cambs 64/92

3.0 ROBBINETTS OPENCAST COAL SITE SOIL REPORT

The site covers an area of 168 ha and is located in Nottinghamshire, approximately 2 km to the east of Ilkeston. Practically all the area is in agricultural use, although nearly half the site has been restored from previous opencast mining.

3.1 SOILS PRESENT

For the purposes of soil handling, the materials present can essentially be considered as 2 main units identifying the areas of previously disturbed land and undisturbed soils. A third smaller unit deliniates areas where significant sandstone is present within the profile, and the buildings at Shortwood Farm are also identified separately.

Details of each unit are presented in the Physical Characteristics report, and summarised below. Physical and chemical analytical data from soils representing the 2 main units are included in Appendices 6-8.

Unit I

This represents the areas affected by previous opencast operations and accounts for 48.7% of the site (82.0 ha). Topsoils are commonly of clay loam or a silty clay loam and depth is variable ranging from 150 mm to 400 mm but averaging approximately 300 mm. Most subsoils are of clay or silty clay to 1,000 mm depth, and often contain coal fragments. In places, grey silty clay overburden is present below 500 mm.

Unit II

This covers 48.5% of the site (81.6 ha) and comprises mainly undisturbed soils developed over Coal Measures Shales and Sandstones.

Topsoils and upper subsoils are of clay loam or silty clay loam. Material of clay or silty clay texture is usually present below about 600 mm in the lower subsoil.

Unit III

This identifies small areas of soils overlying sandstone and accounts for 2.5% of the site (4.3 ha). Topsoils are of silty clay loam or clay loam overlying subsoils ranging from silty clay loam to clay. Fine sand and sandstone are present in the lower subsoils below approximately 800 mm.

Unit IV

This comprises the buildings at Shortwood Farm covering approximately 0.3 ha, with negligible soil reserves.

3.2 SOIL STRIPPING

3.2.1 Areas and Depths

Soil stripping should be based on the units identified in section 1, but some rationalisation is possible. Recommendations are listed in Table 1.

Table 1.

SUMMARY OF SOIL STRIPPING AND STORAGE RECOMMENDATIONS

<u>Unit</u>	<u>Type</u>	<u>Depth (mm)</u>	<u>Main</u> <u>Texture</u>	<u>Notes</u>
1 7				
I	Topsoil	0-300*	CL	
II	Topsoil	0-300*	CL	
III	Topsoil	0-300*	CL	May be stripped with
•				Unit I.

*Topsoil depth varies mainly 250-300

I ,	Subsoil	300-1000**	С	**Overburden occurs below 500 mm in places so full depth not always recoverable.
IJĬ	Upper subsoil	300-500	CL	Upper subsoil generally lighter textured than lower subsoil and so should be kept separate.

II Lower subsoil 500-1000 C Lower subsoil may be stripped along with

9

С

III Subsoil

300-1000

May be stripped with unit I. Sandstone in lower profile may limit stripping depth in places.

Unit I.

Topsoils from Units I and II should be stripped separately as the disturbed soils in Unit I are often contaminated with subsoil and are slightly heavier than Unit II.

Topsoils in the small areas of Unit III, however, may be stripped along with the adjacent areas of Unit I.

The upper subsoil in Unit II is normally lighter textured and of better quality than the lower subsoil, and so it should be stripped separately.

The lower subsoil of Unit II may be stripped along with the subsoil of Units I and III. Sandstone under Unit III may limit the subsoil stripping depth possible in this unit.

To summarise

Topsoil handling:

I, III	Together
II	Separate

Subsoil handling:

I, II Lower,	Together
III	
II Upper	Separate

3.2.2 Soil Moisture Content

Soils are increasingly susceptible to damage from machinery by compaction and smearing as moisture content increases. Soil movement should only take place at moisture contents below the plastic limit ie when soils are in a dry friable state.

3.2.3 Equipment Movement

Movement of scrapers should take place on as low a strata of soil as possible. The majority of movement should be on material which is not designated as either topsoil or subsoil, and no unnecessary movement should take place on the topsoil.

3.2.4 Soil Making Material

As soils are currently present over practically the whole site, the requirement for additional soil making materials should be minimal.

Some shortage may result form the occurrence of overburden within 1 m depth in parts of Unit I, and from hard shallow sandstone under parts of Unit III.

