A1

Test Valley Local Plan Review Sites 92 93 Romsey Agricultural Land Classification Semi Detailed Survey ALC Map and Report

January 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 1512/177/96 MAFF Reference EL 15/00292

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW SITES 92 93 ROMSEY HAMPSHIRE

SEMI DETAILED SURVEY

INTRODUCTION

- This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 70 hectares of land to the north of North Baddesley Hampshire The survey was carried out during January 1997
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Test Valley Local Plan Review The results of this survey supersede any previous ALC information for this land. The land to the immediate south east of the current area of survey was surveyed in 1993 (ADAS Ref. 1512/068/93) and so was not re visited on this occasion.
- Prior to 1st April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA). Reading. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I.
- At the time of survey the agricultural land on this site was mostly in permanent grassland. The western most half of the site comprised overgrown grassland with scattered trees and shrubs, which was being used as common land and grazed by horses. The areas of the site shown as. Other Land, consist of woodland and scrub, a pond and a house and driveway.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% Total survey area	% Total site area
2 3a 3b 4 5	27 4 13 4 12 3 0 6 1 4	49 7 24 3 22 3 1 1 2 6	39 0 19 1 17 5 0 9 2 0
Other land	15 1		21 5
Total survey area Total site area	55 1 70 2	100 0	100

- 7 The fieldwork was conducted at an average density of 1 boring every 2 hectares A total of 30 borings and 3 soil pits were described
- The land at this site has been classified as Grade 2 (very good quality) Subgrade 3a (good quality) Subgrade 3b (moderate quality) with small pockets of Grade 4 (poor quality) and Grade 5 (very poor quality) Soil wetness and soil droughtiness are the principal limitations throughout. The soils on the site are derived from interbedded deposits of the Bracklesham Group and as such were found to be very variable both spatially and vertically through the profiles.
- Many of the soil profiles suffer from wetness problems to varying degrees. The topsoils comprise fine or coarse loamy textures. These often overlie similar upper subsoils which pass to poorly structured clay loams or clays. The depth to these poorly structured horizons will determine the final ALC grade. Where these poorly structured horizons are shallow the drainage will be severely restricted and land is classified as Subgrade 3b whereas when they occur deeper within the profile the resultant ALC grade will be Grade 2 or Subgrade 3a. These clayey soils cause drainage to be impeded so that land utilisation is restricted.
- Localised parts of the site have severe drainage problems caused by seepage and spring lines. Grades 4 and 5 are mapped where the presence of hydrophilous vegetation and an uneven surface form suggest permanent waterlogging. The area assigned to Grade 5 is a degree worse than that mapped as Grade 4 and the land will only be suitable for seasonal grazing at best
- On occasions when soil wetness is less significant the soil profiles are better drained and are often sandier and/or more stony at depth. Soil droughtiness may be equally or more restricting in these cases. The combination of soil properties and the prevailing climate results in soil droughtiness which will restrict the amount of profile available water for crops. Crop growth and yields will therefore be adversely affected to different degrees depending on the severity of the droughtiness limitation. Grades 2. 3a and 3b have been mapped as a result.

FACTORS INFLUENCING ALC GRADE

Climate

- 12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Va	alues		
Grid reference	N/A	SU 388 206	SU 398 207		
Altıtude	m AOD	35	55		
Accumulated Temperature	day C (Jan June)	1514	1491		
Average Annual Rainfall	mm	819	820		
Field Capacity Days	days	174	174		
Moisture Deficit Wheat	mm	108	106		
Moisture Deficit Potatoes	mm	102	99		
Overall climatic grade	N/A	Grade 1	Grade 1		

Table 2 Climatic and altitude data

- 14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Local climatic factors such as exposure and frost risk do not adversely affect land quality at this location. The site is climatically Grade 1. However, climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. At this locality the climate is relatively warm and moist in regional terms. The likelihood of soil wetness problems may therefore be enhanced.

Site

The site lies at altitudes in the range 35 57 m AOD. The highest land occurs along the eastern site boundary with land falling through slight to moderate gradients towards the north west and west. Most of the site is not affected by site restrictions (i.e. gradient micro relief or flooding). However, along the field boundary which marks the eastern edge of land classified as Grade 5, the land falls very sharply. The extent of this steep slope is not sufficient to map separately at this scale of mapping, but the land affected is included within the Grade 5 mapping unit. These slopes will severely restrict the safe and efficient use of farm machinery.

