Proposed Cement Works Snodland Kent

Agricultural Land Classification & Statement of Site Physical Characteristics

March 1998

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 2013/016/98 FRCA Reference EL 20/1650

AGRICULTURAL LAND CLASSIFICATION & STATEMENT OF SITE PHYSICAL CHARACTERISTICS

PROPOSED CEMENT WORKS SNODLAND KENT

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey and assessment of site physical characteristics of approximately 182 hectares of land at Snodland to the north west of Maidstone in Kent. The survey was carried out during March 1998.
- The survey was undertaken by the Farming and Rural Conservation Agency (FRCA) on behalf of the Ministry of Agriculture Fisheries and Food (MAFF). The work was carried out in order to determine the land quality and site physical characteristics of land affected by proposals for chalk extraction and the construction of a new cement factory. Parts of the site will be subsequently restored to agriculture. This survey supersedes any previous ALC information for this land.
- The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I.
- At the time of survey the agricultural land was in either winter cereals or oilseed rape Parts of the site mapped as. Other land comprise farm buildings and tracks woodland and roads. Holborough Quarry, which is disused is mostly in non agricultural uses except for two parcels of restored land in arable use. Permission to enter a small paddock at the east of the site was not obtained, and it has therefore been shown as. Not surveyed.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading.
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

¹ FRCA is an executive agency of MAFF and the Welsh Office

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% survey area	% site area		
2	38 0	29 2	20 9		
3a	59 6	45 7	32 8		
3b	28 1	21 6	15 5		
4	46	3 5	2 5		
Other land	50 8		27 9		
Land not surveyed	0 7		0 4		
Total Survey Area	130 3	100 0	71 7		
Total Site Area	181 8		100 0		

- 7 The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. In total 142 borings and 10 soil inspection pits were described
- The agricultural land on this site has been classified in the range Grade 2 very good quality to Grade 4 poor quality with a high proportion of Subgrade 3a good quality. The principal limitation is soil droughtiness with occasional gradient restrictions. Fine silty soils derived from deposits of Middle and Lower Chalk or head drift deposits occur across the site.
- Much of the site comprises topsoils directly over the chalk substrate. Limited soil depth and restricted rooting into the chalk in combination with the prevailing climate acts to restrict the amount of water available in the profile for crops. As a result the level and consistency of yields may be adversely affected. The relative depth of the soils and hardness of the chalk bedrock determines the severity of the soil droughtiness restriction, and thereby the ALC grade. Subgrades 3a and 3b are appropriate across most of such land. At the base of the disused quarry, the land has been restored such that very thin topsoils rest on hard chalk with very limited rooting. Subgrade 3b and Grade 4 are mapped here.
- Grade 2 land is assigned where soils are deeper over the chalk in conjunction with drift deposits of head. Deep well drained fine silty and clayey soils result in land which has only minor restrictions in terms of droughtiness arising from the interaction of soil properties and climatic conditions.
- Localised parts of the site notably towards the west and south west are affected by gradient restrictions where steep slopes restrict the safe and efficient use of farm machinery

FACTORS INFLUENCING ALC GRADE

Climate

12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

13 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Values					
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit Wheat Moisture Deficit Potatoes	m AOD day°C (Jan June) mm days mm mm	TQ 700 630 15 1488 675 138 120 J16	TQ 689 629 55 1443 689 140 114 J09	TQ 680 624 90 1403 702 142 109 102			
Overall climatic grade		Grade 1	Grade 1	Grade 1			

- 13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have a significant effect on the site. The site is climatically Grade 1.

Site

The site lies at an altitude of 15–90m AOD with the land falling gently from the west towards the east. Holborough Quarry which is disused lies below the existing ground level and two parcels of land on the quarry floor have been restored to an agricultural use. The remainder has been abandoned and is reverting to scrub and woodland. Across much of the site gradient microrelief and flood risk do not affect agricultural land quality. However there are localised areas where steep slopes of between 7 and 10° preclude land from being classified any higher than Subgrade 3b.

Geology and soils

The most detailed published geological information (BGS 1977) maps the entire site as being underlain predominantly by Lower Chalk with Middle Chalk outcropping on the higher land towards the west of the site. Drift deposits of head occur on the lower lying land to the north of Ladds Lane and at the east of the site around Home Farm

- The most detailed published soils information for this area (SSEW 1983) shows most of the site to comprise soils of the Coombe 2 association. These soils are described as being well drained calcareous fine silty soils over chalk or chalk rubble. (SSEW 1983). Soils of the Upton 1 association are mapped in conjunction with the deposits of Middle Chalk it eleacross the higher land to the west of the site. These are described as shallow well drained calcareous silty soils over chalk. Mainly on moderately steep, sometimes very steep land (SSEW 1983).
- 19 Upon detailed field examination soils broadly consistent with the above descriptions were found across the site. They were found to be well drained, fine silty over chalk, with the shallower soils being coincident with the deposits of Middle Chalk towards the west.

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the are statistics for each grade are given in Table 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- Land of very good quality has been mapped across much of the northern part of the survey area in association with soils developed in head drift deposits. The principal limitation is minor soil droughtiness.
- Within the Grade 2 mapping unit the topsoils consist of calcareous medium silty clay loams or very occasionally heavy silty clay loams. These may contain up to 5% total flints or chalk stones. Subsoils generally become heavier with depth, such that upper subsoils comprise similar textures to the topsoils and pass to heavier textures such as heavy silty clay loam or clay in the lower subsoil. Stone contents in the subsoil range from 2.30% total chalk and/or 2.10% flints. Most profiles extend to at least 1.20cm, but occasional observations were found to overlie chalk bedrock at depths below about 70cm or are impenetrable to the soil auger at depths between 80 and 100cm due to the presence of flints. These soils are assessed as Wetness Class I. Soil pits 1 and 8 are representative (see Appendix II). Moisture balance calculations which take account of these soil characteristics in relation to the local climatic regime indicate that these soils have slightly restricted reserves of available water. As a result, the land suffers a minor droughtiness limitation and crop growth and yield may be adversely affected.

Subgrade 3a

Good quality land has been mapped across much of the site in association with land which experiences more significant soil droughtiness than land classified as Grade 2

- Soils within the Subgrade 3a mapping units fall into two main variants. All are well drained wetness class I. The most common soil type comprises a topsoil and sometimes an upper subsoil resting directly over the chalk substrate which was found to be relatively deep rooting. Soil pits 3 6 9 and 10 are typical (see Appendix II) of these soils. Calcareous medium silty clay loam or very occasionally heavy silty clay loam topsoils contain 5 20% total chalk and/or 2 8% total flints (less than 5% > 2cm in diameter). These either directly overlie chalk at shallow depth or pass through a similarly textured upper subsoil and pass to chalk within 55cm. These subsoil horizons may contain up to 60% chalk and 5% flints. Evidence from the representative soil pits indicates that the chalk substrate is easily rootable to a depth of 82 95cm. Given the local climatic regime, such soils have inadequate reserves of available water, such that the land experiences a droughtiness restriction. Moisture balance calculations indicate that this restriction is consistent with land of Subgrade 3a quality.
- The second soil variant within the Subgrade 3a mapping units is largely confined to the north east of the survey area where soils are derived from deposits of flinty head. Soil pits 2 and 4 represent these soils. Medium or heavy silty clay loam topsoils contain 2.15% chalk and/or flints (less than 5% > 2cm in size). Similarly textured subsoils are variably stony having 2.40% flints and/or up to 60% chalk and either pass to chalk or clay in the lower subsoil. A number of profiles were found to be impenetrable to the soil auger due to the presence of flints. The combination of stony soils and a relatively dry climatic regime gives rise to soils with restricted available moisture reserves. The level and consistency of yields may be affected especially in drier years, such that Subgrade 3a is appropriate.