Other parts of Unit III are underlain by softer sandstone which may provide additional material for soil making. Further sources may be found beneath the existing soils in Unit II, or possibly further down the geological profile. Further investigations would be necessary to establish the presence of these.

3.3 STORAGE

3.3.1 General

Topsoils and subsoils previously identified for separate stripping should be stored separately.

There will be a minimum of 2 types of topsoil mounds:

ie Units I and III Unit II

and 2 types of subsoil mounds:

ie Units I, II lower and III Unit II upper

Materials should be stored "like on like" so that topsoil is stripped from beneath subsoil heaps, and subsoil is stripped from beneath overburden mounds. The storage mounds should be as shallow as possible, and compacted by machinery as little as possible. Consideration should be given to progressive restoration if this is feasible, as soil structural damage will be minimised when soils are not stored.

A temporary grass cover should be established on all storage mounds. An established sward will minimise soil erosion and ensure that plant roots will extract surface moisture, maintaining the mounds in a drier condition than if no vegetation were present.

3.3.2 Cultivations for Establishment of a Grass Sward on the Storage Mounds

The cultivations necessary for seedbed preparation will depend on weather conditions, soil moisture content, and the degree of compaction created by placing soil in In general, the compact plateau of mounds the mounds. should be loosened to at least 150 mm with a fixed time cultivator. Fertiliser should be applied to the surface and cultivated in. The seedbed should be worked to form a fine tilth prior to sowing a grass/clover mixture, followed by a light roll. Side slopes that are too steep to cultivate will have to be manually seeded or hydroseeded.

ADAS

3.4 SOIL REINSTATEMENT

ì

3.4.1 Soil Distribution and Depth

Land restored to agriculture should be reinstated with 1 m of soil of which at least the top 250 mm is topsoil.

Soils of different quality should be restored in separate areas so that different management regimes can be applied, but unless there are ownership constraints, there is no need for the soil types to be replaced in their original locations. The relative qualities of the different materials are summarised below:

Relative quality	Topsoll	Subsoll
Best	Unit II	Unit II Upper
	Units I and III	Units I, III, Unit II Lower
Worst		Soil making materials

It is recommended that 2 basic qualities of land are reinstated with profiles made up as indicated:

A B Unit II Topsoil Units I and III Topsoil

Unit II Upper subsoil Units I, III, Unit II Lower subsoil

Units I, III, Unit II Lower subsoil

ADAS

3.4.2 Soil Movement

When soils are taken from the store, it is important to ensure that damage does not occur. Soil movement should conform to the criteria presented previously, and care should be taken to eliminate any unnecessary trafficking of subsoil or topsoil.

3.4.3 Soil Loosening

As each layer is replaced, it should be thoroughly subsoiled under dry conditions prior to spreading of the next layer. The compaction during spreading of subsequent layers should be kept to a minimum. The subsoiling should be carried out with a winged tine subsoiler and the spacing between tines should be not more than $1\frac{1}{2}$ times the depth of working. The foot of the subsoiler tine should extend below the surface of the last layer placed, in an attempt to mix and disturb the interface between layers.

3.4.4 Soil Analysis, Fertiliser and Organic Matter Additions

Samples from 0-150 mm depth should be analysed at reinstatement, and lime and fertiliser applied as appropriate to correct deficiencies and promote grass establishment.

On the basis of samples taken prior to stripping (Appendix 6) soils are likely to be low in phosphorus and potassium, and particular attention should be paid to the correction of these at reinstatement.

3.4.5 Grass Establishment and Cultivations

Grass should be established as soon as possible after restoration, and preferably in autumn to allow some growth before winter. The swards should be established according to normal agricultural practice, but particular attention should be paid to the timeliness of cultivations.

3.4.6 Drainage

Contouring of the site should be carried out in conjunction with ADAS to ensure sufficient falls and outlets for drainage schemes. Comprehensive drainage systems should be installed in the reinstated agricultural land at the earliest opportunity.

3.5 FUTURE MANAGEMENT

In order to aid the development of new soil profiles in the reinstated land, very careful management will be essential for a number of years. This will include subsoiling to remove compaction, and aid root penetration and natural soil cracking. Grass or winter cereals are the most suitable crops, but even under these care must be taken to minimise any further soil damage by paying special attention to the timeliness of cultivations, and avoiding trafficking the land or stock grazing under wet conditions. Soil analysis should be checked periodically to ensure any deficiencies in lime, phosphate etc are corrected.

