87-G6189B

29/78

South Moulton

Agricultural Land Classification

July 1998

Resource Planning Team Bristol FRCA Western Region RPT Job Number: 29/98 FRCA File No: EL10/00178

SOUTH MOLTON

AGRICULTURAL LAND CLASSIFICATION SURVEY

CONTENTS

Page

-

INTRODUCTIO	N	1
SUMMARY		1
CLIMATE		2
RELIEF		3
GEOLOGY ANI	3	
AGRICULTURA	AL LAND CLASSIFICATION AND MAP	3
REFERENCES		5
APPENDIX I	Description of the Grades and Subgrades	6
APPENDIX II	Definition of Soil Wetness Classes	8
APPENDIX III	Survey Data:	9
	Sample Point Location Map	
	Pit Descriptions	
	Boring Profile Data	
	Boring Horizon Data	
	Abbreviations and Terms used in	Survey Data

SOUTH MOLTON AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 349.7 ha of land at South Molton, Devon. Field survey was based on 132 auger borings and 4 soil profile pits, and was completed in July 1998. During the survey 12 samples were analysed for particle size distribution (PSD).

2. The survey was conducted by the Resource Planning Team of FRCA Western Region on behalf of MAFF in its statutory role in the preparation of North Devon Local Plan.

3. Information on climate, geology and soils, and from previous ALC surveys was considered and is presented in the relevant section. The published regional ALC map (MAFF 1977) shows the site at a reconnaissance scale as mainly Grade 3 but with Grade 2 to the south of the town and Grade 4 on the steeper slopes of the Mole Valley and on the alluvial deposits in the north of the site. The site was previously surveyed in 1979 at a scale of 1:25 000 (ADAS 1979), but this was conducted to guidelines for classification which have now been superseded. The current survey uses the Revised Guidelines and Criteria for Grading the Quality of Agricultural Land (MAFF 1988) and supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I.

4. ALC surveys have also been carried out on 3 small sites adjacent to the current survey area (ADAS 1993). These areas were surveyed using the Revised Guidelines for classification and show Subgrade 3a limited by workability and Subgrade 3b and Grade 4 limited by wetness. This survey is generally consistent with the findings of the current survey, any minor discrepancies being attributable to the location of auger sample points, particularly in the current semi-detailed survey. The 1993 survey can be combined with the current survey to produce a composite ALC map for South Molton.

5. At the time of survey land cover was mainly grass with some cereals and maize and two fields of potatoes. Several areas of agricultural land within the survey area, total 26.1 ha were not surveyed because consent for access was refused by the owners. It is understood that this was mainly because they are hoping for planning permission for development at some time in the future and are concerned that their land may be of good quality. Other land which was not surveyed included industrial and residential land, a school, sports grounds and a large area devoted to the recently planted South Molton community woodland.

SUMMARY

6. The distribution of ALC grades is shown on the accompanying 1:15 000 scale ALC map. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas. Areas are summarised in the Table 1.

Grade	Area (ha)	% Surveyed Area (221.7 ha)
3a	29.5	13
3b	98.9	45
4	83.8	38
5	9.5	4
Agricultural land not surveyed	26.1	
Other land	101.9	
Total site area	349.7	

Table 1: Distribution of ALC grades: South Molton

7. This indicates that 13% of the area was found to be best and most versatile, Subgrade 3a limited by restricted by workability. The rest of the area was found to be Subgrade 3b and Grade 4 limited mainly by wetness.

CLIMATE

8. Estimates of climatic variables for this site were derived from the published agricultural climate dataset "Climatological Data for Agricultural Land Classification" (Meteorological Office, 1989) using standard interpolation procedures. Data for key points around the site are given in Table 2 below.

9. Since the ALC grade of land is determined by the most limiting factor present, overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions. Parameters used for assessing overall climate are accumulated temperature, a measure of relative warmth and average annual rainfall, a measure of overall wetness. The results shown in Table 2 indicate that there is an overall climatic limitation over most of the site which limits the land to Grade 2 with a small area on the highest land in the north west of the site which is further limited to Subgrade 3a.