Subgrade 3b

- 27 Moderate quality land has been mapped either where soils are shallow over chalk bedrock which is not easily rootable or where steep slopes restrict the land quality
- Where soils rest over chalk which is not easily rootable the land is affected by significant soil droughtiness restrictions. Profiles comprise calcareous medium silty clay loam topsoils which contain up to 15% chalk and/or 8% flints and rest on chalk bedrock within 30cm. Occasional profiles have a thin upper subsoil horizon which is very chalky before passing to chalk. Soil pits 5 and 7 are typical of these soils and indicate that the chalk is very shallow rooting across these parts of the site. This is particularly notable on the parcel of land at the base of the quarry, where thin topsoils rest on essentially unweathered chalk which only roots to 48cm. Due to shallow soil depth and restricted rooting into the underlying chalk substrate available water is significantly restricted such that the level and consistency of crop yields are likely to be affected.
- Where gradients on the site are within the range 7 10° the safe and efficient use of conventional farm machinery is restricted. The land cannot be classified any higher than Subgrade 3b

Grade 4

A small parcel of poor quality land has been mapped in the base of the quarry where soils are very shallow over the underlying unweathered chalk and thereby suffer severe soil droughtiness. Medium silty clay loam topsoils contain between 10 and 20% chalk < 2cm in diameter and rest on chalk at 20 30cm depth. The chalk substrate only roots 20cm which has the effect of severely restricting the volume of soil water. The ensuing soil droughtiness problem will be severe and the land cannot be classified higher than Grade 4

SOIL RESOURCES

This section describes the soil resources identified on the site. It should be emphasised that this is not intended as a prescription for soil stripping but merely as an illustration of the soil resources available for restoration on the site. Due to the natural variability of soils the depths of topsoil and subsoil given should be treated with caution. Soils were sampled to a maximum depth of 120cm where possible during survey work. In some cases, soil resources will extend below this depth. Textures described relate predominantly to hand texturing incorporating the results of laboratory analysis (particle size distribution) where taken

Soil Units considerations for restoration

Three soil units have been identified across the site the extent and distribution of which are illustrated on the accompanying soil resources map

Soil Unit I

This unit covers an area of 65 2 hectares and generally comprises shallow soils over chalk. Profiles are typically a calcareous medium silty clay loam or very occasionally heavy silty clay loam topsoil to a depth of 26–33cm (average 29cm). Many profiles directly overlie chalk bedrock below the topsoil. Subsoils (where present) comprise similar textures to a depth of 35 55cm from the surface (average 10cm) and then pass to pure chalk. Evidence from soil pits 3 6 9 and 10 suggests that the chalk substrate is weathered blocky and well rooted to a depth of 82 95cm (an average rooting of 55cm into the chalk). A description of a representative soil profile in this unit is given overleaf.

Representative soil profile for Soil Unit I

Horizon	Average Depth (cm)	Description
Topsoil	0–29	calcareous medium silty clay loam greyish brown brown or light olive brown (10YR 5/2 5/3 or 2 5Y 5/2 5/3) very slightly to moderately stony (2 8% flints and/or 3 20% chalk) weakly developed coarse sub angular blocky structure friable
Subsoil	29–39	calcareous medium or heavy silty clay loam yellowish brown pale brown or light yellowish brown (10YR 5/4 or 6/3 6/4) very slightly to very stony (5 65% chalk and/or 5% flints) weakly developed coarse sub angular blocky structure friable
Subsoil	39–120	chalk weathered blocky 10YR 8/1 well rooted to 82 95cm (average rooting of 55cm into chalk) roots absent below this

Soil Unit II

This unit covers an area of 59 6 hectares and comprises deeper soils developed from drift deposits on the lower lying land on the site. Medium silty clay loam or very occasionally heavy silty clay loam topsoils which may be calcareous or non calcareous extend to a depth of 25 35cm (average 29cm). Subsoils comprise similar textures or clay and generally become heavier with depth. Many profiles extend to at least 120cm whilst some pass to chalk below 65cm or are impenetrable to the soil auger below 60cm due to the presence of flints. Pits 1, 2, and 4 are representative of this soil unit. A description of a representative soil profile in this unit is given below.

Representative soil profile for Soil Unit II

Horizon	Average Depth (cm)	Description
Topsoil	0–29	calcareous or non calcareous medium silty clay loam dark greyish brown brown or greyish brown (10YR 4/2 4/3 or 10YR 5/1 5/2) very slightly to slightly stony (1 8% flints and/or 2% chalk) weakly developed coarse sub angular blocky structure friable
Subsoil	29–120	calcareous or non calcareous medium or heavy silty clay loam or clay brown yellowish brown light yellowish brown or pale brown (10YR 5/3 5/4 or 6/3 6/4 and 7 5YR 5/6) very slightly to very stony (2 50% chalk and/or 2 20% flints) moderately or weakly developed coarse sub angular blocky structure friable

Soil Unit III

This unit covers an area of 12 2 hectares confined to the quarry floor where restored land comprises very shallow soils over unweathered chalk with restricted rooting Calcareous medium silty clay loam topsoils extend to a depth of 20 30cm (average 27cm). These directly overlie hard unweathered chalk which has very restricted rooting (i.e. only 20cm into the chalk) as observed in pit 5 which is typical of this soil unit. A description of a representative soil profile in this unit is given below

Representative soil profile for Soil Unit III

Horizon	Average Depth (cm)	Description
Topsoil	0–27	calcareous medium silty clay loam greyish brown or grey (10YR 5/2 6/1 or 2 5Y 5/2) very slightly to moderately stony (2 6% flints and/or 12 20% chalk) weakly developed coarse sub angular blocky structure friable
Subsoil	27 120	chalk unweathered hard 25Y 8/2 or 10YR 7/1 8/1 poorly rooted to 48cm (average rooting of 15 20cm into chalk) roots absent below this

Michelle Leek Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1977) Sheet No 271 Dartford Solid & Drift Edition 1 50 000 scale BGS London

British Geological Survey (1977) Sheet No 272 Chatham Solid & Drift Edition 1 50 000 scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of England and Wales Sheet 6 Soils of South East England 1 250 000 scale and accompanying legend SSEW Harpenden.

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations Explanatory Note

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent grass	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

oc	Overall Climate	ΑE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness

Soil Pits and Auger Borings

TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

F Fine (more than 66% of the sand less than 0 2mm)

M Medium (less than 66% fine sand and less than 33% coarse sand)

C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic rock	GH	gravel with non porous (hard) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	single grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose FM firm EH extremely hard
VF very friable VM very firm
FR friable EM extremely firm

- SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat APP available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat MBP moisture balance potatoes