Geology and soils

- The most detailed published geological information for the site (BGS 1987) shows the majority of it to be underlain by solid deposits of the Bracklesham Group. Much of the northern and western parts of the site are mapped as the Wittering Formation, whilst the south and east are shown as Earnley Sand. In addition to these solid deposits, there are isolated patches of drift deposits, notably a band of alluvium towards the west of the site, and undifferentiated river terrace deposits towards the south and east.
- The most detailed published soils information covering the area (SSEW 1983) shows it to comprise entirely soils of the Wickham 3 association. These soils are described as slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey similar more permeable soils with slight waterlogging (SSEW 1983). Soils broadly consistent with this description were observed across parts of the site-fine and coarse loamy soils overlie clay in the subsoil at variable depth. Occasional more sandy and/or gravelly soils were found

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- Very good quality agricultural land has been mapped across approximately half of the area surveyed. Soils within the Grade 2 mapping units are very variable having developed from the inter mixed sands and clays of the Bracklesham Beds. Soil textures and drainage status vary considerably over short distances and within profiles.
- The Grade 2 land on this site is influenced by minor soil wetness and soil droughtiness limitations either acting singly or in combination. Profiles comprise non calcareous fine or medium sandy loam occasionally medium clay loam or sandy clay loam topsoils. These were recorded as having relatively high organic matter contents, and were frequently defined as organic mineral topsoils. Generally stones were found to be absent or only very few flints. Subsoil textures vary considerably although typically they become heavier with depth sometimes passing to lighter textures once more in the lower subsoil. Horizons of sandy loam sandy clay loam heavy clay loam clay and loamy sand were all observed. Stone contents were estimated to be at a maximum of 5% flints throughout these subsoils. Soil pit 1 (see Appendix II) is representative of the range of soil profiles seen.
- Soils within the Grade 2 mapping units experience seasonal waterlogging as evidenced by gleying to varying extents. This is sometimes caused by impeded drainage through slowly permeable clay loam or clay horizons or by a fluctuating watertable. The drainage characteristics of these soils places them into a range of wetness classes from I to III. Taking

into account topsoil textures (many of which are light and easily workable) and the prevailing climate land is classified as Grade 2 on the basis of minor soil wetness

Where soil wetness is not the overriding limitation to agricultural use soil droughtiness is an important factor. The combination of the soil properties as described in paragraph 23 above, and climatic factors shows there to be a potential shortfall in the availability of soil moisture to crops during the year. This is especially apparent where the soils contain more sandy horizons. Land which is droughty may cause the level and consistency of crop yields to be depressed.

Subgrade 3a

- 26 Much of the land classified as Subgrade 3a good quality is affected by soil wetness Soils comprise non calcareous medium sandy loam medium clay loam or fine sandy silt loam topsoils These may contain up to 6 % total flints by volume (1 4% > 2 cm in size) Topsoils overlie similar upper subsoils which pass to heavier textures of sandy clay loam heavy clay loam and clay with depth Soil pit 2 (see Appendix II) is typical of these soils It proved the existence of poorly structured sandy clay loam and clay horizons which are slowly permeable and which thereby impede drainage and cause seasonal waterlogging. Many of the profiles were gleyed at shallow depth evidence of the seasonal waterlogging. The depth to these slowly permeable clay subsoils (between 30 and 55 cm) results in soils being assigned to wetness class III or IV The combination of imperfect soil drainage topsoil textures (many of which are light and/or organic and thereby easily workable) and climatic factors gives rise to a land classification of 3a Excessive soil wetness may adversely affect crop growth and development as well as limiting the flexibility of the land due to the reduction in the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock
- Localised areas of the land classified as Subgrade 3a most notably on the higher land south of Body Farm are graded on the basis of a soil droughtiness limitation. Non calcareous sandy loam or medium clay loam topsoils containing up to 18% total flints by volume (8% of which are > 2 cm in size) rest on similar upper subsoils. Profiles were found to be impenetrable to the soil auger within 40 cm. As a result soil pit 3 was examined to establish the nature of the subsoils. Upper subsoils were found to contain up to about 40 45% flints. These pass to heavier and less stony lower subsoils. The overriding limitation is one of droughtiness. The stony subsoils restrict the moisture content of the profiles and moisture balance calculations indicate that the amount of water available to a growing crop may not be sufficient to meet its needs throughout the growing season. The resulting drought stress may cause the level and consistency of yields to be depressed. Subgrade 3a is therefore appropriate