10. Climatic variables also affect ALC grade through interactions with soil conditions. The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes, which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections. Climatic data for the site shows that values for FC Days range from 237 to 249.

2

Grid Reference	SS 709263	SS 723621	SS 714246
Altitude (m)	160	100	150
Accumulated Temperature (day °C)	1408	1476	1420
Average Annual Rainfall (mm)	1243	1155	1198
Overall Climatic Grade	3a	2	2
Field Capacity Days	249	237	242
Moisture deficit (mm): Wheat	65	78	67
Potatoes	47	64	50

Table 2: Climatic Interpolations: South Molton

RELIEF

11. Altitude ranges from 100 metres at Mole Bridge to 164 metres at Deerhill Lane with mainly gentle and moderate slopes which are not limiting apart from the east, and particularly the south east, of the survey area where strong to steep slopes on the valley sides restrict this land to Subgrade 3b, Grade 4 and even to Grade 5.

GEOLOGY AND SOILS

12. The underlying geology of the site is shown on the published geology map (IGS, 1982) as mainly shales and sandstones of the Bude and Crackington formations with alluvium in the main river valley and river terrace deposits in the north of the site. This was largely borne out by the current survey which found a detectable distinction between the shales and the sandstones as indicated in the published information, with the sandstones dominating, particularly in the south of the site. This was a very fine sandstone or siltstone, generally freely draining and generally with significantly lighter topsoil textures than the areas of shale which tend to be more common through the centre of the site and in the north.

13. Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1:250 000 (SSEW 1983) as mainly Denbigh 2 association, described as well-drained fine loamy soils over slate or slate rubble with some fine loamy soils variably affected by groundwater and Hallsworth 2 association on the river terrace deposits in the north of the site, described as slowly permeable seasonally waterlogged clayey, fine loamy and fine silty soils. This was largely borne out by the current survey, although heavy and wet soils fitting the description of Hallsworth 2 were also found in the extreme west of the site around ASPs 33, 74, 111 and 138 and also by the 1993 survey in the depression to the west of Gunsdown Villas.

AGRICULTURAL LAND CLASSIFICATION

14. The distribution of ALC grades found by the current survey is shown on the accompanying 1:15 000 scale map and areas are summarised in Table 1. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas.

_ .

Subgrade 3a

15. The area shown as Subgrade 3a was found to have medium clay loam topsoil at Wetness Class I, limited by restricted workability. The topsoil textures are mainly consistent and were confirmed by PSD analysis at ASP 118 and 111E, together with one at ASP 38 of the adjacent 1993 survey.

Subgrade 3b

16. The area shown as Subgrade 3b includes borings variously limited by workability, wetness and gradient.

17. Borings limited by restricted workability tend to be found mainly in the south of the site, particularly in the south east where mainly heavy clay loam topsoils are found at Wetness Class I. These are illustrated by Pits 1 and 2

18. Scattered borings were found with heavy clay loam topsoil at Wetness Class II.

19. Subgrade 3b limited by gradient is found mainly on the east side of the site on the upper slopes of the valley sides of the River Mole, where slopes of 8 to 11° are found.

Grade 4

ŧ:

20. The area shown as Grade 4 was found to be mainly limited by wetness with heavy clay loam topsoil at Wetness Class III or IV with a slowly permeable layer starting in the upper to middle subsoil. This is illustrated by Pit 3. Other Grade 4 profiles limited by wetness were found on the floor of the Mole valley where a normally high water table gives rise to comprehensively gleyed soil profiles which were assessed as Wetness Class IV attributed to ground water conditions even in the absence of a slowly permeable layer.

21. Several small areas of Grade 4 are shown on the steeper valley sides overlooking the River Mole where slopes of 12 to 18° were found.

Grade 5

22. A small area shown as Grade 5 in the north of the site was found to be severely limited by wetness and is illustrated by Pit 4 which found silty clay topsoil at Wetness Class IV.