MOTTLES PED -STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC 0 30 MZCL 10YR42 0 0 CH 2 30 70 MZCL 10YR63 0 0 CH 2 М Y 70 90 СН 10YR81 0 0 0 0 25 MCL 10YR43 0 HR 4 25 50 10YR44 MCL 0 0 HR 8 М 50 60 10YR44 IMP FLINTS HCL 0 0 HR 15 м 0 30 MZCL 10YR42 0 0 CH 5 30 40 MZCL 10YR6364 0 0 CH Υ 5 М 40 85 10YR81 CH 0 0 0 Ρ 0 28 MZCL 10YR43 1 0 HR 3 28 50 MZCL 10YR54 0 0 CH 10 М 50 85 MZCL 10YR64 0 0 CH 20 85 120 MZCL 10YR73 0 0 CH 30 М 10YR43 0 28 MZCL 1 0 HR 3 28 65 MZCL 10YR54 0 0 HR 5 65 120 MZCL 10YR7364 0 0 CH 30 М 0 25 HZCL 10YR43 1 0 HR 2 25 35 HZCL 10YR44 0 0 HR 5 М 35 60 С 10YR54 0 IMP FLINTS 0 HR 8 М 0 25 MZCL 10YR43 1 0 HR 2 25 35 MZCL 10YR4344 0 0 HR 2 м 35 120 MCL 10YR44 0 0 HR 8 М 0 28 MZCL 25Y52 0 0 CH 15 28 83 CH 10YR81 P 0 0 0 0 30 MZCL 10YR51 1 0 HR 2 30 85 CH 10YR81 0 Р 0 0 0 29 MZCL 10YR4252 0 0 HR 2 29 84 СH 10YR81 0 Ω 0 Ь 0 30 MZCL 10YR42 0 0 HR 2 30 85 СН 10YR81 0 0 0 0-30 HZCL 10YR43 2 0 HR 4 30 45 HZCL 10YR54 0 0 HR 5 45 80 СН 10YR81 0 0 0 0 30 HZCL 10YR43 3 0 HR 5 30 60 С 75YR56 0 HR 5 S O М 60 80 С 75YR56 \$ 0 HR 10 М 80 120 C 75YR56 0 HR 5 S

25 80

СН

10YR81

MOTTLES - PED - - STONES STRUCT/ SUBS COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 13 0 30 MZCL 10YR33 4 0 HR 7 30 60 HZCL 75YR56 0 0 HR 10 М S IMP FLINTS 14 0 30 MZCL 10YR33 2 0 HR 5 30 60 0 0 HR 5 HCL 75YR56 М 60 65 HCL 75YR56 0 0 HR 20 м IMP FLINTS 15 0 30 MZCL 10YR5152 1 0 HR 2 Υ 30 70 MZCL 10YR5363 0 0 HR 2 М 70 80 30 Υ MZCL 0 0 CH 10YR63 М 80 90 Сн 10YR81 0 0 0 P Y 16 0 30 MZCL 10YR5152 1 0 HR 2 ٧ ٧ 30 80 MZCL 0 0 HR 2 м 10YR63 80-90 MZCL 10YR63 0 0 CH 25 Υ 90 100 CH 10YR71 0 0 0 17 0 29 MZCL 10YR52 0 0 HR 2 29 70 2 ٧ MZCL 10YR53 0 0 HR М 70 120 HZCL 10YR53 0 0 HR 2 М ٧ 18 0 32 MZCL 10YR52 0 0 HR 1 Υ 32 60 0 0 HR Υ MZCL 10YR63 1 М 60 80 MZCL 10YR72 0 0 0 М Υ 80 90 CH 10YR72 0 0 0 P Y 19 0 30 MZCL 10YR5152 0 0 CH 15 Y 30 85 o р Сн 10YR81 0 0 Υ 20 0 30 MZCL 10YR5152 0 0 CH 30 40 MZCL 10YR7172 0 0 CH 50 Υ 40 85 10YR81 0 0 0 Υ CH 21 0 30 MZCL 10YR42 0 0 HR 1 30 55 MZCL 10YR5363 0 0 CH 2 Υ М 55 80 HZCL. 10YR63 0 0 CH 5 М Υ 80 90 10YR63 0 0 CH 50 Y HZCL 90 95 10YR81 0 0 0 Y CH 22 0 30 MZCL 10YR43 0 0 HR 2 Y 30 60 HCL 10YR56 O O HR 2 М Y 60 120 HCL 75YR58 0 0 HR 5 М Y 23 0 30 MZCL 10YR33 3 0 HR 5 30 60 γ MZCL 75YR46 0 0 HR 5 М 60 120 ZC 75YR56 0 0 HR 3 М \$ 0 25 25 MZCL 25Y 52 0 0 CH 2

Ρ

0 0 HR

2

					-MOTTLES		PED			TONES				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2 6	LIT	TOT CONSIS	T STR POR IMP	SPL CALC	
26	0 30	MZCL	10YR52						0	0 C	1 2		Y	
)	30 60	MZCL	10YR62						0	0 C	5	М	Y	
,	60 85	СН	10YR81						0	0 ня	2	Р	Y	
27	0 32	MZCL	10YR52						0	0 ня	1		Υ	
	32 70	MZCL	10YR63						0	0 H		M	Y	
1	70 120	HZCL	10YR54						0	0 H	2	М	Y	
28	0 30	MZCL	10YR51\$2						0	0 ня	: 1		Υ	
	30 75	MZCL	10YR63						0	O HE	2	М	Y	
i	75 100	HZCL	10YR63						0	0 HF	2	М	Y	IMP FLINTS
29	0 30	MZCL	10YR53						2	0 ня	4		Y	
1	30 4 0	HZCL.	10YR54						0	O HE	2	М	Y	
ļ	40 65	HZCL	10YR54						0	0 ня		М	Y	
•	65 85	CH	10YR81						0	ОНЯ	2	Р	Y	
30	0 24	MZCL	10YR43						2	0 ня	4		Υ	
•	24 55	HZCL	10YR44						0	O HA	2	М	Y	
	55 65	MZCL	10YR54						0	0 CH	10	м	Y	
	65 80	MZCL	10YR64						0	0 CF	1 40	M	Y	IMP FLINTS
31	0 30	MZCL	25Y 52						0	0 CH	10		Y	
ı	30 40	MZCL	10YR64						0	0 CH	25	М	Y	
	40 75	CH	25Y 82						0	0	0	Р	Y	
32	0 27	MZCL	25Y 52						0	0 CH	10		Y	
1	27 43	MZCL	25Y 72						0	0 CH	50	М	Y	
j	43 88	CH	25Y 82						0	0	0	Ρ	Υ	
33	0 27	MZCL	25Y 52						1	O HR	3		Y	
	27 82	CH	25Y 81						0	0	0	P	Y	
34	0 27	MZCL	10YR42						0	0 HR	5		Y	
	27 43	MZCL	10YR64						0	0 Сн	40	м	Y	
l	43 88	СН	25Y 72						0	0	0	P	Y	
35	0 30	MZCL	10YR43						1	O HR	3		Y	
	30 55	HZCL	10YR54							0 HR		м	Y	
	55 120	HZCL	10YR64							о сн		M	Y	
36	0 30	HZCL	10YR43						1	O HR	3		У	
ı	30 120	С	75YR56							0 HR		М	S	
37	0 35	MZCL	10YR43						3	O HR	5		Y	
	35 55	HCL	75YR56							0 HR		м	s S	
	55 65	HCL	75YR56							0 HR		м	s	IMP FLINTS
													-	