15

AUGER)	BORING	INFORMATION	FOR	PROPOSED	ROBBINETTS	OCC	
---------	--------	-------------	-----	----------	------------	-----	--

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
1	1	hcl	0	35
	2	hcl	35	55
	3	c	55	80
2	1	hcl	0	30
	2	c	30	60
	3	c	60	100
3	1	hcl	0	35
	2	c	35	40
4	1	mcl	0	38
	2	c	38	. 90
	3	coal	90	100
5	1	mcl	0	35
	2	hcl	35	55
	3	c	55	100
6	1	mcl	0	35
	2	mcl	35	50
	3	hcl	50	100
7	1	mcl	0	28
	2	c	28	45
	3	c	45	60
8	1	hcl	0	29
	2	c	29	80
	3	c	80	100
9	1	mszl	0	33
	2	msst	33	40
10	1	szl	0	40
11	1	mcl	0	27
	2	mcl	27	40
	3	c	40	100
12	1	mcl	0	28
	2	mcl	28	65
	3	scl	65	85
	4	scl	85	100
13	1	hcl	0	33
	2	c	33	90
14	1	hcl	0	28
	2	c	28	70
	3	c	70	100
15	1 2	mcl hcl	0 39	³⁹ 60 ADAS (

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
	3	C	60	100
16	1	mcl	0	30
	2	hcl	30	60
17	1	mcl hcl	' 0 38	38 58
3	2 3	C	58	100
18	1	hcl	0	30
	2	hcl	30	40
	3	c	40	90
19	1	hcl	0	30
	2	c	30	100
20	1	mcl	0	38
	2	fs	38	50
21	1	mcl	0	39
	2	mcl	39	58
	3	c	58	100
22	1	hcl	0	39
	2	hcl	39	60
	3	c	60	100
23	1	hcl	0	29
	2	.c	29	100
24	1	mcl	0	33
	2	c	33	82
	3	c	82	100
25	1	hcl	0	40
	2	c	40	80
	3	zc	80	100
26	1	mcl	0	38
	2	hcl	38	50
	3	c	50	100
27	1	hcl	0	27
	2	c	27	45
	3	coal	45	85
	4	zc	85	100
28	1	mcl	0	39
	2	hcl	- 39	55
	3	c	55	80
29	1	hcl	0	33
	2	c	33	75
	3	zc	75	100

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
30	1	hcl	0	30
	. 2	c	.30	100
31	1	hcl	0	29
	2	c	29	70
	3	c	70	100
32	1	hcl	. 0	25
	2	c	25	70
33	1	mcl	0	48
	2	hcl	48	60
	3	c	60	100
34	1	hcl	0	25
	2	c	25	68
	3	coal	68	100
35	1	hcl	0	39
	2	c	39	100
36	1	hcl	0	20
	2	c	20	70
	3	zc	70	90
37	1	hcl	0	25
	2	c	25	60
	3	c	60	. 100
38	1	hcl	0	25
	2	c	25	60
	3	zc	60	100
39	1.	hcl	0	30
	2	c	30	60
	3	zc	60	100
40	1	hcl	0	33
	2	hcl	33	45
	3	c	45	60
	4	c	60	80
41	1	mcl	0	33
	2	c	33	60
	3	c	60	100
42	1	hcl	0	28
	2	c	28	
43	1	mcl	0	35
	2	hcl	35	60
	3	c	60	100

•

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
44	1	hcl	0	25
	2	c	25	80
	3	zc	80	100
45	1	hcl	, <u>0</u>	30
	2	scl	, 30	60
46	1	hcl	0	29
	2	c	29	78
	3	c	78	80
47	1	hcl	0	29
	2	c	29	. 100
48	1	hcl	0	30
	2	c	30	60
49	1	hcl	0	29
	2	zc	29	70
50	1	hcl	0	28
	2	c	28	100
51	1	hcl	0	35
	2	c	35	50
	3	c	50	80
52	1	hcl	0	50
	2	c	50	70
53	1	zcl	0	25
	2	c	25	50
	3	zc	50	100
54	1	hcl	. 0	30
	2	c	30	60
55 · .	1 2 3	hcl c zc	0 30 40	30 40 80
56	1	mcl	0	29
	2	c	29	70
	3	c	70	100
57	1	hcl	0	33
	2	hcl	33	40
	3	c	40	75
	4	coal	75	100
58	1	mcl	0	38
	2	hcl	38	60