23. Another small area shown as Grade 5 in the south east of the site is limited by gradient with short slopes of around 20° .

P Barnett Resource Planning Team FRCA Bristol 3 September 1998

. -

. . . .

REFERENCES

ADAS RESOURCE PLANNING TEAM, (1979) Agricultural Land Classification Survey of South Molton. Scale 1: 25 000, Reference DV66, ADAS Bristol.

ADAS RESOURCE PLANNING TEAM, (1993) Agricultural Land Classification Survey of South Molton. Scale 1: 10 000, Reference 90.93, FRCA Bristol.

INSTITUTE OF GEOLOGICAL SCIENCES (1982) Sheet 293, Barnstaple 1:50 000 series Solid and Drift edition. IGS, London.

HODGSON, J M (Ed) (1997) Soil Survey Field Handbook. Soil Survey Technical Monograph No 5, Silsoe.

MAFF (1977) 1:250 000 series Agricultural Land Classification, South West Region. MAFF Publications, Alnwick.

MAFF (1988) Agricultural Land Classification of England and Wales. Revised Guidelines and Criteria for grading the quality of agricultural land. MAFF Publications, Alnwick.

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification. Meteorological Office, Bracknell.

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5, Soils of South West England, 1:250 000 scale. SSEW, Harpenden.

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England, Bulletin No 14. SSEW, Harpenden.

APPENDIX I

DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 - excellent quality agricultural land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 - very good quality agricultural land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.

Grade 3 - good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a - good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b - moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4 - poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 - very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Source: MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land, MAFF Publications, Alnwick.

APPENDIX II

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile.

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years.

Wetness Class II

The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but not wet within 40 cm depth for more than 30 days in most years.

Wetness Class III

The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31 and 90 days in most years.

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.

Wetness Class V

The soil profile is wet within 40 cm depth for 211-335 days in most years.

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years.

Notes: The number of days specified is not necessarily a continuous period.

'In most years' is defined as more than 10 out of 20 years.

Source: Hodgson, J M (Ed) (1997) Soil Survey Field Handbook. Soil Survey Technical Monograph No 5, Silsoe.

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below. These conform to definitions contained in the Soil Survey Field Handbook (Hodgson, 1997).

1. Terms used on computer database, in order of occurrence.

GRID REF: National 100 km grid square and 8 figure grid reference.

LAND USE: At the time of survey

WHT:	Wheat	SBT:	Sugar Beet	HTH:	Heathland
BAR:	Barley	BRA:	Brassicas	BOG:	Bog or Marsh
OAT:	Oats	FCD:	Fodder Crops	DCW:	Deciduous Wood
CER:	Cereals	FRT:	Soft and Top Fruit	CFW:	Coniferous Woodland
MZE:	Maize	HRT:	Horticultural Crops	PLO:	Ploughed
OSR:	Oilseed Rape	LEY:	Ley Grass	FLW:	Fallow (inc. Set aside)
POT:	Potatoes	PGR:	Permanent Pasture	SAS:	Set Aside (where known)
LIN:	Linseed	RGR:	Rough Grazing	OTH:	Other
BEN:	Field Beans	SCR:	Scrub		

GRDNT: Gradient as estimated or measured by hand-held optical clinometer.

GLEY, SPL: Depth in centimetres to gleying or slowly permeable layer.

AP (WHEAT/POTS):	Crop-adjusted available water capacity.			
MB (WHEAT/POTS):	Moisture Balance. MD)	(Crop adjusted AP - crop potential		

DRT: Best grade according to soil droughtiness.