Subgrade 3b

Moderate quality land is found in conjunction with parts of the site affected by significant soil wetness. Soils typically comprise non calcareous medium clay loam or sandy clay loam topsoils which may contain 2 10% total flints by volume. These pass to heavier subsoils typically heavy clay loam and clay. These profiles are all gleyed within 40 cm evidence of severely impeded drainage arising from the presence of slowly permeable horizons between 28 and 42 cm. Such drainage characteristics equate to a wetness class of IV which

when considered alongside topsoil textures and the prevailing climatic conditions results in a land classification of Subgrade 3b

A small unit of Subgrade 3b land to the immediate north of the industrial works is also classified as such on the basis of soil wetness but as a result of high ground water levels which may be difficult to control. This mapping unit in coincident with a patch of river terrace gravels. Soils are thereby stony and gravelly and impenetrable to the soil auger at shallow depth. At the time of survey the watertable was observed at 35.40 cm, resting at the junction of the soil and the gravelly substrata beneath. The drainage status was assessed as being consistent with wetness class IV, leading to a land classification of Subgrade 3b.

Grade 4

A small unit of poor quality land has been delineated towards the west of the site in association with an area of seepage. The presence of hydrophilous vegetation e.g. Juncus sp is suggestive of permanent waterlogging. Such conditions give rise to land which is severely restricted in its agricultural use and suitable for seasonal grazing only.

Grade 5

Very poor quality agricultural land has been mapped where seepage as described in paragraph 30 above is so severe as to cause permanent waterlogging to the surface which probably persists throughout the year and an uneven micro relief. The extent of seepage is assessed as being a degree worse than for land assigned to Grade 4 and therefore Grade 5 is appropriate. The land is only suitable for low intensity rough grazing.

Michelle Leek Resource Planning Team FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1987) Sheet No 315 Southampton 1 50 000 Solid & Drift Edition, BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England. SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maıze
OSR.	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent grass	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Consferous woodland	отн	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Frosion Risk	WD	Soil Wetness/Droughtiness

Soil Pits and Auger Borings

TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66 / of the sand less than 0 2mm)
- M Medium (less than 66 / fine sand and less than 33 / coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-di id d according to the clay content M Medium (<27 / clay) H Heavy (27 35 / clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2/ C common 2 20/ M many 20-40/ VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic rock	GH	gravel with non porous (hard) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly de eloped	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	sıngle gram granular sub-angular blocky platy	M AB PR	massi e angular blocky prismatic

9 CONSIST Soil consist nee is d scribed using the following notation

L loose FM firm EH extremely hard
VF very friable VM very firm
FR friable EM extremely firm

- SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5 / biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column
- 15 Other notations

APW available ater capacity (in mm) adjusted for wheat APP avail ble water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name TEST VALLEYLP SITE 92 93 Pit Numbe 1P

G id Ref rence SU39302090 Ave ge A nual Ra fall 819 mm

Accumulated Tempe ture 1514 degree days

Feld Capacity Level 174 d ys
Land U e Rough Grazing
Slope and Aspect 01 degrees W

HORIZON	TEXTURE	COLOUR	STONES	2 1	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 22	MSL	10YR32 00	1		2	HR					
22 45	MSL	10YR54 00	0		2	HR		WDCSAB	VF	G	
45- 60	HCL	10YR62 00	0		0		M	MDCSAB	FR	М	
60 90	С	25Y 62 00	0		0		M	MDCAB	FM	Р	
90 120	SCL	25Y 52 62	0		0		М			M	

 Wetne s Grade
 2
 Wetness Clas
 III

 Gley ng
 045 cm

 SPL
 060 cm

Drought G ade 1 APW 144mm MBW 36 mm APP 112mm MBP 10 mm

FINAL ALC GRADE 2
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Name TEST VALLEYLP SITE 92 93 Pit N mbe 2P

Gr d Reference SU39702070 Ave age Ann al Rai f 11 819 mm

Accumulated Temper t re 1514 degree d y

Field Capac ty Level 174 days

L nd Use Permane t Grass Slope and Aspect 02 degrees W

HORIZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 35	MCL	10YR42 00	4		6	HR	С				
35- 52	С	05 Y53 00	0		0		M	WDCAB	FM	Р	
52 120	SCL	05 Y54 00	0		0		М	MDCPL	FR	Р	