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
59	1	mcl	0	38
	2	c	38	60
	3	c	60	80
60	1	hcl	, 0	. 30
	2	scl	' 30	80
161	1	hcl	0	28
	2	c	28	100
62	1	hcl	0	27
	2	c	27	100
63	1	hcl	0	35
	2	hcl	35	60
	3	c	60	100
64	1	hcl	0	30
	· 2	c	30	100
65	1 .	mcl	0	30
	2	c	30	80
	3	zc	80	100
66	1	mcl	0	30
	2	c	30	60
67	1	hcl	0	30
	2	c	30	60
	3	zc	60	100
68	1	hcl	0	30
	2	c	30	60
69	1	hcl	0	30
	2	c	30	100
70	1	mcl	0	29
	2	c	29	100
71	1	mcl	0	33
	2	c	33	100
72	1	hcl	0	35
	2	coal	35	70
	3	szl	70	100
73	1	mcl	0	29
	2	c	29	50
	3	c	50	55
74	1	hcl	0	25
	2	c	25	50
	3	c	50	100
•	•			•

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
75	1	hcl	0	20
	2	c	20	60
	3	c	60	100
76	1	hcl	, 0	30
	2	c	30	78
	3	zc	78	100
77	1	hcl	0	25
	2	c	25	65
	3	zc	65	100
78	1	hcl	0	20
	2	c	20	30
	3	zc	30	80
79	1	hcl	0	20
	2	c	20	50
80	1	mcl	0	15
	2	hcl	15	60
	3	c	60	100
81	1	hcl	0	40
	2	coal	40	100
82 83	1 2 3 1 2	hcl c zc mcl	0 30 80 0	30 80 100 29
84	1 2	c mcl c	29 0 29	70 29 80
85	1	mcl	0	20
	2	c	20	60
86	1	mcl	0	30
	2	c	30	50
	3	c	50	100
87	1	hcl	0	39
	2	zc	39	70
88	1	hcl	0	29
	2	c	29	55
	3	c	55	100
89	1	hcl	0	29
	2	c	29	40
	3	c	40	100

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
90	1	hcl	0	20
	2	С	20	65
	2 3	c	65	100
91	1	hcl	0	28
	1 2 3	С	' 28	50
1	3	zc	50	90
92	1	hcl	. 0	20
	2 3	С	20	50
	3	zc	50	100
93	1 2	mcl	0	15
	2	zc	15	100
94	1 2	mcl	0	35
•	2	С	35	100
95	1 2 3	hcl	0	35
	2	C	35	80
	3,	zc	80	100
96	1 2 3	mcl	0	35
	2	С	35	60
	3	ZC	60	100
97	1 2 3 4	mcl	0	20
	2	hcl	. 20	30
	3	С	30	70
	4	C	70	90
98 .	1 2 3	mcl	0.	29
	2	С	29	50
	3	ZC	50	100
99	1 .	hcl	0	30
	1 2	С	<u>30</u>	··60
100	1 2	hcl	0	35
	2	С	·· 35	60
101	1 2 3	hcl	0	29
	2	С	29	. 40
	3	Ċ	40	50
102	1 2	hcl	0	29
	2	с	29	60
103	1	hcl	0	30
	2	С	30	65
	1 2 3 4	С	65	80
	4	scl	80	100

۰.

. . .

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
104	1	hcl	0	28
104	2	c	28	85
	1 2 3	zC	85	100
105	1	hcl	0	28
	1 2 3	С	' 28	55
3	3	zC	55	75
107	1	mcl	. 0	30
	2 3	С	30	70
	3	zc	70	100
108	1	mcl	0	50
	1 2	С	50	60
109	1	mcl	0	28
	2	hcl	28	40
110	1.	hcl	0	50
111	1	mcl	0	35
	2	C.	35	65
	2 3	С	65	100
112	1	mcl	0	29
	2	C	29	55
	2 3	C	55	60
113	1	hcl	0	30
	2	С	30	100
. 114	¹ 1	hcl	0	30
	2	С	30	100
115	1	hcl	0	25
	2	hcl	25	50
	1 2 3	C	50	100
116	1	mcl	. 0	33
	1 2 3	С	33	50
•	3	C	50	100
117	1	mcl	0	39
	1 2	zC	39	100
118	1	hcl '	0	39
_	1 2 3	C	39	65
	3	С	65	100
119	1	hcl	0	29
	1 2 3	C .	29	45
	3	c	45	100

; . .