If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL EXP: CHEM	Exposure limitation	F	LOOD: ROST:	Flood risk Frost prone	EROSN: DIST:	Soil erosion risk Disturbed land
LIMIT	: The main limita used.	tion to	land qua	lity: The foll	owing abb	reviations are
OC:	Overall Climate	AE:	Aspect	EX	K: Expo	osure
FR:	Frost Risk	GR:	Gradier	nt M	R: Micr	orelief

FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil
	_				Wetness/Droughtiness

ST: Topsoil Stoniness

TEXTURE: Soil texture classes are denoted by the following abbreviations:-

S: SZL:	Sand Sandy Silt Loam	LS: CL:	Loamy Sand Clay Loam	SL: ZCL	Sandy Loam Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay	C:	Clay
			Loam		
SC:	Sandy clay	ZC:	Silty clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:-

- **F:** Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (< 27% clay) H: heavy (27 - 35% clay)

MOTTLE COL: Mottle colour using Munsell notation.

MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2 - 20% M: many 20 - 40% VM: very many 40%+

MOTTLE CONT: Mottle contrast

- **F:** faint indistinct mottles, evident only on close inspection
- **D:** distinct mottles are readily seen
- **P:** Prominent mottling is conspicuous and one of the outstanding features of the horizon.

PED. COL: Ped face colour using Munsell notation.

GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.

STONE LITH: Stone Lithology - One of the following is used.

HR: All hard rocks and stones SLST: Soft oolitic or dolimitic limestone

. -

.

CH:	Chalk	FSST:	Soft, fine grained sandstone
ZR:	Soft, argillaceous, or silty rocks	GH:	Gravel with non-porous (hard) stones
MSST:	Soft, medium grained sandstone	GS:	Gravel with porous (soft) stones
SI:	Soft weathered igneous or metamor	-	

Stone contents are given in % by volume for sizes >2cm, >6cm and total stone >2mm.

STRUCT: The degree of development, size and shape of soil peds are described using the following notation

Degree of development	WA: Adher	Weakly developed ent	WK:	Weakly developed
	MD: develo	Moderately oped	ST:	Strongly developed
<u>Ped size</u>	F: C:	Fine Coarse	M: VC:	Medium Very coarse
<u>Ped Shape</u>	S: GR: SAB: PL:	Single grain Granular Sub-angular blocky Platy	M: AB: PR:	Massive Angular blocky Prismatic

CONSIST: Soil consistence is described using the following notation:

L:	Loose	VF:	Very Friable	FR:	Friable	FM:	Firm
VM:	Very firm	EM:	Extremely firm		EH:	Extremely Ha	rd

SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: Good M: Moderate P: Poor

POR: Soil porosity. If a soil horizon has poor porosity with less than 0.5% biopores >0.5mm, a 'Y' will appear in this column.

IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.

SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.

CALC: If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a 'Y' will appear this column.

2. Additional terms and abbreviations used mainly in soil pit descriptions.

STONE ASSESSMENT:

VIS: Visual S: Sieve D: Displacement

MOTTLE SIZE:

EF:	Extremely fine <1mm	M :	Medium 5-15mm
VF:	Very fine 1-2mm>	C :	Coarse >15mm
F:	Fine 2-5mm		

MOTTLE COLOUR:	May be described by Munsell notation or as ochreous
	(OM) or grey (GM).
ROOT CHANNELS:	In topsoil the presence of 'rusty root channels' should also be noted.

MANGANESE CONCRETIONS: Assessed by volume

N:	None		M :	Many	20-40%
F:	Few	<2%	VM:	Very Many	>40%
C:	Common	2-20%			

POROSITY:

P:	Poor	 less than 0.5% biopores at least 0.5mm in diameter
G:	Good	- more than 0.5% biopores at least 0.5mm in diameter

ROOT ABUNDANCE:

The number of	roots per 100cm ² :	Very Fine and Fine	Medium and Coarse
F:	Few	1-10	1 or 2
C:	Common	10.25	2 - 5
M:	Many	25-200	>5
A:	Abundant	>200	

ROOT SIZE

VF:	Very fine	<1mm	M:	Medium	2 - 5mm
F:	Fine	1-2mm	C:	Coarse	>5mm

HORIZON BOUNDARY DISTINCTNESS:

Sharp:	<0.5cm	Gradual:	6 - 13cm
Abrupt:	0.5 - 2.5cm	Diffuse:	>13cm
Clear:	2.5 - 6cm		

HORIZON BOUNDARY FORM: Smooth, wavy, irregular or broken.* * See Soil Survey Field Handbook (Hodgson, 1997) for details.