 Wetnes G de 3A
 Wetne Class
 IV

 Gleying
 0 cm

 SPL
 035 cm

 Drought G de 2
 APW 135mm MBW 27 mm

APP 105mm MBP 3 mm

FINAL ALC GRADE 3A
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Name TEST VALLEYLP SITE 92 93 Pit Numbe 3P

G id R ference SU39902070 Ave age Annual Rainfall 819 mm

Accumulated Tempe ature 1514 degree days

Field Capacity Level 174 d ys Land Use Permane t ${\bf G}$ ss

Slope and Aspect degrees

HOR:	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	24	MSL	10YR32 00	8		18	HR					
24	60	MSL	10YR33 00	15		43	HR				M	
60	100	С	25 Y53 00	0		5	HR	М	WKCSAB	FM	Р	
100	120	SCL	25 Y53 00	0		0		H			M	

Wetness G ade 2 Wetness Class III Gleying 060 cm SPL 060 cm

Drought G de 3A APW 112mm MBW 4 mm

APP 080mm MBP 22 mm

FINAL ALC GRADE 3A

MAIN LIMITATION Droughtiness

				-1	MOTTLES	3	PED			S	TONES		STRUCT	' SU	BS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	TOT	CONSIST	ST	R POR	IMP	SPL CALC			
1	0 27	omcl	10YR31 00						0	0	HR	5								
	27 40	mcl	10YR52 00	75YR5	8 00 M			Y	0	0	HR	10		М				Imp	grav	elly
1 P	0 22	ms 1	10YR32 00						1	0	HR	2						PSD	FSL	.
	22 45	msl	10YR54 00						0	0	HR	2	WDCSAB	VF G				PSD	FSL	_
	45-60	hcl	10YR62 00	75YR5	B 00 M			Y	0	0		0	MDCSAB	FR M				Borde	e SC	L
_	60 90	С	25Y 62 00	75YR5	6 00 M	2	25 Y71	00 Y	0	0		0	MDCAB	FM P	Υ		Y			
	90 120	scl	25Y 52 62	75YR5	6 00 M			Y	0	0		0		М			Y	+ fir	ne a	and
2	0 28	f z1	10YR33 00						0	0		0								
1	28-35	fs 1	10YR33 00						0	0		0		M						
5	35-45	mc1	10YR53 00					Y	0	0		0		М						
	45 80	С	10YR53 00	10YR6	B 00 M			Y	0	0		0		P			Υ			
2P	0 35	mcl	10YR42 00					Y	4	2	HR	6						PSD	FSL	
•	35-52	С	05 Y53 OO					Υ	0	0		0			Υ		Υ	PSD	SCL	
1	52 120	scl	05 Y54 00	75YR6	8 56 M			Y	0	0		0	MDCPL	FR P	Y		Y	PSD	FSL	_/SCL
3	0 30	mcl	10YR32 00	10YR3	4 00 F				0	0		0						ро	orga	anic
	30 45	hc1	10YR52 53	10YR5	8 00 M			Y	0	0	HR	0		М				sar	nd	
ì	45 65	С	25 Y52 62	75YR5	8 00 M			Y	0	0		0		Р			Υ	1	nd	
3P	0 24	ms 1	10YR32 00						8	0	HR	18								
	24 60	ms 1	10YR33 00						15	0	HR	43		М						
ŀ	60 100	С	25 Y53 OD	75YR6	8 00 M			Y	0	0	HR	5	WKCSAB	FM P	Υ		Υ	Borde	sc	:
	100 120	scl	25 Y53 00	75YR6	8 00 M			Y	0	0		0		М						
4	0 40	mcl	10YR42 00	10YR4	6 00 F				0	0	HR	3								
	40 50	hc1	10YR54 56						0	0	HR	4		M						
.	50 80	С	05Y 53 64	75YR5	B 00 M			Y	0	0	HR	1		Р			Y			
5	0 20	ofsl	10YR31 00						σ	0	HR	3						PSD	FSL	_
•	20 35	f 1	10YR53 66						0	0	HR	3		М				(not	orga	an c)
-	35 50	sc1	10YR56 64						0	0	HR	2		M						
	50 60	scl	25Y 63 00				OOMNOO		0	0	HR	3		M						
	60 80	lfs	05Y 63 00			0	OOMNOO		0	0		0		M						
r	80 120	scl	25Y 63 00	75YR5	B 00 M			Y	0	0		0		М						
6	0 30	fzl	10YR31 00						0	0	HR	3								
	30 40	hc1	25Y 52 63	10YR5	8 00 M			Y	0	0	HR	2		M						
	40 65	С	25Y 52 62	75YRS	B 00 M			Y	0	0		0		₽			Y			
7	0 28	നമി	10YR41 42	10YR3	6 0 0 C			Y	0	0	HR	2						f	ne	nd
	28 80	mc1	10YR64 53					Y	0	0	HR	1		M						
	80 120	hc1	05Y 53 64	10YR5	3 00 M	0	OMNO0	00 Y	0	0		0		₽			Y			
8	0 30	mcl	10YR51 42	10YR34	4 00 C			Y			HR	2						fr	ne	nd
1	30 40	mc1	10YR42 53				00MN00				HR	5		М						
	40 55	hc1	10YR52 62			0	OMNOO		_		HR	3		М						
	55 65	hc1	05Y 52 62					Y	0	0		0		Р			Y			
1	65 100		05Y 52 62	O5YR5	3 00 M			Υ	0	0		0		Р			Υ			