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
120	1	mcl	0	28
	2	c	28	100
121	1	hcl	0	30
	2	c	30	50
	3	c	50	100
1,22	1	hcl	· 0	30
	2	c	30	100
123	1	hcl	0	30
	2	c	30	100
124	1	hcl	0	29
	2	c	29	60
125	1	hcl	0	33
	2	c	33	50
126	1	mcl	0	25
	2	hcl	25	70
	3	c	70	100
127	1	mcl	0	35
	2	scl	35	65
	3	c	65	90
128	1	mcl	0	30
	2	c	30	70
	3	zc	70	90
129	1	mcl	0	30
	2	hcl	30	50
	3	c	50	80
	4	zc	80	100
130	1	hcl	0	33
	2	hcl	33	55
	3	c	55	100
131	1	mcl	0	29
	2	hcl	29	45
	3	c	45	100
132	1	mcl	0	29
	2	hcl	29	39
	3	c	39	65
133	1	mcl	0	40
	2	c	40	60
134	1	hcl	0	29
	2	c	29	80

135 1 mcl c 0 39 39 50 55 136 1 hcl c 0 29 c 70 29 70 70 136 1 mcl c 0 33 2 70 100 137 1 mcl c 0 33 3 70 70 100 137 1 mcl c 0 33 3 70 70 100 138 1 mcl c 0 33 3 70 29 39 39 50 138 1 mcl c 0 35 3 80 36 35 140 1 hcl c 0 30 70 70 35 50 141 1 hcl c 0 35 55 100 35 55 142 1 hcl c 0 29 35 35 45 144 2 c 29 35 35 45 45 144 2 mcl c 0 35 45 45 40 145 1 mcl c 0 35 56 36 </th <th>BORING</th> <th>HORIZON</th> <th>TEXTURE</th> <th>top depth</th> <th>LOWER DEPTH</th>	BORING	HORIZON	TEXTURE	top depth	LOWER DEPTH
136 1 hcl 0 29 70 137 1 mcl 0 33 33 70 137 1 mcl 0 33 70 100 138 1 mcl 0 29 39 30 70 138 1 mcl 0 29 39 30 60 100 139 1 mcl 0 35 80 80 140 1 hcl 0 30 70 140 1 hcl 0 30 70 100 141 1 1c 10 35 80 140 1 hcl 0 30 70 100 141 1 10 <td>135</td> <td>1 2</td> <td>С</td> <td>39</td> <td>50</td>	135	1 2	С	39	50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 3			
1 mcl c 0 33 33 c 33 0 137 1 mcl c 0 29 39 30 50 138 1 mcl 2 0 29 39 30 50 139 1 mcl 2 0 35 80 140 1 hcl 2 0 30 70 141 1 hcl 2 0 35 80 140 1 hcl 2 0 30 70 141 1 hcl 2 0 35 50 141 1 hcl 2 0 35 50 142 1 hcl 2 0 35 50 142 1 hcl 2 0 29 35 144 1 mcl 2 0 29 80 144 1 mcl 2 0 35 45 145 1 mcl 2 0 35 50 146 1 mcl 2 0 35 50 146 1 mcl 3 35 58 35 58 147 1 mcl 3 0 35 58 148 1	136	1 2	С	' 29	70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:	3	ZC	70	
138 1 mcl hcl 2 0 29 39 50 39 50 139 1 mcl c 0 35 80 140 1 hcl c 0 35 80 140 1 hcl c 0 30 70 141 1 hcl 2 0 35 50 141 1 hcl 2 0 35 50 142 1 hcl 2 0 55 100 143 1 hcl 2 0 29 35 144 1 mcl 2 0 35 45 144 1 mcl 2 0 29 35 144 1 mcl 2 0 29 80 146 1 mcl 3 0 40 50 146 1 mcl 3 35 40 100 147 1 mcl 3 35 58 100 148 1 hcl 3 35 58 100 149 1 mcl 2 0<	137	1 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			
3 c 39 50 80 139 1 mcl 0 35 80 140 1 hcl 0 30 70 141 1 hcl 0 35 80 141 1 hcl 0 35 80 141 1 hcl 0 35 50 142 1 hcl 0 55 100 142 1 hcl 0 29 35 143 1 hcl 0 29 35 144 1 mcl 0 29 35 144 1 mcl 0 29 80 145 1 mcl 0 40 50 100 146 1 mcl 0 35 40 100 147 1 mcl 0 35 58 100 148 1 hcl 35 58 100 33	138	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			
2c3580140 1 hcl030141 1 hcl0352 zc 35503hcl055142 1 hcl0143 1 hcl029144 1 mcl035144 1 mcl029145 1 mcl029146 1 mcl029146 1 mcl050147 1 mcl035148 1 hcl0353c3540148 1 hcl0353 c 35 58149 1 mcl035149 1 mcl033149 1 mcl033 <tr< td=""><td></td><td>4</td><td></td><td></td><td></td></tr<>		4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	139	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	C	35	
141 1 hcl 0 35 2 zc 35 50 3 hcl 50 60 142 1 hcl 0 55 142 1 hcl 0 29 143 1 hcl 0 29 143 1 mcl 0 35 144 1 mcl 0 35 144 1 mcl 0 29 145 1 mcl 0 29 145 1 mcl 0 29 146 1 mcl 0 40 2 c 29 80 100 146 1 mcl 0 35 147 1 mcl 0 35 2 mcl 35 40 100 148 1 hcl 35 58 100 148 1 hcl 35 58 100 149 1 mcl	140	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
3hcl50601421hcl0552coal551001431hcl0292c29351441mcl0351442c35451451mcl0292c29801461mcl0402c29801461mcl0402mcl35403c501001471mcl0352mcl35403c35583c35581491mcl0331491mcl0332c3380	141				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 3			
2coal551001431hcl0292c29351441mcl0351441mcl0292c35451451mcl0292c29801461mcl0402mcl40503c501001471mcl0352mcl35403c35401481hcl0353c581001491mcl0332c3380	142	1	hcl	. 0	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			100
1441mcl0351451mcl0291451mcl0292c29801461mcl0402mcl40503c501001471mcl0352mcl35403c35401481hcl0352hcl35583c581001491mcl0332c3380	143	. 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	С	29	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	144				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	145	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	146				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	140	2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	147	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2			
2 hcl 35 58 3 c 58 100 149 1 mcl 0 33 2 c 33 80	140			•	
149 1 mcl 0 33 2 c 33 80	140	1 2		35	
2 c 33 80		3			
	149	1	mcl	· 0	
		2	C		