-

. . . .

-

SITE NA	ME	F	PROF	ILE NO.	SLOPE	AND ASPE	LA	ND USE		Av I	Rainfall:	1198 mm		PARENT MATERIAL			
South Mo	lton	F	Pit 1 (Asp 159)	4° SE	E Ley					ATO:		1420 day °C		Crackington shale		
JOB NO.		Ī	DATE	2	GRID I	REFERENCI	E	DE	DESCRIBED BY			Days:	240		PSD SAMPLES TAKEN		
29.98		16.7.98 SS 7187 2477 PB							natic Grade:	2		TS 0-25 cm: HCL/MCL (S22: Z50: C38%)					
Horizon No.	Lowest Av. Depth (cm)	Textu	ıre	Matrix (Ped Face) Colours	Stonine Size,Ty Field M	pe, and	Mottling Abundanc Contrast, Size and Colour				Ped ent	osure Grade: Consistence	1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctne and form
1	25	H/M	CL	10YR43	1%>2cm <u>17%</u> <2cr 18% HR		0		-		-	-	-	MF,VF	-	Clear Smooth	
2	40	нс	L	10YR44,54	20%>2cr <u>22%</u> <2cr 42%ZR,I	n(s+d)	0		0 WKMS		в	FR	G	G	MVF	-	Clear Wavy
3	47+	нс	L	10YR54	50%>2cı <u>23%</u> <2cı 73%ZR,	n(s+d)	0		0 Too sto		у	-	(M)	(G)	CVF	-	
Profile G	leyed Fron	n: -				Available V	Water W	heat:	: 7	4 mm			Final ALC	Grade:	3b/3a		
Slowly Pe Horizon I Wetness (Wetness (From: Class:	- I 3b	o/3a			Moisture D	Deficit W	otatoe /heat otatoe	: 78	7 mm 3 mm 4 mm			Main Limiti	ing Factor(s): Wk		
						Moisture B		/heat:		4 mm			Remarks:				<u> </u>
						Droughtine	Po ess Grade: 3	otatoe a		13 mm ulated to 60 c	cm)						

. .

SITE NA	SITE NAME PROFILE NO. SLOPE AND ASPE				SPECT LAND USE					ainfall:	1198 mm		PARENT MA	TERIAL		
South Mc	uth Molton Pit 2 (Nr Asp 127) 4° W				Potatoes			ATO:	:	1420 day °C		Crackington shale				
JOB NO.	NO. DATE GRID REFERENCE				DES	CRIBED B	Y	FC D	ays:	240		PSD SAMPLES TAKEN				
29.98	ł	21.7	.98	SS7100	2497	РВ				atic Grade: sure Grade:	2		TS 0-25cm: H	ZCL /HCL(S	19:Z50:31%)	
Horizon No.	Lowest Av. Depth (cm)	Texture	Matrix (Ped Face) Colours	Stonine Size,Ty Field M	pe, and	Mottling Abundanc Contrast, Size and Colour	Abundance, Mangan Contrast, Concs Size and		Structure: H Developme Size and Shape	Ped ent	Consistence	Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form
1	20	HZCL	7.5YR42	1%>2cm <u>11%</u> <2cr 12% HR	n(s+d)	0	1	0	-		-	-	-	CF,VF*	-	Abrupt Smooth
2	42	HCL	7.5YR43	1%>2cm <u>14%</u> <2cr 15% HR	n(s+d)	0		0 WKFSA		в	FR	G	G	CVF	-	Abrupt Smooth
3	80+	HCL	10YR54	15%>2cr <u>43%</u> <2c 58% FSS	m (s+d)	0		0	Too ston	у	-	(M)	(G)	FVF	-	
Profile G	leyed Fron	n: -			Available '	Water W	/heat:	1	12 mm			Final ALC	Grade:	3b		
Slowly Po Horizon I		-			Moisture I		otatoe: Vheat:		98 mm 78 mm			Main Limit	ing Factor(s): Wk		
Wetness	Class:	Ι				Po	otatoe	es: (54 mm							
Wetness	Grade:	3b			Moisture E	Balance W	Vheat:	+.	34 mm							··
							otatoe		34 mm			Remarks:		s sparse becausε Γ rock.	e pit in headla	nd, then
					Droughtine	ess Grade: 1	l	(Calc	ulated to 90 c	cm)						