				-MOTTLES	PED			STONES	STRUCT	/ SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR CO	OL ABUN	CONT COL	GLEY	2	6 LITH	TOT CONSIS	T STR POR II	1P SPL CALC	
9	0 30	ocl	10YR21 00 10	/R44 00 F			0	0 HR	1			Border (0)FSZL
	30 40	mcl	25Y 61 62 10	/R58 00 C		Y	0	O HR	3	M		
	40 70	c	25Y 51 61 75	/R58 00 M		Y	0	0 HR	5	P	Y	Wate logged
10	0 20	oc1	10YR31 00				0	O HR	2			PSD (0)FSZL
	20 60	c	25Y 61 62 75Y	/R58 00 M		Y	0	0	0	P	Y	
11	0 27	fsl	10YR33 00				0	O HR	2			
	27 55	ms 1	10YR46 00				0	0 HR	2	M		
	55-60	scl	25 Y64 00 10°	/R58 00 C		Υ	0	0	0	M		
	60 80	С	25 Y64 00 10	7R58 00 C		Y	0	0	0	Р	Y	
12	0 27	mzcl	10YR43 00				0	0	0			
	27 48	mcl	25 Y62 00 75	/R58 00 C		Y	0	0	0	М		
	48 80	C	25 Y63 00 75	/R68 00 M		Y	0	0	0	Р	Y	+ and 1 e
13	0 27	mc1	10YR41 00 10	/R56 00 C		Υ	0	O HR	2			fine sand
	27 42	hcl	10YR53 00 10	YR58 00 C	OOMNOO	00 Y	0	0 HR	10	M		
	42 60		25 Y62 00 75	YR58 68 M		Y	0	O HR	5	Р	Y	
	60 80	c	25 Y62 00 75	YR58 68 M	25YR46	00 Y	0	0	O	P	Y	
14	0 30	scl	10YR43 00				0	O HR	5			
	30 70	c1	10YR53 00				0	0 HR	5	М		
	70 110	ms1	25 Y63 53				0	O HR	2	м		
	110 120	hcl	25 Y53 00				0	0	0	М		
15	0 30	f 1	10YR31 32				0	0	0			
	30 40	scl	10YR54 56 75	YR58 00 F			0	0	0	М		Border HCL
	40 60	cl	25Y 62 52 75	/R58 00 M		Y	0	0	O	М		Bord HCL
	60 85	c	25Y 51 61 75	7R58 00 M		Y	0	0	0	Р	Y	and
16	0 35	of 1	10YR31 00				0	O HR	2			
	35 50	f 1	10YR54 00		10YR31	00	0	0	О	М		
	50 60	fs1	25Y 54 56				0	0	0	М		
	60 80	scl	25Y 54 56 10	YR56 00 F			0	0	0	М		I thedded S+C
	80 100	ms1	25Y 52 53 10	YR56 00 C		Y	0	0	0	М		
	100 120	c1	25Y 52 53 10°	YR56 00 C		Y	0	0	0	М		
17	0 27	oms 1	10YR31 00				0	O HR	1			
	27 55	lms	75YR32 00				0	0	٥	М		Fe/OM pod o1
	55 65	hc1	25 Y53 00 75	YR68 00 C		Υ	0	0	0	М		-
	65 90	С	25 Y53 00 75			Y	0	0	0	PΥ	Y	
18	0 30	ofsl	10YR22 00				0	0 HR	5			
	30 40	omcl	10YR52 00 10	YR56 00 C		Υ	0	0 HR	2	М		Fe e ched
	40 60	hc1	10YR53 00 10			Υ	0	0	0	M		
	60 90		25 Y64 00 10			Y	0	0	0	Р	Y	Sandy le e

