQ52707130	RGR			070		1	2	134	14	108	-8	2					WD	2	
	T0F0003400	055							445	_	110		2					DR	2	
43	TQ52907130						1	1	115		112	-4								
45	TQ53107130						1	2	119		111	-5						DR	3A	
48	TQ52607120				090		1	2	137		117	1	2					WD	2	
49	TQ55207120						1	2	136		115	-1						MD	2	
50	TQ52807120	CER					1	1	133	13	110	-6	2					DR	2	
							_	_		_								00	24	
51	TQ52907120						1	2	122		96	-20						DR	3A	
52	TQ53007120		_				1	2	140		115	-1	2					WD	2	
53	TQ53107120		S	02	_		1	2	99	-21		-25						DR	3A	
55	TQ52507110				055	055	2	2	109		114	-2						WE	2	
57	TQ52707110	PGR					1	2	133	13	108	-8	2					WD	2	
59	TQ52907110						1	2		-17		-21						DR	3A	
61	TQ53107110	CER	S	02			1	2	128	8	112	-4	2					WD	2	

page 2

LIST OF BORINGS HEADERS 11/08/93 WILMINGTON DETAIL SURVEY

program: ALC012

SAMP	LE	A	SPECT				WETI	VESS	-WH	EAT-	-P0	TS-	M. F	REL	EROSN	FRO	ST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	Ε	ΧP	DIST	LIMIT		COMMENTS
65′	TQ52507100	PGR	S	02			1	2	82	-38	88	-28	3B					DR	3B	
66	TQ52607100	PGR	S	02			1	2	105	-15	93	-23	3A					DR	3A	
67	TQ52707100	PGR	S	02			1	2	107	-13	99	-17	3A					DR	3A	
68	TQ53107100	CER	S	02			1	2	93	-27	90	-26	3B					DR	3B	
69	TQ52307090	PGR					1	2	98	-22	108	-8	3B					WE	2	