				MOTTLES		PED		ST	ONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	ABUN	CONT							IMP SPL CALC	
39	0 28	MZCL	10YR52						O CH	2		Y	
	28 50	MZCL	10YR53						0 CH	S	M	Y	
	50 70	MZCL	10YR54				(0 CH	15	М	Y	
	70 120	MZCL	10YR44				() (0 CH	25	М	Y	
40	0 28	MZCL	10YR52				() (0 CH	5		Y	
	28 50	MZCL	10YR53				() (0 CH	50	М	Y	IMP CHALK
41	0 28	MZCL	25Y 53				ſ) (о сн	10		Υ	
•	28 83	СН	10YR81						O HR	2	Р	v	
	20 03	CI I	MANAGE				`	, ,	O TIK	2	•	• '	
42	0 28	MZCL	25Y 53						о сн	5		Y	
	28 68	СН	10YR81				() (0 HR	2	Р	Y	IMP CHALK
43	0 25	MZCL	10YR53				;	3 1	0 HR	5		Y	
	25 45	MZCL	10YR63				(0 CH	15	М	Y	
	45 55	MZCL	10YR6362				(о сн	35	м	Y	
	55 75	СН	25Y 81				C		O HR	2	P	Y	
	0.00		10//052						0 110	~		v	
44	0 28	MZCL	10YR53						O HR	5		Y	
	28 33	MZCL	10YR62						O CH	50	M	Y	THO EL SHIP
	33 38	MZCL	10YR71				· ·) (0 CH	65	M	Y	IMP FLINTS
45	0 30	MZCL	10YR53				:	3 (O HR	5		Υ	
	30 45	MZCL	10YR54				()	O HR	10	M	Y	
	45 75	MZCL	10YR54				(י כ	0 Сн	15	M	Y	
	75 120	MZCL	10YR54				()	O CH	30	М	Y	
46	0 25	MZCL	10YR43				;	2	O HR	4		Y	
	25 65	HZCL	10YR44						O HR	2	М	Y	
	65 120	MZCL	10YR54						0 CH	5	М	Y	
47	0 28	MZCL	10YR43						O HR	6		Y	
	28 35	HZCL	10YR44						0 CH	10	M	Y	
	35 80	СН	25Y 81				()	0	0	Р	Y	
48	0 27	MZCL	10YR53				() (O HR	5		Y	
	27 45	MZCL	10YR64				()	O HR	5	М	Y	
	45 80	СН	25Y 82				()	0	0	М	Y	
49	0 30	MZCL	10YR43					1	0 HR	5		Y	
7,	30 85	CH	25Y 72						0	0	Р	Y	
	30 03	,	(J) /C				`	•	~	Ū	•	•	
50	0 30	MZCL	10YR43						O HR	5		Y	
	30 45	HZCL	10YR5464						0 CH	15	M	Y	
	45 80	СН	25Y 7382				() 1	O HR	2	Р	Y	
51	0 30	MZCL	10YR33					1	O HR	3		Y	
	30 40	HZCL	10YR54						0 CH		м	Y	
	40 75	СН	25Y81)		0	Р	Y	

90 120 MZCL

10YR64

-MOTTLES-PED -STONES- - STRUCT/ SUBS SAMPLE DEPTH TEXTURE COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC COLOUR 0 28 MZCL 10YR33 1 0 HR 3 S 52 28 45 0 0 HR 5 HZCL 75YR55 М S 45 60 0 0 HR 10 М S IMP FLINTS HCL 75YR56 0 30 MZCL 10YR33 0 HR 3 S 0 0 HR 5 s 30 50 HCL 75YR56 М 0 HR S 50 80 10 М IMP FLINTS SCL 75YR56 0 30 MZCL 10YR32 1 0 HR 3 Υ 0 0 HR Υ 30 70 5 HZCL 75YR55 М 70-120 HZCL 75YR56 0 0 HR 3 М 55 0 32 MZCL 10YR52 0 0 CH 10 Υ 32 87 CH 10YR81 0 0 0 P Y 0 0 CH 0 30 MZCL 10 10YR52 Р 10YR81 0 0 0 Y 30 85 CH 0 30 MZCL 10YR52 0 0 CH 10 10YR63 0 CH 25 Υ 30 35 MZCL n М 35 40 MZCL 10YR63 0 0 CH 50 M ٧ 0 0 40 85 CH 10YR81 0 0 CH 59 0 30 MZCL 25Y 53 10 30 85 10YR81 0 0 HR 10 Ρ CH 0 HR 8 60 0 29 MZCL 10YR42 29 84 CH 10YR81 0 0 HR 8 P Υ 0 25 4 0 HR 8 61 MZCL 10YR42 Р Υ 0 0 HR 8 25 80 CH 10YR81 62 0 25 MZCL 10YR42 2 0 HR 4 25 40 MZCL 10YR5344 ٥ 0 CH 5 М Y 40 68 MZCL 10YR56 0 HR 5 68 75 0 СН IMP CHALK MZCL 10YR6481 60 0 28 MZCL 10YR42 2 0 HR 4 28 35 0 HR 10 Υ MZCL 10YR44 М 35 50 0 HR Υ O 10 М MZCL 10YR54 50 65 MZCL 10YR64 0 0 CH 20 М Y 65 70 MZCL 0 0 CH 50 Υ IMP CHALK 10YR64 0 HR Y 64 0 28 MZCL 5 10YR43 28 65 HZCL 10YR4454 0 0 HR 5 М Υ 0 CH 10 65 120 MZCL 10YR5464 5 65 0 30 MZCL 10YR43 1 0 HR 0 HR 5 30 60 HZCL 10YR4454 Υ 60 90 HZCL 10YR54 0 0 HR 5

0 CH

20

М

0

					MOTTLES		PED		- 9	STONES	s -	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2 6	5 LITH	1 TOT	CONSIST	STR POR	IMP SPL CALC	
66	0 30	HZCL	10YR4243						1	0 H	₹ 5			Y	
	30 65	HZCL	10YR54						0				М	Y	
	65 85	HZCL	25Y 64						0	0 Cł			М	Y	
	85 120	СН	25Y 72						0	0	0		Р	Y	
67	0 30	MZCL	10YR4252						0	0 HF	₹ 5			Y	
	30 55	MZCL	10YR54						0	0 HF			М	Y	
	55 70	MZCL	10YR5464						0	0 CH			М	Y	
	70 85	MZCL	10YR6482						0	O CH	40		М	Y	
	85 120	СН	25Y 7282						0	0	0		Р	Y	
68	0 30	HZCL	10YR33						1	0 HF	₹ 3			Y	
	30 70	HZCL	10YR54						0				М	Y	
	70 90	HZCL	10YR73						0	0 CH	1 10		Р	Y	
	90 100	СН	25Y82						0	0	0		Р	Y	IMP CHALK
69	0 30	MZCL	10YR33						0	0 H	₹ 2			Y	
	30 50	HZCL	10YR55						0	0 ня			М	Y	
	50 70	HZCL	25Y82						0	0 ня			М	Y	
	70 100	СН	25Y82						0	0	0		P	Y	IMP CHALK
70	0 30	MZCL	10YR33						0	о ня	₹ 3			s	
	30 90	HZCL	10YR56							0 H			М	Y	IMP FLINTS
72	0 30	MZCL	10YR52						0	O Cł	1 5			Y	
	30 40	MZCL	10YR63						0				М	Y	
	40 85	СН	10YR81						0		0		Р	Y	
73	0 32	MZCL	10YR52						2	0 C	4 5			Y	
, 3	32 87	CH	10YR81							0	0		Р	Y	
									_	·			,	·	
74	0 32	MZCL	10YR52						0	0 ня				Y	
	32 87	СН	10YR81						0	0	0		Р	Y	
75	0 30	MZCL	10YR42						2	0 H	₹ 4			Y	
	30 45	MZCL	10YR43						0	0 H	₹ 5		М	Y	
	45 55	MZCL	10YR54						0	O H			М	Y	
	55 80	СН	25Y 81						0	0 HF	₹ 2		Р	Y	
76	0 28	MZCL	10YR42						3	0 HF	₹ 8			Y	
	28 60	HZCL	10YR4454						0	O H	₹ 15		М	Y	
	60 70	MZCL	10YR64						0	0 HF	15		М	Y	IMP FLINTS
77	0 30	MZCL	10YR43						3	0 н	8			Y	
	30 85	Сн	25Y 82						0	0 н	₹ 3		Р	Y	
78	0 30	MZCL	10YR42						1	0 H	₹ 5			Y	
	30 55	HZCL	10YR54						0	O C			М	Y	
	55 120	MZCL	10YR64						0	0 C1			М	Y	