į

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
150	1	mcl	0	40
	2	hcl	40	80
	3	С	80	100
151	1	mcl	0	40
	2	mscl	' 40	60
1,52	1	mcl	. 0	40
	2	msl	40	60

AUGER BORING INFORMATION FOR PROPOSED

ROBBINETTS OCC

BORING	HORIZON	TEXTURE ,	TOP DEPTH	LOWER DEPTH
153	1 2	hcl fscl	0 45	45 100
154	1 2 3 4 5	hcl c c c	0 30 35 50 78	30 35 50 78 100
155	1	hcl	0	25
	2	c	25	38
	3	c	38	60
	4	c	60	85
	5	fscl	85	100
156	1	hcl	0	20
	2	c	20	35
	3	c	35	70
	4	c	70	110
157	1	С	0	40
	2	С	40	70
	3	С	70	110
158	1	hcl	0	38
	2	hcl	38	46
	3	c	46	90
	4	c	90	100
159	1	hcl	0	48
	2	c	48	62
	3	c	62	85
	4	c	85	100
160	· 1	hcl	0	25
	2	c	25	100
161	1 2 3 4 5	с с с с	0 25 33 50 80	25 33 50 80 100

÷.,

BORING	HORIZON	TEXTURE	TOP DEPTH	LOWER DEPTH
162	. 1	hcl	0	25
	2	С	25	35
	3	С	35	58
	2 3 4 5	С	58 ·	85
	5	с,	85	100
163	1	hcl	0	40
	2	С	40	50
	23	С	50	80
164	1	hcl	0	25
,	2	С.	25	80
	2 3	C .	80	100
165	· 1	hcl	0	35
	2	С	35	100
166	1	с	0	28
	2	C	28	36
	2 3 4	С	36	· 70
	. 4	Ç	70	85
167	1	hcl	0	50
:	2	C	50	90
	2 3	coal dust	90	100

. .