÷

SITE NA	ME		PRO	FILE NO.	SLOPE	AND ASPI	ECT		ND USE		Av Rair	nfall:	1228 mm		PARENT MATERIAL			
South Mc	olton		Pit 3	(Asp 52)	2° S			PGI	PGR				1419 day °C		Crackington shale			
JOB NO.			DAT	Ē	GRID I	REFERENC	E	DE	DESCRIBED BY			s:	240		PSD SAMPLES TAKEN			
29.98 23.7.98 SS7		SS7098	98 2614			PB			c Grade:	2		TS 0-25 cm: HCL/HZCL (S20:Z46:C34%)						
Horizon No.	Lowest Av. Depth (cm)	Text	ture	Matrix (Ped Face) Colours	Stonine Size,Ty Field M	pe, and	Mottling Abundanc Contrast, Size and Colour	e,	Mangan Structure: I Mangan Developme Concs Size and Shape		Ped ent	re Grade: nsistence	1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctnes and form	
1	22	H	CL.	10YR42	10%HR(vis)	0 0		-		-	-	-	MF,VF	-	Clear Smooth		
2	55	н	CL	10YR44	10%HR(vis)	0		0 WKFS		В	FR	G	G	MVF	-	Clear Wavy	
3	70 (60-70)	(С	2.5¥64	20%HR(vis)	0		0 WKCS/		В	FM	Р	P(low)	CVF	-	Gradual Wavy	
4	90+	(с	2.5Y72	10% HR	(vis)	MDMC 10YR58		0	м		FM	Р	Р	FVF	-		
Profile G	leyed Fror	n: 7	70 cm			Available	Water W	/heat:	: 13	9 mm			Final ALC	Grade:	4			
Slowly Pe Horizon I Wetness (From:		70 cm II			Moisture I	Deficit W	otatoe /heat:	: 78	3mm mm			Main Limit	ing Factor(s): We			
Wetness Grade: 4 Potat Moisture Balance Whe						otatoe /heat:		4 mm mm										
						Moisture		otatoe		4 mm			Remarks:					
						Droughtine	ess Grade: 1		(Calc	ulated to 120	cm)							

-

۱.