28 60

60 120 HZCL

HZCL

10YR54

10YR53

Υ

MOTTLES STONES-STRUCT/ SUBS PED COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR MZCL 0 0 HR 5 79 0 30 10YR42 0 HR 5 0 М 30 50 HZCL 10YR54 IMP FLINTS 50-75 HZCL 10YR54 0 0 HR 5 М Υ 0 30 MZCL 10YR42 0 0 HR 2 Υ 0 HR 0 3 М Υ 30 45 HZCL 10YR54 0 CH 10 Υ 45 60 HZCL 25Y63 М 60 85 0 Р СН 25Y73 Υ 81 0 HR 0 30 MZCL 10YR43 30 70 10YR54 0 CH 7 М HZCL 70 100 CH 0 0 0 25Y82 0-32 MZCL 10YR52 0 CH 5 Υ 32 87 0 Р 0 0 CH 10YR81 0 Υ 83 0 32 MZCL 10YR5253 0 0 32 87 CH 10YR81 0 0 0 ρ 0 0 CH 5 0 30 MZCL 10YR52 30 85 10YR81 0 0 0 Р CH 85 0 30 0 0 CH 3 MZCL 10YR52 30 50 MZCL. 10YR5354 0 0 CH 15 М 50 85 10YR81 0 0 0 Р СН 86 0 27 MZCL 25Y 52 0 0 CH 20 27 47 CH 25Y 82 0 0 0 ρ 15 0 30 3 0 CH 87 MZCL 10YR52 Ρ 30 50 CH 10YR71 0 0 0 5 0 CH 88 0 30 MZCL 10YR61 15 0 0 0 Р 30 50 CH 10YR7181 0 25 MZCL 10YR42 0 HR 5 γ 25 38 MZCL 10YR64 0 CH 20 М 38 65 MZCL 10YR7281 0 0 CH 65 65 85 5 CH 10YR8182 0 0 HR 0 25 HZCL 10YR4353 0 HR 5 Υ 5 25 35 HZCL 10YR54 0 0 HR 25 Υ 35 50 HZCL 25Y 64 0 0 CH М Υ 50 65 MZCL 25Y 7274 0 0 CH 60 Р 65 85 25Y 72 0 0 Р ÇН 0 28 HZCL 10YR43 0 0 HR 1

0 HR

0 HR

1

М

- STONES - STRUCT/ SUBS

MOTTLES - PED

Υ

Υ

Υ

Υ

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC 92 0 30 MZCL 10YR42 0 0 HR 2 30 60 HZCL 10YR54 0 0 HR 3 м 60 120 HZCL 10YR53 0 CH 0 5 М 0 30 MZCL 93 10YR43 0 0 HR 2 30 120 HZCL 10YR54 0 0 HR 3 М 94 0 30 MZCL 10YR53 0 0 CH 2 30 40 0 Q CH HZCL 10YR53 12 М 40 85 CH 10YR81 0 0 Р 0 95 0 27 MZCL 0 0 CH 10YR52 10 27 35 MZCL 0 0 CH 10YR64 30 м 35 45 MZCL 10YR6482 0 CH 60 Ρ 45 80 CH 10YR81 0 0 96 0 28 MZCL 0 0 CH 10YR4353 15 28 35 MZCL 10YR5481 0 0 CH 50 35 75 ÇН 10YR8174 0 0 0 75 95 MZCL 10YR64 n 0 CH 20 м 95 100 CH 0 0 Р 10YR81 0 0 28 0 CH MZCL 10YR43 0 15 28 50 HZCL 0 0 CH 25 М 10YR54 50 70 HZCL 10YR4454 0 0 CH 35 М 70 90 10YR8481 0 0 Ρ СН 98 0 28 MZCL 10YR43 0 0 CH 15 28 83 10YR82 0 0 99 0 25 25Y 52 1 0 HR MZCL 5 25 45 25Y 82 0 0 CH 0 100 0 27 25Y 52 0 HR 5 MZCL 0 27 47 CH 25Y 82 0 0 0 0 35 MZCL 10YR52 4 0 CH 15 0 0 35 55 10YR71 ρ СН 0 102 0 30 MZCL 10YR52 3 0 CH 12 30 50 CH 10YR71 0 0 0 Ρ 103 0 28 MZCL 10YR53 2 0 HR 28 40 MZCL 10YR54 0 0 CH 30 40 85 CH 10YR81 0 0 HR 2 104 0 25 MZCL 10YR53 2 0 HR 5 25 40 MZCL 10YR64 0 0 CH 35 М 40 47 0 0 0 MZCL 10YR6468 М

				_	MOTTLES		PED	_	s	TONES	S	TRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT	COL	GLEY					STR POR I	MP SPL	CALC
105	0 28	MZCL	10YR53						2	0 HR	5				Y
	28 83	СН	10YR81						0	O HR	2		Р		Y
106	0 28	MZCL	10YR53						2	O HR	5				Y
	28 45	MZCL	10YR54						0	0 CH	20		M		Y
-	45 50	MZCL	10YR64						0	O CH	50		М		Y
	50 85	СН	10YR81						0	O HR	2		Р		Y
107	0 25	MZCL	10YR53						0	0 CH	20				Y
	25 80	СН	10YR83						0	0	0		Р		Υ
108	0 30	MZCL	10YR4353						0	0 CH					Y
	30 75	MZCL	10YR64						0	0 CH	25		М		Υ
•	75 95	СН	10YR7481						0	0	0		Р		Y
109	0 25	MZCL	25Y 52						1	O CH	18				Y
	25 4 5	CH	25Y 82						0	0	0		Р		Y
110	0 30	MZCL	25Y 52							1 HR	6				Y
	30 50	СН	25Y 82						0	0	0		Р		Y
111	0 29	MZCL	10YR52						2	0 Сн					Υ
_	29 45	MZCL	25Y 52						0	0 CH	10		M		Y
	45 65	СН	10YR7172						0	0	0		Р		Y
112	0 29	MZCL	10YR52						2	0 HR	2				Y
	29 49	СН	25Y 72						0	0	0		Р		Y
113	0 30	MZCL	10YR52						0	0 HR					Y
	30 45	MZCL	10YR74						0	0 CH			M		Y
•	45 65	СН	10YR7481						0	0	0		P		Υ
	65 80	HZCL	10YR56						0	0 CH			M -		Y
_	80 100	СН	10YR8174						0	0	0		Р		Y
114	0 25	MZCL	10YR52						1	0 HR					Y
•	25 40	MZCL.	10YR64						0	0 CH			М		Y
	40 55	MZCL	10YR6481 10YR81						0	0 CH	65 0		P P		Y Y
	55 75	СН	IUTROI						U	U	Ū		r		•
115	0 30	MZCL	10YR52						0	0 CH			M		Y
	30 55	MZCL	10YR64						0	0 CH			M		Y
	55 75	СН	10YR81						0	0	0		P		Y
116	0 25	MZCL	10YR52						2	0 HR			1.4		Y
	25 35	MZCL	10YR6481						0	0 CH			M		Y
	35 80	СН	10YR8174						0	0	0		Р		Y
117	0 30	MZCL	10YR5352						1	0 CH			_		Y
	30 85	СН	10YR81						0	0	0		P		Y