SOIL TEXTURE ABBREVIATIONS

С	~	clay
fs	-	fine sand
hcl	,	heavy clay loam
mcl	~	medium clay loam
msl	-	medium sandy loam
mszl or szl	-	sandy silt loam
msst	-	medium sandstone
zc	-	silty clay

	PIT DESCRIPT	ION	APPENDIX 4	· ·
Site Nume: Robbinetts	Slope:	ATO: 1350	MD Wheat: 98	
Pit No: 1	Aspect: -	FCD: 150	MD Potatocs: 87	
Land use: Cereal	Microrelief: -	AAR: 682		

Depth (cm)	Texture	Munsell Colour	Gleyed	Mottles Abundance/ Colour	Structure Size/Shape/Grade Consistancy	Slowly Perm Layer	Porosity	Stone Abundance/Type	Plant Roots	Comments
22	HZCL	25¥5/2		· .	Coarse sub angular blocky. moderately well developed			<5%	Many	
75	ZC	10 YR 5/6		Abundant 25Y 7/0	Coarse angular blocky very weakly developed	Y .	<0.5		Common peds fo within	
	ZC dug to 80 d to 100			10 YR 6/8	Coarse sub angular blocky very weakly developed	Y .	<0.5			out roots nt to 80 cm
Welness		IV Restored land	Wetness grade:		topsoil. Coal	Ap wheat	L: -	Drought ALC ~ grade:		ALC grade:

General Comments: Restored land. Pan at base of topsoil. Coal fragments present throughout subsoil with Ap potatoes - Main limitation: WETNESS remains of woody roots. Subsoil contamination of topsoil and coal fragments. Earthworms (3) present.

HZCL - heavy silty clay loam

PIT DESCRIPTION

Site Name:	Robbinetts	Slope: -	ATO:	1350	MD Wheat:	98
Pit No:	2	Aspect: -	FCD:	150	MD Potatoes:	87
land use:	Grass	Microrelief: -	AAR:	682		

Depth (cm)	Texkure	Munsell Colour	Gleyed	Mottles Abundance/ Colour	Structure Size/Shape/Grade Consistancy	Slowly Perm Layer	Porosit:	Stone Abundance/Type	Plant Roots	Comments
25	HCL	10 YR 4/2	No	•	Coarse & sub- angular blocky moderately well developed				Many	
37	нсг	10 YR 5/3		Common 75 YR 4/6	Medium sub- angular blocky weakly developed		<0.5%		Common	
100 .	ZC	5 Y 6/1		Abundant 75 YR 5/6	Coarse prismatic moderately well developed		<0.5%		Common fewer 1 50 cm	

Wetness Class:	IV Wetness Al	,C 3b	Ap wheat: ~	Drought ALC ⁻ grade:	ALC grade: 31
General CommonLs:	Roots present inside Porosity greater than stone less than 5% to and occasional coal f	on restored land tal - small sandstor	Ap potatoes -	Main limitation:	WETNESS
	HCL – heavy clay loam ZC – silty clay	· ·		•	

PIT	DESCRIPTION	ł

•.

:

•

Site Name: Robbinetts	Slope: -	ATO: 1350	MD Wheat: 98
Pit No: 3	Aspect: -	FCD: 150	MD Potatoes: 87
Land use: Cereal	Microrelief:-	AAR: 682	

Depth (cm)	Texture	Munsell Colour	Gleyed	Mottles Abundance/ Colour	Structure Size/Shape/Grade Consistancy	Slowly Perm Layer	Porosity	Stone Abundance/Type	Flant Roots	Comments
0-28	HCL	10 YR 5/2	No	few manganese concretions & occasional mottles	angular blocky	NO	0.5%	occasional small stones and coal fragments	many fine roots	straw incor- porated in profile
28-60	с	7.5 YR 4/4 7.5 YR 3/0		many manganese concretions	coarse prismatic well developed	Yes	0.5%	occasional rounded quartzite stones	fine	water seeping into profile
60+	c	· · · · · · · · · · · · · · · · · · ·		many ochreou	5	Yes	0.5%	occasional small angular stonès and coal fragments	-	disturbed soil?

Wetness Class: IV	Wetness ALC grade:	3Ե	•		Ap wheat: _		Drought ALC _ grade:	ALC grade:	3ь
General Comments:				·					
HCL - heavy cl. C - clay	ay loam				Ap potatoes	-	Main limitation:	WETNESS	

.

<u>.</u>.

PIT DESCRIPTION

Site Name:	ROBBINETTS	Slope:	-	'ATO:	1350	MD Wheat 98	
Pit No:	4	Aspect:	•	FCD:	150	MD Potatoes 87	
Land use:	•	Microrelief:		'AAR:	682	•	

.