				-	MOTTLES		PED			STON	ES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT	COL.	GLEY	2	6 LI	ти тот	CONSIST	STR POR	IMP SPL CALC	
_															
19	0 28	scl	10YR43 00						0	O HR					
	28-35	scl	10YR53 00					Υ	0	O HR			M -		
	35-85	С	25 Y62 00	10YR6	8 00 M	()5YR56	00 Y	0	0	0		Р	Y	+ sand
									_	_	_				
20	0 30	fszl	10YR33 00						0	0	0				
	30-45	mcl	10YR46 00				LOVOCA	S	0	0	0		M		
	45-50	hcl	10YR46 00				10YR64		0	0	0		M P	Y	
	50 85	С	10YR63 00	/5YK	90 UU C			Y	0	0	0		r	•	
21	0 25	1	10YR21 00						0	0	0				
	25-45	oms1 ms1	25Y 61 62	75VD5	a nn M			Υ	0	O HR			М		
	45 60	scl	25Y 51 62					Ÿ	0	0	0		M		
	60 80	scl	25Y 51 62					Ÿ	0	0	0		P	Y	Borde C
_	00 00	301	231 0. 02					•	•	•	•				
22	0 25	omc1	10YR31 00						0	O HR	5				
	25-58	mcl	25 Y62 00	10YR7	78 00 C			γ	0	O HR			М		Wtable 35-40
	58 65	lms	25 Y62 D0	10YR5	8 00 C			Y	0	O HR	10		M		
	65-80	С	25 Y62 00	10YR7	78 00 C			Υ	0	O HR	20		M		Imp gravelly
23	0 30	ofsl	10YR31 00						0	0	0				
	30 50	lms	10YR22 00	000M	00 00 C	(00FE00	00	0	0	0		M		Fe/OM pod ol
	50 75	lms	10YR62 00	75YR	58 00 C			Y	0	0	0		M		
_	75–85	scl	05 Y62 00	75YR6	M 00 8			Y	0	0	0		M		
_	85-95	sc	05 Y62 00	75YR6	M 00 8			Y	0	0	0		M		
	95 120	scl	05 Y62 00	75YR	58 00 M			Y	0	0	0		М		
-															
24	0 27	msl	10YR42 00					Y	0						
	27 40	scl	25 Y53 00					Y	0	O HR			M		
	40 70	c	25 Y53 63					Y	0	0	0		P	Y	
	70 80	scl	25 Y63 00					Y	0	0	0		M		
	80 90	ກຣາ	25 Y63 00					Y	0	0	0		M		
	90 110	scl	25 Y63 00 25 Y63 00					Y	0	0	0		M M		
	110 120	msl	25 103 00	/51K	26 UU M			,	٠	U	U		,,		
25	0 28	msl	10YR42 00						o	O HR	15				
23	28 40	scl	101R42 00						0	O HR			м		Imp g elly
_	20 40	SCI	101145 00						٠	0	. 20		••		2.14p gr 5.13
26	0 28	fs 1	10YR32 00						2	O HR	2				
26	28 40	scl	25 Y54 00	10YR!	56 00 F				0	O HR			м		
_	40 50	c	25 Y53 00					Υ	0	O HR			м		+ MS
_	50 55	scl	25 Y53 00					Υ	0	0	0		м		
	55 120	msl	25 Y53 00					γ	0	0	0		м		
27	0 28	of 1	10YR22 00						0	O HR	2				
	28 40	mcl	10YR52 00	10YR!	56 00 C			Y	0	0 HR	15		M		Imp gavelly
28	0 30	fsl	10YR42 00	10YR4	16 00 F				0	O KR	2				
	30 43	ms1	10YR43 00						0	O HR	2		M		
	43 65	hcl	10YR53 00	10YR	58 00 C			Y	0	0	0		М		
_	65 85	scl	25 Y62 00					Y	0	0	0		M		
	85 120	msl	25 Y62 00	75YR	68 00 M			Y	0	0	0		M		

