Moving towards common standards monitoring guidance targets for SAC rivers

Record of decisions

Introduction

Targets for water quality and flows are determined for Natura 2000 sites by Natural England with reference to Common Standards Monitoring Guidance (CSMG). Targets for these elements similarly form the basis for assessments of the ecological status of water bodies under the Water Framework Directive (WFD). Water dependant Natura 2000 sites are defined as protected areas under the WFD.

Where possible a single target should be set for elements that are common to the water body and coincident Natura 2000 protected area. However, where achievement of the targets based on CSMG is not possible in the next river basin planning cycle then interim progress goals have been agreed by Natural England and the Environment Agency. These can be in the form of numerical targets or, if inappropriate to set quantitative targets, descriptive measures that will achieve, by 2021, progress towards the long term targets set using CSMG.Where only the CSMG target is expressed, this is the target for 2021.

This document summarizes the decisions made by Natural England and the Environment Agency on the standards that need to be achieved for elements of environmental quality that support the achievement of objectives for the named Natura 2000 protected area. The draft second river basin management plans will be used to consult the public about the locally proposed measures and targets.

Where it has not been possible to agree specific targets, usually because further technical work is required, these will be indicated by an asterisk. In these cases the proposed CSMG target is included as advice from Natural England but it is subject to further validation throughout the period of the consultation and beyond. Where no interim goal or CSMG targets are specified, it is currently considered that the elements are not relevant, or are insufficiently understood for this river.

GB108043015740 DOCKENS WATER (riv	er)	South West River Basin District
	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow)	
Low flows	5	Default target given pending consideration of CSMG natural water flow target: <5% deviation at <qn95< td=""></qn95<>
Low-moderate flows	10	Default target given pending consideration of CSMG natural water flow target: <10% deviation at >Q95
Moderate-high flows	15	Default target given pending consideration of CSMG natural water flow target: <10% deviation at >Q95
High flows	15	Default target given pending consideration of CSMG natural water flow target: <10% deviation at >Q95
Soluble Reactive Phosphorus ('orthophosphat	e' expres	ssed as P)
As annual and growing season means (µg/L)	15	-15ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean target dry yr 14ug/l)
Acidification		
рН	6.54	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Acid Nuetralising Capacity (ANC)	80	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	≥80%

River Avon Page 2 of 13

	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow	/)	
Low flows	10	10 Salisbury-Fordingbridge; 15 Fordingbridge-Christchurch Harbour using flow duration curve method
Low-moderate flows	15	10 Salisbury-Fordingbridge; 15 Fordingbridge-Christchurch Harbour using flow duration curve method
Moderate-high flows	20	15 Salisbury-Fordingbridge; 20 Fordingbridge-Christchurch Harbour using flow duration curve method
High flows	10	15 Salisbury-Fordingbridge; 20 Fordingbridge-Christchurch Harbour using flow duration curve method
Soluble Reactive Phosphorus ('orthophosphar	te' expres	ssed as P)
As annual and growing season means (µg/L)	50	-20ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean target dry yr 61ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	≥ 80%

River Avon Page 3 of 13

Dissolved Oxygen (% saturation as 10%ile)

GB108043015880	Nadder (Lower) (river)		South West River Basin Distr
		CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations	from daily naturalised flow	·)	
Low flows		10	10; Using flow duration curve method
Low-moderate flows	S	15	10; Using flow duration curve method
Moderate-high flows	S	20	15; Using flow duration curve method
High flows		10	15; Using flow duration curve method
Soluble Reactive Pho	sphorus ('orthophosphat	e' expres	ssed as P)
As annual and grow	ving season means (μg/L)	50	-10ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean target dry yr 65ug/l)
Acidification			
рН			Target not applicable to this waterbody
Acid Nuetralising Ca	apacity (ANC)		Target not applicable to this waterbody
Organic Pollution			
Un-ionised ammoni	a (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg	/L as 90%ile)	0.250	0.25
Mean Biological Ox	ygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal

85

River Avon Page 4 of 13

be recorded to the manipoline with the temperature of			Codin Wood Mivor Baoin Bloth
	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure	e) by 2021
Flows (% deviations from daily naturalised flow	v)		
Low flows	10	10; Using flow duration curve method	
Low-moderate flows	15	10; Using flow duration curve method	
Moderate-high flows	20	15; Using flow duration curve method	
High flows	10	15; Using flow duration curve method	
Soluble Reactive Phosphorus ('orthophospha	te' expre	ssed as P)	
As annual and growing season means (µg/L)	50	-20ug/l net reduction on 2010-11 baseline annual mean (indicative an	nual mean target dry yr 128ug/l)
Acidification			
рН		Target not applicable to this waterbody	
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody	

Organic Pollution

Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	85

River Avon Page 5 of 13

Dissolved Oxygen (% saturation as 10%ile)

	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow	')	
Low flows	10	10; Using flow duration curve method
Low-moderate flows	15	10; Using flow duration curve method
Moderate-high flows	20	15; Using flow duration curve method
High flows	10	15; Using flow duration curve method
Soluble Reactive Phosphorus ('orthophosphat	e' expre	ssed as P)
As annual and growing season means (µg/L)	50	-10ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 99ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal

85

85

River Avon Page 6 of 13

Dissolved Oxygen (% saturation as 10%ile)