Exploratory pit to determine subsoil nature

...

-- - ---

....

÷

Depth (cm)	Texture	Munsell Colour	Gleyed	Mottles Abundance/ Colour	Structure Size/Shape/Grade Consistency	Slowly Perm Layer	Porosity	Stone Abundance/Type	Plant Roots	Comments
35	SZL			fine sub- angular blocky: weakly developed					Abudant	
80	FSL with sandstone fragments			Crumb- numerous sandstone fragments up to 4 cm				angular	Common	,

Wetness Class:	Wetness ALC grade:	AP Wheat	Drought ALC grade:	ALC Grade
General Comments:	Dug to 50cm; augered to 80cm	AP potatoes	Main limitation:	

9.5.92 Addicional area 🕤

...

٠.

۰.

PIT DESCRIPTION

Site Name:	Robbinetts	Slope:	۸ТО:	1374	MD Wheat: 102
PIE No:	5	Anpect:	FCD:	150	MD Pointoes: 92
• Lond use:	Grass	Microrelief:	ΛΛR:	667	

Depth (cm)	Texture	Munsell Colour	Gleyed	Mottles Abundance/ Colpur	Structure Size/Shape/Grade Consistancy	Slowly Perm Layer	Poros11;y	Stone Abundance/Type	Plant Roota	Comments
0 - 20	IICL	1.0YR53	Y	75YR58 Common	Strongly devel- `oped medium Subangular bloc	ky	· ·	ſ'ew	Common	
20 - 35	C	10YR5366		75YR58 Many	Strongly devel- oped medium angular blocky		<0.5%	Stoneless	Common	
35 - 70	с	10YR6358		10YR61 Many	firm Weakly develope coarse prismati firm		<0.5%		down	Coal fragments es presen!
70+	FSCL Sandsto	10YR81 10YR68 he fragments		10YR61 Common	Weakly develope coarse sub- angular blocky firm	đ	<0.5%		Occasio fine ro	

Wetness Class:IVWetness ALC3bAp wheat:Drought ALCALC grade:grade:grade:grade:grade:grade:3bGeneral Commenta:Ap polatoesMain Himitation: Wetness

Chemical Analysis of Topsoils

Unit	і рн	Phos	sphorus	<u>Pota</u>	ssium	Magnesium		
		<u>mg/1</u>	(<u>index</u>)	<u>mq/1</u>	(<u>index</u>)	<u>mg/l</u>	(<u>index</u>)	
I	6.7	8	(0)	119	(1)	354	(6)	
II	6.0	3	(0)	56	(0)	81	(2)	

Phosphorus potassium and magnesium are quoted as milligrammes of available material per litre of soil with the equivalent ADAS index in brackets. These are interpreted as follows:

Index	0			-	v.	low
	1			-	10%	I .
	2			-	sat	isfactory
	3 a	nđ	above	_	hig	h

Unit	Depth	<pre>% in each class</pre>						Texture
	(įmm)	2000-600µ	600-200µ	200-60µ	60-20µ	20~2µ	‹ 2µ	
<u> </u>	<u> </u>		<u> </u>			-		
I	0-300	2	4	10	18	33	33	ZCL
	300-1000	1	2	3	13	35 [,]	46	ZC
II	0-300	2	5	14	15	34	30	ZCL
	300-500	2	5	14	20	34	25	ZCL
	500-1000	0	0	1	12	49	38	ZC

Particle Size Analysis

Textures are derived from the particle size analyses.

. .

	Abbreviations:	S	-	sand
		Z	-	silt
•••		С	-	clay
	. ·	L	-	loam
	· -			

eg ZCL - silty clay loam

Plastic Limit Data

t , 1

	1		•				
		<u>% on dry soil</u>					
Unit	Depth	Plastic Limit	Acceptable Moisture Content				
	(mm)		for Soil Movement				
	<u></u>		<u> </u>				
Ĩ	0-300	32	29				
	300-1000	29	26				
II	0-300	35	32				
**	300-500	29	26				
	• .						
	500-1000	27	24				
	•						

Soils are increasingly prone to structural damage as moisture content increases. To minimise damage, soil movement should ideally take place at moisture contents well below the plastic limit, and acceptable guide levels for each unit are listed above. There will inevitably be some variation within each unit, and ADAS should be consulted if conditions are at all doubtful.