1

1.1

				AND ASPE	CT	LANI	D USE		Av	Rainfall:	1180 mm		PARENT MATERIAL			
ton	Pit 4	(Nr Asp 8)	3° E			PGR				ATO: 1450 day °C			River terrace deposits (alluvium)			
	DAT	Ъ	GRID	REFERENCI	E	DESCRIBED BY			FC	Days:	240		PSD SAMPLES TAKEN			
	24.7.	98	SS7130	2698 PB						2		TS 0-25 cm: ZC (S10:Z49:C41%)				
Lowest Av. Depth (cm)	Texture	Matrix (Ped Face) Colours	Size,Ty	pe, and	Mottling Abundance Contrast, Size and Colour				Ped	posure Grade: Consistence	Structural Pores Condition (Fissures)		Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form	
20	ZC	2.5¥52		0	CDFO 10YR58	CDFO		-	-		-	-	MF,VF	-	Sharp Smooth	
52	С	2.5¥62		0	CDFO 10YR58		0	MDCPR	<u>ا</u>	FM	Р	Р	CVF	-	Abrupt Wavy	
70+	С	2.5Y72		0			0	М		FM	Р	Р	FVF	-		
eyed Fron	n: 0			Available V	Water W	Vheat:	1	24 mm			Final ALC	Grade:	5			
rmeable rom:				Moisture D							Main Limit	ing Factor(s): We			
1					Ро	otatoes:	:	64 mm								
1				Moisture B							Remarks:					
1 1 1				Droughtine					cm))						
1				I							I					
	ton Lowest Av. Depth (cm) 20 52 70+ eyed Fron	ton Pit 4 DAT 24.7 Lowest Av. Depth (cm) 20 ZC 52 C 52 C 70+ C veyed From: 0 rmeable rom: 20 cm	ton Pit 4 (Nr Asp 8) DATE 24.7.98 Lowest Av. Depth (cm) Texture Matrix (Ped Face) Colours 20 ZC 2.5Y52 52 C 2.5Y62 70+ C 2.5Y72 eyed From: 0 rmeable rom: 20 cm Lass: IV	tonPit 4 (Nr Asp 8)3° EDATEGRID I24.7.98SS7130Lowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoning Size,Ty Field M20ZC2.5Y5252C2.5Y6270+C2.5Y72eyed From:0rmeable rom:20 cmLass:IV	tonPit 4 (Nr Asp 8)3° EDATEGRID REFERENCE24.7.98SS7130 2698Lowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoniness: Size,Type, and Field Method20ZC2.5Y52052C2.5Y62070+C2.5Y720eyed From:0Available Moisture Ermeable rom:20 cmMoisture EMoisture E5Moisture E	ton Pit 4 (Nr Asp 8) 3° E DATE GRID REFERENCE 24.7.98 SS7130 2698 Lowest Texture Matrix (Ped Face) Colours Stoniness: Size,Type, and Field Method Mottling Abundanc Contrast, Size and Colour 20 ZC 2.5Y52 0 CDFO 10YR5 52 C 2.5Y62 0 CDFO 10YR5 70+ C 2.5Y72 0 ADMC 10YR5 syed From: 0 Available Water W rmeable rom: 20 cm Moisture Deficit W rade: 5 Moisture Balance W	tonPit 4 (Nr Asp 8)3° EPGRDATEGRID REFERENCEDESC24.7.98SS7130 2698PBLowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoniness: Size,Type, and Field MethodMottling Abundance, Contrast, Size and ColourMottling Abundance, Contrast, Size and Colour20ZC2.5Y520CDFO 10YR5852C2.5Y620CDFO 10YR5870+C2.5Y720ADMO 10YR58rmeable rom:20 cmAvailable WaterWheat: Potatoesass:IVHHHarade:5KK	tonPit 4 (Nr Asp 8) 3° EPGRDATEGRID REFERENCEDESCRIBED B24.7.98SS7130 2698PBLowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoniness: Size,Type, and Field MethodMottling Abundance, Contrast, Size and ColourMangan Concs20ZC2.5Y520CDFO 10YR58052C2.5Y620CDFO 10YR58070+C2.5Y720ADMO 10YR580rom:20 cmAvailable WaterWheat:1rade:5NNoisture BalanceWheat:1rom:5NNoisture BalanceWheat:1Potatoes:4Noisture BalanceWheat:1Potatoes:4Noisture BalanceNoisture4	ton Pit 4 (Nr Asp 8) 3° E PGR DATE GRID REFERENCE DESCRIBED BY 24.7.98 SS7130 2698 PB Lowest Av. Depth (rm) Texture