					MOTTLES		PED				TONES		STRUCT/				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	TOT (CONSIST	STR POR	IMP	SPL C	ALC
118	0 25	MZCL	25Y 52							0	0 СН	20					Y
	25 80	Сн	25Y 82							0	0	0		Р			Υ
119	0-25	MZCL	25Y 52							0	0 CH	15					Y
	25 65	MZCL	10YR64							0	0 Сн	25		М			γ
	65 85	СН	25Y 82							0	0	0		Р			Y
120	0 28	MZCL	10YR5262							4	0 СН	15					Y
	28 48	СН	25Y 7172							0	0	0		Ρ			Y
121	0-29	MZCL	10YR5262							5	0 CH	20					Y
	29 49	CH	25Y 7172							0	0	0		P			¥
122	0 25	MZCL	10YR52							0	0 CH	10					Y
	25-45	СН	25Y 7172							0	0	0		Р			Y
123	0 27	HZCL	10YR53							4	0 CH	12					Y
_	27 82	СН	10YR81							0	0	0		P			Y
124	0 33	MZCL	10YR53							4	O CH	8					Υ
_	33 45	HZCL	10YR64							0	0 СН	15		М			Υ
	45 80	СН	10YR81							0	0	0		Р			
125	0 38	MZCI.	10YR52							0	0 HR	3					Y
	38 120	MZCL	10YR64							0	0 CH	25		М			γ
126	0 30	MZCL	10YR52							0	0 HR	2					Υ
	30 85	СН	10YR82							0	0	0		Р			Υ
127	0 26	MZCL	10YR62							1	O HR	5					Υ
	26 81	СН	10YR8183							0	0	0		P			Y
128	0 28	MZCL	10YR5262							1	0 HR	3					Υ
	28 70	MZCL	10YR64							0	0 CH	25		М			Υ
	70 90	СН	10YR8183							0	0	0		Р			Y
129	0-30	MZCL	10YR62							0	0 CH	12					Y
	30 85	Сн	10YR8182							0	0	0		P			Y
130	0 24	MZCL	10YR62							0	0 CH	15					Y
	24 79	СН	10YR8182							0	0	0		P			Y
131	0 32	MZCL	10YR5363							0	0 CH	10					Y
	32 87	CH	10YR8174							0	0	0		P			Y
132	0 20	MZCL	10YR6162							0	0 CH	20					Y
	20 40	Сн	25Y 7 1							0	0	0		Р			Y

				MOTTLES	i –	PED		- S	TONES	- S	TRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	ABUN	CONT	COL	GLEY						IMP SPL CALC
133	0 25	MZCL	10YR6162					0	0 CH	20			Y
•	25 45	СН	25Y 71					0	0	0		Р	Y
134	0 28	HZCL	25Y62					5	0 Сн	20			Y
	28 83	CH	10YR81					0	0	0		Р	
_													
135	0 30	HZCL	10YR53					3	0 CH	10			Y
	30 70 70 9 0	HZCL CH	10YR73 10YR81					0	0 CH	20 0		M P	Y
	70 30	Cri	TOTAGE					Ū	Ü	v		•	•
136	0 30	HZCL	10YR53					3	0 CH	5			Y
	30 45	HZCL	10YR64					0	0 CH	10		М	Y
	45 80	СН	10YR73					0	0	0		P	Y
127	0.34	U2C1	100060					•	۸ ۸۰۰	_			••
137	0 30 30 45	HZCL MZCL	10YR62 10YR53					3	0 CH	5 5		м	Y
	45 80	CH	10YR81					0	0	0		P	Ý
										•			
138	0 30	MZCL	25Y53					3	0 CH	3			Y
_	30 35	HZCL	10YR53					0	0 CH	5		М	Y
	35 80	СН	10YR81					0	0	0		Р	Y
139	0 28	MZCL	10YR62					0	O HR	2			Y
•	28 83	CH	10YR8183					0	0	0		Р	Y
į													
140	0 30	HZCL	10YR63					3	0 CH	5			Y
-	30 85	СН	10YR81					0	0	0		Р	Y
141	0 26	MZCL	25Y62					10	3 CH	15			Y
	26 81	СН	10YR81					0	0	0		Р	Y
142	0 20	MZCL	10YR6162					4	0 HR	20		_	Y
	20 40	СН	25Y 71					0	0	0		Р	Y
143	0 30	HZCL	10YR53					4	0 HR	4			Y
	30 50	HZCL	10YR64					0	0 CH	15		М	Y
_	50 85	СН	10YR81					0	0	0		Р	Y
144	0 30	MZCL	10YR53					1	0 CH	3		•4	Y
_	30 75 75 90	HZCL CH	10YR64 10YR81					0 0	0 CH	10		M P	Y Y
	13 30	G1	(UTRO)					U	U	0		r	1
145	0 27	MZCL	10YR52					1	O HR	3			Y
_	27 65	MZCL	10YR64					0	0 CH	20		М	Y
	65 85	СН	10YR8174					0	0	0		Ρ	Y
P1	0 30	MZCL	10YR5242					0	0 CH	2	WKCSAB	FP	Y
F 1	30 65	HZCL	101R5242 10YR53					0	0 CH	3			Y
	65 120	HZCL	10YR52					0	0 CH	3			Y
_													

STONES- - STRUCT/ SUBS MOTTLES - PED SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC P10 0 0 CH 15 WDCSAB FR 0 30 MZCL 25Y 52 30 82 CH 10YR8183 0 0 0 P 10YR32 P2 0 28 MZCL 1 0 HR 3 WKCSAB FR 28 46 10 MDCSAB FR M HZCL 10YR53 0 0 HR 46 72 HZCL 10YR44 10 MDCSAB FR M 0 0 HR 72 90 CH 10YR8172 5 P 0 0 HR Р3 0 30 MZCL 10YR52 2 0 HR 5 WKCSAB FR 0 P 30 95 CH 10YR81 0 0 P4 0 32 MZCL 10YR42 9 4 HR 15 WKCSAB FR 32 57 25 WKCSAB FR M HCL 75YR56 0 0 HR 57 77 HCL 41 M 10YR5456 0 0 HR 77 120 C 75YR56 0 0 HR 15 WKCSAB FM M Y P5 0 26 MZCL 25Y 52 5 WKCSAB FR 1 0 HR 26 33 MZCL 25Y 5282 0 0 CH 50 WKCSAB FR M F 0 HD P Y 33 48 СН 25Y 82 OOFE 0 0 Р6 0 34 MZCL 10YR52 2 WKCSAB FR 0 0 CH 0 P 34 90 CH 10YR81 0 0 0 26 MZCL 0 0 CH 15 WKCSAB FR 10YR53 26 43 MZCL 0 O CH 25 WKCSAB FR M 10YR44 43 63 CH 10YR8184 0 0 0 P8 0 26 MZCL 2 WKCSAB FR 10YR52 1 0 HR 26 50 MZCL 8 WKCSAB FR M 10YR53 0 0 CH 50 66 HZCL 10YR43 0 0 CH 10 WKCSAB FR M 66 120 CH 25Y 81 O WKCSAB FR M pg. 0 30 MZCL 3 0 CH 10YR43 30 70 CH 25Y81 0 0 0 M Y 70 95 CH 0 25Y81 0 0