GB108043022390	BOURNE (river)		South West River Basin Dis
		CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations	s from daily naturalised flow)	
Low flows		10	10; Using flow duration curve method
Low-moderate flow	WS	15	10; Using flow duration curve method
Moderate-high flo	WS	20	15; Using flow duration curve method
High flows		10	15; Using flow duration curve method
Soluble Reactive Pl	hosphorus ('orthophosphat	e' expres	ssed as P)
As annual and gro	owing season means (µg/L)	50	-10ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 43ug/l)
Acidification			
рН			Target not applicable to this waterbody
Acid Nuetralising	Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution			
Un-ionised ammo	nia (mg/L as 95%ile)	0.025	0.025
Total ammonia (m	ng/L as 90%ile)	0.250	0.25
Mean Biological C	Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal

85

River Avon Page 7 of 13

OBTOODTOOLLATO TANDBLIT (IIIIddie) (TTV	~1 <i>)</i>	Could West ravel Busin Bisa
	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow	/)	
Low flows	10	10; Using flow duration curve method
Low-moderate flows	15	10; Using flow duration curve method
Moderate-high flows	20	15; Using flow duration curve method
High flows	10	15; Using flow duration curve method
Soluble Reactive Phosphorus ('orthophospha	te' expre	ssed as P)
As annual and growing season means (µg/L)	50	-20ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 107ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	85

River Avon Page 8 of 13

GB108043022510	WYLYE (Lower) (river)		South West River Basin Dist
		CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviation	s from daily naturalised flow)	
Low flows		10	10; Using flow duration curve method
Low-moderate flo	WS	15	10; Using flow duration curve method
Moderate-high flo	ows	20	15; Using flow duration curve method
High flows		10	15; Using flow duration curve method
Soluble Reactive P	hosphorus ('orthophosphat	e' expres	ssed as P)
As annual and gro	owing season means (µg/L)	50	-10ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 47ug/l)
Acidification			
рН			Target not applicable to this waterbody
Acid Nuetralising	Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution			
Un-ionised ammo	onia (mg/L as 95%ile)	0.025	0.025
Total ammonia (n	ng/L as 90%ile)	0.250	0.25
Mean Biological C	Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxyger	n (% saturation as 10%ile)	85	85

Page 9 of 13 River Avon

ob root-rotzzozo in jiyo (riodali atoro) (r	17017	Count Proof Paris Blowlet
	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow	')	
Low flows	10	10; Using flow duration curve method. (u/s Longbridge Deverill CSMG target for headwater applies: 5%)
Low-moderate flows	15	10; Using flow duration curve method. (u/s Longbridge Deverill CSMG target for headwater applies: 10%)
Moderate-high flows	20	15; Using flow duration curve method. (u/s Longbridge Deverill CSMG target for headwater applies: 15%)
High flows	10	15; Using flow duration curve method. (u/s Longbridge Deverill CSMG target for headwater applies: 15%)
Soluble Reactive Phosphorus ('orthophosphat	e' expre	ssed as P)
As annual and growing season means (µg/L)	50	-30ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 60ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	85

River Avon Page 10 of 13

GB108043022550 wyrye (Middle) (river)		South West River Basin Dist
	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (9/ deviations from daily naturalised flow	•	interini Frogress Goar (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow)	
Low flows	10	10; Using flow duration curve method
Low-moderate flows	15	10; Using flow duration curve method
Moderate-high flows	20	15; Using flow duration curve method
High flows	10	15; Using flow duration curve method
Soluble Reactive Phosphorus ('orthophosphate	e' expre	ssed as P)
As annual and growing season means (µg/L)	50	-10ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 54ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	85

River Avon Page 11 of 13

GB108043022570	Till (river)	South West River Basin District
----------------	--------------	---------------------------------

	CSMG Target	Interim Progress Goal (quantitative target or descriptive measure) by 2021
Flows (% deviations from daily naturalised flow	/)	
Low flows	10	10; Using flow duration curve method. (u/s Winterboure Stoke CSMG target for headwater applies: 5%)
Low-moderate flows	15	10; Using flow duration curve method. (u/s Winterbourne Stoke CSMG target for headwater applies: 10%)
Moderate-high flows	20	15; Using flow duration curve method. (u/s Winterbourne Stoke CSMG target for headwater applies: 15%)
High flows	10	15; Using flow duration curve method. (u/s Winterbourne Stoke CSMG target for headwater applies: 15%)
Soluble Reactive Phosphorus ('orthophosphate' expressed as P)		
As annual and growing season means (µg/L)	30	-0ug/l net reduction on 2010-11 baseline annual mean (indicative annual mean goal dry yr 39ug/l)
Acidification		
рН		Target not applicable to this waterbody
Acid Nuetralising Capacity (ANC)		Target not applicable to this waterbody
Organic Pollution		
Un-ionised ammonia (mg/L as 95%ile)	0.025	0.025
Total ammonia (mg/L as 90%ile)	0.250	0.25
Mean Biological Oxygen Demand (mg/L)	1.500	Investigation to determine compliance with CSMG target or to inform an interim progress goal
Dissolved Oxygen (% saturation as 10%ile)	85	85

River Avon Page 12 of 13

The targets and goals underpinning the conservation objectives for rivers within River Avon Natura 2000 site have been jointly agreed between Natural England and the Environment Agency.

Natural England

Comment: Further detail on CSMG targets and goals, and agreement record

in 'Progress goals and selected targets for N2K rivers: recording table and record of decision. River Avon SAC Version 4' 18.9.2014

Agreed by: OV, DK & DM

Date: 18 September 2014

Environment Agency

Comment: Goals only agreed, except where the goal is the same as the

CSMG target. Agreement from discussions with Christopher

Greenwell & Bryony Howlet (on flow), Giles Bryan (on phosphorus)

and Graham Brown (on acidification and organics).

Agreed by: CG, BH, GB, GB

Date: 18 September 2014

River Avon Page 13 of 13