Matrix (Ped Face) Colours Stoniness: Size,Type, and Field Method Mottling Abundance, Contrast, Size and Colour Mangan Cones Structure: I Developme Size and Colour 20 ZC 2.5Y52 0 CDFO 10YR58 0 - 52 C 2.5Y62 0 CDFO 10YR58 0 MDCPR 10YR58 70+ C 2.5Y72 0 ADMO 10YR58 0 M eyed From: 0 Available Water Wheat: 124 mm meable rom: 20 cm Moisture Deficit Wheat: 78 mm rade: 5 Moisture Balance Wheat: 46 mm	On Pit 4 (Nr Asp 8) 3° E PGR Aven AT DATE GRID REFERENCE DESCRIBED BY FC 24.7.98 SS7130 2698 PB Client Lowest Av. Depth Texture Matrix (Ped Face) Colours Stoniness: Size, Type, and Field Method Mottling Abundance, Contrast, Size and Colour Mangan Concs Structure: Ped Development Size and Shape 20 ZC 2.5Y52 0 CDFO 10YR58 0 - 52 C 2.5Y62 0 CDFO 10YR58 0 MDCPR 70+ C 2.5Y72 0 ADMO 10YR58 0 M rmeable rom: 20 cm National Environment Size 101 mm Potatoes: 101 mm riade: 5 Noisture Balance Wheat: 78 mm Potatoes: 44 mm Potatoes: 64 mm	On Pit 4 (Nr Asp 8) 3° E PGR Av Rainfall: ATO: DATE GRID REFERENCE DESCRIBED BY FC Days: 24.7.98 SS7130 2698 PB Climatic Grade: Lowest Av. Depth (cm) Matrix (Ped Face) Colours Stoniness: Size,Type, and Field Method Mottling Abundance, Size,and Colour Mangan Concs Structure: Ped Development Size and Shape Structure: Ped Development Size and Shape Consistence 20 ZC 2.5Y52 0 CDFO 10YR58 0 - - 52 C 2.5Y62 0 CDFO 10YR58 0 MDCPR FM 70+ C 2.5Y72 0 ADMO 10YR58 0 M FM rmeable rom: 20 cm Available Water Wheat: 124 mm widture Deficit Wheat: 78 mm Hass: IV Moisture Deficit Wheat: 78 mm Moisture Balance Wheat: +46 mm Potatoes: 64 mm	On Fit 4 (Nr Asp 8) 3° E PGR Av Rainfall: 1180 mm DATE GRID REFERENCE DESCRIBED BY FC Days: 240 24,7.98 SS7130 2698 PB Climatic Grade: 2 Lowest Av. Matrix Stoniness: Mottling Mangan Structure: Ped Depth (em) PGR Marina Mangan Structure: Ped Development 20 ZC 2.5Y52 0 CDFO 0 - - 52 C 2.5Y62 0 CDFO 0 MDCPR FM P 70+ C 2.5Y72 0 Abundance, Colour 0 MDCPR FM P 70+ C 2.5Y72 0 CDFO 0 MDCPR FM P reader 5 Moisture Deficit Wheat: 124 mm Final ALC meable Moisture Balance Wheat: 78 mm Main Limit reader: 5 Moisture Balance Wheat: +46 mm Remarks:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	onFit 4 (Nr Asp 8) 3° EPGRAV Rainfall:1180 mm ATO:River terrace deposits (alluv PD SAMPLES TAKEN Climatic Grade:River terrace deposits (alluv PD SAMPLES TAKEN Climatic Grade:River terrace deposits (alluv PD SAMPLES TAKEN TS 0-25 cm: ZC (S10:Z49:C TS 0-25 cm: ZC (S10:Z49:C TS 0-25 cm: ZC (S10:Z49:C TS 0-25 cm: ZC (S10:Z49:C)River terrace deposits (alluv PD SAMPLES TAKEN Climatic Grade:River terrace deposits (alluv PD SAMPLES TAKEN TS 0-25 cm: ZC (S10:Z49:C TS 0-25 cm: ZC (S10:Z49:C)Lowest Av. Depth (cm)Matrix (Ped Face)Stoniness: Size.Type, and Field MethodMontance, Size and ColourMangan ConcsStructure? Ped Development Size and ConsistenceStructural ConsistencePores ConditionRoots: Roots: Calcium Calcium CalciumCalcium Calcium20ZC2.5Y52 $^{\circ}$ CDFO 10YR580 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ Calcium Calcium Shoundance, ConsistenceNetwork Structural Shoundance, Consistence $^{\circ}$ $^{$	

1