_ _ - - -

SAMP	F	۵۰	SPECT			WETN	NESS-	WHI	EAT-	PO	TS-	м	REL	1	EROSN	FR	0 \$T	CHEM	ALC	
NO NO	GRID REF		Sr LC i	GRONT	GLEY SPL				MB	AP		DRT	FLOO			EXP	DIST			COMMENTS
	GRID REI	USE						• ••				•	. •	_						
1	TQ69906370	CER	Ε	2		1	1	124	7	124	12							DR	2	
2	TQ70306370	CER	s	2		1	1	89	30	94	-22							DR	3A	IMP60 SEE 4P
3	TQ69906360	CER	Ε	2		1	1	107	10	102	-10							DR	3A	
4	TQ70006360	CER	NE	1		1	1	152	35	119	7							DR	2	
5	TQ70106360	CER	NE	2		1	1	152	34	119	5							DR	2	
_																				
- 6	TQ70206360	CER	NE	2		1	1	92	26	100	14							DR	3A	SEE 4P
7	TQ70306360	CER	NE	2		1	1	150	31	115	-1							DR	2	SANDY 35 PLUS
8	TQ69606352	CER	Ε	3		1	1	95	18	91	17							DR	3A	BORDER 3B
9	TQ69706345	CER	Ε	3		1	1	81	39	84	32							OR	38	
10	TQ69906350	CER	Ε	2		1	1	100	17	96	16							DR	3A	
11	TQ70006350	CER		0		1	2	105	12	104	8							DR	ЗА	
12	TQ70106350	CER	ε	3		1	2	137	19	115	1							WD	2	
13	TQ70206350	CER	Ε	3		1	1	93	25	99	-15							DR	ЗА	SEE 4P
14	TQ70306350	PGR	ε	3		1	1	98	-20	107	-7							DR	ЗА	SEE 4P
15	TQ68906340	CER		0		1	1	125	10	123	13							DR	2	
16	TQ69006340	CER	Ε	1		1	1	135	19	123	12							DR	2	
17	TQ69106340	CER	Ε	1		1	1	157	40	122	10							DR	2	
18	TQ69206340	CER	Ε	1		1	1	127	10	124	12							DR	2	
19	TQ69806340	CER	£	4		1	1	80	40	83	-33							OR	3A	SEE 3P
20	TQ69906340	CER	E	4		1	1	103	14	98	-14							DR	ЗА	
21	TQ70006340	CER	SE	1		1	1	132	15	123	11							DR	2	
22	TQ70106340	CER	Ε	2		1	1	154	36	118	4							DR	2	
23	TQ70206340	CER	E	3		1	1	143	25	117	3							DR	2	
25	TQ68906330	WHT	Ε	3		1	1	92	23	91	-19							DR	38	
26	TQ69006330	WHT	ε	3		1	1	116	0	115	4							DR	ЗА	
27	TQ69106330			1		1	1	158		123	12								1	
28	TQ69206330	CER	N	2		1	1	137	21	122	11							DR	2	
	TQ69306330			2		1	1	116		117	3							DR	3 A	
_	TQ69406330		NE	2		1	1	129			7							DR	2	
31	TQ69606330	OSR				1	1	97	-21	100	-14							DR	38	ALMOST 3A
_						_														
_	TQ69706330		_			1	1	104			17							DR	3A	
33	TQ69806330			4		1	1		-23		21							ĐR	3B	
34	TQ69906330		S	3		1	1	105		99	15							DR	3A	
	TQ70006330		_	0		1	1	154		120	6							DR	2	
36	TQ70106330	CER	\$	1		1	2	141	23	118	4							DR	2	
	T070200220	050	_	2		,	,	100	10	100								DR	24	SEE 4P
	TQ70206330			3		1	1	100		108	6							UK	3A 1	JEL TF
39	TQ68806320			6 a		1	1	155		121 102	11							GR	3B	
40	TQ68906320			9 9		1	1	106 85		90	9 26							GR GR	3B	3B DR ALSO
41	TQ69006320			5		1	1	85 86			26 25							DR		SEE 9P
42 =	TQ69106320	WHI	ИМ			'	1	00	34	91	25							UK		VCC 21
43	TQ69206320	OSB	AIE.	4		1	1	103	12	106	4							DR	3A	
_	TQ69306320			4		1	1	99		96	14							DR	3A	
	109300320	USK	IAC	-		r	•	79	10	J U	14							DK.	٠.,	
1																				

SAMP	LE	Δ	SPECT			WET	NESS	WHI	EAT	P01	TS	м	REL	EROS	N FRO)ST	CHEM	ALC	!
NO	GRID REF			GRDNT	GLEY SP							DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
45	TQ69406320	OSR	NE	2		1	1	148	32	115	4						DR	2	1
46	TQ69506320	OSR				1	1	156	39	121	9						DR	2	
47	TQ69606320	OSR				1	1	98	20	97	17						OR	38	BORDER 3A
48	TQ69706320	OSR	ξ	1		1	1	104	14	103	11						DR	3A	
49	TQ69806320	OSR	E	1		1	1	99	19	94	20						DR	3A	
50	TQ69906320	OSR	S	2		1	1	104	16	103	-13						DR	3 A	
51	TQ69996320	OSR	S	4		1	1	100	18	102	12						DR	3A	
52	TQ70106320	OSR	S	3		1	1	96	22	101	13						DR	3A	SEE 2P + 4P
53	TQ70206318	OSR	S	3		1	1	113	6	113	-3						DR	3A	SEE 2P + 4P
54	TQ70306320	PGR	Ε	1		1	1	155	36	120	4						DR	2	
55	TQ68706310	CER	N	2		1	1	102	11	96	12						DR	3 A	
56	TQ68806310	CER	Ε	2		1	1	99	14	94	14						DR	3 A	
57	TQ68906310	CER	N	1		1	1	103	10	99	-9						DR	3A	
59	TQ69106312	WHT				1	1	99	16	94	-16						DR	3A	
60	TQ69206310					1	1	92	23	89	-21						DR	38	
61	TQ69306310	OSR	NE	4		1	1	90	25	89	-21						DR	38	
62	TQ69406310	OSR	NE	4		1	1	123	7	118	7						OR	2	
63	TQ69506310	OSR	NĘ	3		1	1	117	0	115	3						DR	ЗА	
64	TQ69606310	OSR	Ε	3		1	1	151	33	118	4						DR	2	
65	TQ69706310			1		1	1	150	32	117	3						DR	2	
66	TQ69806310	OSR	E	1		1	2	142	23	116	0						MD	2	
67	TQ69906310	OSR				1	1	142	23	118	0						DR	2	
68	TQ70036310	OSR	S	1		1	2	126	7	121	5						DR	2	
69	TQ70106310	OSR	S	2		1	1	129	10	122	6						DR	ЗА	SEE 2P
70	TQ70206310	OSR	SE	2		1	1	126	7	120	4						DR	2	
72	TQ68706300	CER	Ε	2		1	1	104	9	99	-8						DR	ЗА	
73	TQ68806300	CER	Ε	2		1	1	103	10	97	-11						DR	ЗА	
74	TQ68906300	CER	Ε	1		1	1	102	11	96	-12						DR	ЗА	
75	TQ69506300	OSR	Ε	3		1	1	111	6	111	-1						DR	ЗА	
76	TQ69606300	OSR	NE	4		1	1	98	20	108	-6						DR	ЗА	SEE 2P + 4P
77	TQ69706300	OSR	NE	3		1	1	96		92	22						DR	3B	
78	TQ69806300	OSR	SE	1		1	1	152		118	2						DR	2	
79	TQ69906300	OSR	NW	1		1	1	110		118	2						DR	2	
80	TQ70006300			1		1	1	116	4	115	-1						DR	ЗА	
81	TQ70106300	OSR	S	2		1	1	127	7	119	3						DR	2	
82	TQ68606290	CER	Ε	2		1	1	103	9	97	-9						DR	3 A	
83	TQ68706290			2		1	1	105	8	99	-8						DR	ЗА	SEE 6P
84	TQ68806290			2		1	1	100	13		12						DR	ЗА	
85	TQ68906290		S	1		1	1	113		108	-1						DR	3A	
86	TQ69306290	PL0				1	1	74	46	77	39						DR	3B	RESTORED
87	TQ69406290	PLO				1	1	79	-41		-34						DR	38	RESTORED
88	TQ69506290	PL0				1	1	80	40	83	-33						DR	38	RESTORED