				f	10TTLES	;	PED			STONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL.	ABUN	CONT	COL.	GLEY	2	6 LITH T	OT CONSIST	STR POR	IMP SPL CALC	
29	0 28	fsl	10YR42 00						0	0 HR	5			
	28-40	ms1	10YR52 00	10YR58	3 00 C			Y	0	0 HR	5	M		
	40 50	hc1	25 Y53 00	75YR68	3 00 C			Y	0	0	0	M		
	50-80	c	25 Y53 00	75YR68	3 00 M	(05YR56	00 Y	0	0	0	Ρ	Y	
30	0 28	f 1	10YR42 00	10YR46	5 00 C			γ	0	O HR	2			
	28-53	ms 1	10YR43 00						0	O HR	5	М		
	53-65	msl	10YR53 00	10YR58	3 00 C			Y	0	0	0	M		
	65-85	c	25 Y62 00	75YR68	3 00 M			Y	0	0	0	Р	Y	
	85-120	scl	25 Y62 00	75YR68	3 00 M			Υ	0	0	0	М		

SAMP	LE		A	SPECT				WETI	NESS	- WI HE	AT	PO	TS	м	REL	EROSN	FR0	ST	CHEM	ALC	
NO.	GRID	REF	USE		GRONT	GLE	Y SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	DIST	LIMIT		COMMENTS
1	SU3950	2130	PGR	NW	01	027		2	1	091	17	091	11	3A					DR	3 A	
1P	SU3930	2090	RGR	W	01	045	060	3	2	144	36	112	10	1					WE	2	
2	SU3940	2120	PGR	NH	01	035	045	4	3A	000	0	000	0						WE	3 A	
2P	SU3970	2070	PGR	W	02	0	035	4	3A	135	27	105	3	2					WE	3 A	FSL TOPSOIL
3	SU3960	2120	PGR	NW	02	030	045	4	3B	000	0	000	0						WE	3B	BORDER 3A
3P	SU3990	2070	PGR			060	060	3	2	112	4	080	22	3 A					DR	3A	
4	SU3980	2120	PGR			050	050	3	3 A	106	2	111	9	3A					WE	3 A	
5	SU3910	2110	RGR			050		1	1	178	70	132	30	1						1	
6	SU3950	2110	PGR	SW	01	030	040	4	3 A	103	5	112	10	3A					WE	ЗА	
7	SU3990	2110	PGR	NW	02	0	080	2	2	142	34	116	14	1					WE	2	
8	SU3980	2100	PGR	NM	02	0	055	3	3A	000		000	0						WE	ЗА	
9	SU3890					030	040	4	38	000	0	000	0						WE	38	VERY WET
10	SU3910					020	020	4	3A	000	0	000	0						WE	3A	ORGANIC TOP
11	SU3930				02	055		3	2	000		000	0						WE	2	
12 •	SU3950	2090	PGR	N	01	027	048	3	3A	000	0	000	0						ME	ЗА	
13	SU3970	2090	PGR			0	042	4	3B	000	0	000	0						WE	3В	
14	SU3990	2090	PGR	W	03			1	1	149	41	106	4	2					DR	2	
15	SU3880					040	060	3	2	113	5	113	11	3A					WD	2	
16	SU3900				04	080		1	1	198		156	54	1						1	SANDY
17	SU3920	2080	RGR	N	01	055	065	2	1	121	13	118	16	2						1	
18	SU3940					030		3	2	000		000	0							2	
19	SU3980				02	028		4	3B	000		000	0						WE	3B	
20	SU3890			W	01	050	-	3	2	000		000	0						WE	2	SL GLEY 30
21	SU3910						060	3	2	133		135		2					WE	2	
22	SU3930	2070	RGR	N	01	025		4	38	000	0	000	0						WE	3B	WTABLE 40
	SU3950				01	050		1	1	155		113		1						1	ALMOST 2
24	SU3970				04	0	040	4	3A	143		103	1	2					WE	3 A	
25	SU3990				02			1	1	056		056	46	4					DR	ЗА	IMP 40 SEE 3P
26	SU3910				01	040		1	1	170		123		1						1	
27	SU3920	2060	RGR	W	01	028		2	1	093	15	093	9	3A					DR	3A	IMP 40 SEE 3P
28	SU3960	2060	PGR	s		043		1	1	157	49	115	13	1						1	
29	SU3980				02	028	050	3	2	000		000	0						WE	2	
30	SU3970				01	0	065	2	1	146		110	8	2					DR	2	
	_									-			-								