SAMPI	ıF	٨	SPECT			WETI	vF S S	WHI	EAT	PΩ	TS	м	ı RE	1	EROS	N.	FRO	ST	CHEM	ALC	
NO	GRID REF		SPECI	GRONT	GLFY	SPL CLASS		AP	MB.		MB	DRT		FL000		EXP		DIST			COMMENTS
110	CICIO INCI	OGE		(SILDILI	GEC,	OF C CEMOS	GIVIDE		,			D.C.		. 2000		4 ,		0.0			00.772.779
89	TQ69706290	OSR	Ε	3		1	1	102	16	99	15								ÐR	3A	
90	TQ69806290			1		1	2	108	11	106	10								DR	3 A	
91	TQ69906290					1	2	158	39	123	7								DR	2	
92	TQ70006290	OSR				1	1	156	36	122	6								DR	2	SEE 1P
93	TQ70106290	OSR				1	1	156	36	121	5								DR	2	
_																					
94	TQ70156280	OSR	Ε	2		1	1	107	13	103	13								DR	3A	
95	TQ68606280	CER	NE	4		1	1	98	14	97	9								DR	3A	
96	TQ68706280	CER	NE	4		1	1	114	1	94	13								DR	3A	
97	TQ68806280	CER	Ε	2		1	1	110	4	106	3								DR	2	SEE 8P
98	TQ68906280	CER	S	3		1	1	95	19	91	18								DR	3A	
99	TQ69206280	PLO				1	1	73	47	76	40								DR	38	RESTORED
100	TQ69306280	PLO				1	1	74	46	77	39								DR	38	RESTORED
101	TQ69406280	PLO				1	1	77	43	77	-39								DR	38	RESTORED
102	TQ69506280	PLO				1	1	81	39	84	32								DR	38	RESTORED
103	TQ68406270	CER	Ε	2		1	1	103	8	99	6								DR	34	
■104	TQ68506270	CER	NE	2		1	1	94	26	93	-23								DR	38	SEE 7P
105	TQ68606270	CER	N	1		1	3	95	17	92	-14								DR	AΕ	IMP40 HARD CH
106	TQ68706270	CER				1	1	108	5	104	3								DR	3A	
107	TQ68806270	CER	N	6		1	l	89	24	88	19								DR	3B	
108	TQ68906270	CER	ε	3		1	1	122	24	115	5								DR	2	
8						_														20	0000000
109	TQ69206270					1	1	74	46	77	39								DR	38	RESTORED
- 110	TQ69306270					1	1	77	43		36								DR	38	RESTORED
111	TQ69406270					1	1	98		104	-12								DR	3B	RESTORED
112	TQ69506270					1	1	79	41		34								DR	3B	RESTORED
■13	TQ68306260	CER	SE	4		1	1	118	6	103	313								DR	2	
						•					_								20	24	
14	TQ68406260			3		1	1	96	16		-7								DR	3A	
15	TQ68506260			5		1	1	102		106	0								DR	3A	
	TQ68606260			7		1	1	94			-13								DR	3A	
_	TQ68706260			6				96		92	15								DR	3A 3B	
18	TQ68806260	CER	E	4		1	1	89	25	88	-21								DR	30	
-110	T00000000	CED				1	1	110	c	110	٥								DR	3A	
_	TQ68906260					1	1	110 78		110 81	0 35								DR	4	RESTORED
20	TQ69506260					1	1												DR	4	RESTORED
21	TQ69606260					1	1	77 26	43		36								DR	4	RESTORED
122	TQ69706260		cc	6		1	1	76 94	44	79 91	37 14								ĐR ĐR	3A	RESTORED
23	TQ68206250	CER	36	6		•	,	34	17	31	14								UK	J A	
3	TQ68306250	CEP	S.E.	5		1	1	105	7ء	104	2								DR	3A	
124 125	TQ68406250			9		1	1	148		114	7								GR	3B	
26	TQ68506250			8		1	1	100		92	24								GR	3B	
27	TQ68606250			10		1	1	86		85	31								GR	3B	
				10		1	1	107		112	اد 4								GR	3B	
128	TQ68706250	CEK	SE			•	•	107	13	112	4								- CIN	J.	
29	TQ68806250	CEP	٥r	3		1	1	98	17	94	-16								DR	3A	
130	TQ68906250			2		1	1	88		87	29								DR	3B	
130	1400200530	UEK	J	-		1	•	50	JŁ	٥,	23								- DN	J.J	

- - - -

ASPECT - WETNESS-- -WHEAT- POTS-M REL EROSN FROST CHEM ALC SAMPLE DRT FLOOD EXP COMMENTS GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB DIST LIMIT NO 1 1 102 13 96 141 DR 3A 131 TQ69006250 CER S 2 DR RESTORED 1 59 61 59 -57 132 TQ69606250 PLO 1 4 RESTORED DR 133 TQ69706250 PL0 1 1 66 -54 69 -47 3B 76 -44 79 -37 GR 134 TQ68006240 CER SE 9 1 2 38 135 TQ68106240 CER SE 8 1 2 115 5 113 3 GR DR 3Δ 2 106 6 105 136 TQ68206240 CER SE DR 3A 1 2 107 9 106 -5 TQ68906240 CER SE 137 3 **3**A ÐR 101 -15 100 138 TQ69006240 CER SE 3 1 1 11 **3**A DR 139 TQ69106248 CER W 2 1 1 97 -18 94 16 1 2 100 16 96 DR **3A** 140 TQ69106240 CER SW 15 DR 38 24 90 -21 141 TQ69206240 CER SW 1 1 92 RESTORED DR Δ 142 T069706240 PLO 1 64 56 67 -49 1 1 107 ÐR **3**A 2 111 3 TQ67906230 CER SE 5 143 DR 3A 144 TQ69056232 CER SW 2 1 1 122 2 120 4 3A DR 115 5 112 4 145 TQ62356843 CER S 3 38 DR 1 1 85 35 91 -25 8A TQ69366355 CER SW DR 2 РΊ TQ70006290 OSR 1 154 34 120 4 DR 34 P10 TQ69106312 CER 1 94 20 91 18 ÐR 3A TQ70106310 OSR S 4 1 1 114 -6 111 -5 P2 **3**A 103 13 92 DR Р3 TQ69806340 BAR E 3 1 1 19 **3**A TQ70206330 BAR E 1 1 121 3 95 18 DR P4 2 DR 3B 1 67 53 67 49 P5 TQ69406290 CER 1 DR 3A 1 107 -6 99 8 P6 TQ68706290 CER E 2 ٦ 38 DR **P**7 T068506270 WHT S 2 1 87 24 91 14 TQ68806280 WHT S 1 1 139 25 116 7 DR 2 PB 1 DR **3A** 1 1 P9 TQ69106320 CER N 106 -9 94 -16