

21/97

Haybridge Wells

Agricultural Land Classification

March 1997

Resource Planning Team -Taunton Statutory Group-ADAS Bristol Job Number 21/97 Commission 1383_____ MAFF Reference EL 36/548

HAYBRIDGE WELLS

AGRICULTURAL LAND CLASSIFICATION SURVEY

CONTENTS

-

		Page
INTRODUCTIO	N	1
SUMMARY		1
CLIMATE		2
RELIEF		2
GEOLOGY ANI	O SOILS	2
AGRICULTURA	AL LAND CLASSIFICATION AND MAP	3
REFERENCES		4
APPENDIX I	Description of the Grades and Subgrades	5
APPENDIX II	Definition of Soil Wetness Classes	7
APPENDIX III	Survey Data	8
	Sample Point Location Map	
	Pit Descriptions	
	Boring Profile Data	
	Boring Horizon Data	
	Abbreviations and Terms used	ın Survey Data

HAYBRIDGE WELLS

AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of site area 58 ha of land at Haybridge Wells Field survey was based on 24 auger borings and 2 soil profile pits and was completed in March 1997

2 The survey was conducted by the Resource Planning Team of ADAS Taunton Statutory Group on behalf of MAFF Land Use Planning Unit in its statutory role in the preparation of Mendip Local Plan

3 Information on climate geology and soils and from previous ALC surveys was considered and is presented in the relevant section Apart from the published regional ALC map (MAFF 1977) which shows the site at a reconnaissance scale as Grade 3 the site was previously surveyed in 1982 at a scale of 1 10 000 (ADAS 1982) However the current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF 1988) and supersedes any previous ALC survey Grade descriptions are summarised in Appendix I

4 This survey is an extension to the Wells area surveyed in 1996 mainly around the southern perimeter of the town (ADAS 1996)

5 At the time of survey land cover was mainly grass with some winter cereals Other land which was not surveyed included the playing fields and sports centre a caravan site at Newhouse Farm industrial and waste land in the north of the site and several areas of residential land and roads

SUMMARY

6 The distribution of ALC grades is shown on the accompanying 1 10 000 scale ALC map The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas Areas are summarised in the Table 1

Grade	Area (ha)	% Surveyed Area (39 ha)
3b 4 Other land Total site area	27 12 19 58	69 31

Table 1 Distribution of ALC grades Haybridge Wells

7 This shows none of the land to be best and most versatile Much of the area is shown as Subgrade 3b mainly due to restricted workability and wetness with one small area in the south west of the site showing a moderate gradient limitation Grade 4 was found in the broad depression in the north east of the site with a severe limitation due to wetness

CLIMATE

8 Estimates of climatic variables for this site were derived from the published agricultural climate dataset Climatological Data for Agricultural Land Classification (Meteorological Office 1989) using standard interpolation procedures Data for key points around the site are given in Table 2 below

9 Since the ALC grade of land is determined by the most limiting factor present overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions Parameters used for assessing overall climate are accumulated temperature a measure of relative warmth and average annual rainfall a measure of overall wetness The results shown in Table 2 indicate that there is no overall climatic limitation

10 Climatic variables also affect ALC grade through interactions with soil conditions The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes which are compared with the moisture available in each profile in assessing soil droughtiness limitations These are described in later sections

Grid Reference	ST 532453	ST532462
Altıtude (m)	45	35
Accumulated Temperature (day C)	1511	1523
Average Annual Rainfall (mm)	858	855
Overall Climatic Grade	1	1
Field Capacity Days	191	190
Moisture deficit (mm) Wheat	100	101
Potatoes	92	92

Table 2 Climatic Interpolations Haybridge Wells

RELIEF

11 Altitude ranges from 34 metres at Littley Bridge to 50 metres at the top of the site with mainly gentle and moderate slopes which are not limiting. A small area in the south west of the site was found to have stronger slopes representing a more serious moderate limitation due to gradient but this area is included within a larger area of Subgrade 3b with other limitations

GEOLOGY AND SOILS

12 The underlying geology of the site is shown on the published geology map (IGS 1963) as mainly Keuper Marl with a area of head running through the valley in the west of the site This distribution was entirely borne out by the current survey The head was found to be gravelly alluvium overlying Keuper Marl

13 Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1 250 000 (SSEW 1983) as Whimple 1 association This is described as reddish fine loamy over clayey soils with slowly permeable subsoils and slight seasonal waterlogging Similar well drained soils are also included

14 This description of Whimple 1 association soils was largely borne out by the current survey However subsoil characteristics relevant to the identification of a slowly permeable layer where found to be variable within the range of soils comprising the association

AGRICULTURAL LAND CLASSIFICATION

15 The distribution of ALC grades found by the current survey is shown on the accompanying 1 10 000 scale map and areas are summarised in Table 1 The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas

Subgrade 3B

16 The areas shown as Subgrade 3b typically had a clay topsoil at least when assessed to 25 cm and were Wetness Class I with no slowly permeable layer evident similar to Pits 4 and 7 in the 1996 survey These conditions imply a more serious moderate limitation due to restricted workability

17 As described above a small area in the south west of the site is found to have a slope of around 8 also Subgrade 3b due to a more serious gradient limitation

18 Auger borings in the west of the site on soils developed on alluvial head were mainly impenetrable at 20 to 55 cm with mainly clay or heavy silty clay loam topsoils over a gravelly subsoil and some slight evidence of wetness Pit 2 which was dug at Asp 5 was shown to be Wetness Class II with a slowly permeable layer starting in the lower subsoil at around 75cm Although this particular observation was found to be Subgrade 3a it has been included within the Subgrade 3b mapping unit because other borings in the area were found to be variable in topsoil texture and can be presumed to be variable also in depth to slowly permeable layer and therefore in wetness class

Grade 4

19 The area shown as Grade 4 was found to be consistently a clay topsoil at Wetness Class III or IV with conspicuous gleying present in the upper subsoil and a distinct slowly permeable layer starting in the middle subsoil at 60 cm in Pit 1 which is typical of the borings in this area

P Barnett Resource Planning Team Taunton Statutory Group ADAS Bristol 12 March 1997

REFERENCES

ADAS RESOURCE PLANNING TEAM (1982) Agricultural Land Classification Survey of Wells Scale 1 10 000 Reference 54 ADAS Bristol

ADAS RESOURCE PLANNING TEAM (1996) Agricultural Land Classification Survey of Wells Scale 1 20 000 Reference 13 96 ADAS Bristol

INSTITUTE OF GEOLOGICAL SCIENCES (1963) Sheet 280 Wells 1 63 360 series Solid and Drift edition IGS London

HODGSON J M (Ed) (1974) Soil Survey Field Handbook Technical Monograph No 5 Soil Survey of England and Wales Harpenden

HODGSON J M (In preparation) Soil Survey Field Handbook Revised edition

MAFF (1977) 1 250 000 series Agricultural Land Classification South West Region MAFF Publications Alnwick

MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for grading the quality of agricultural land MAFF Publications Alnwick

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification Meteorological Office Bracknell

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5 Soils of South West England 1 250 000 scale SSEW Harpenden

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England Bulletin No 14 SSEW Harpenden

APPENDIX I

DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 excellent quality agricultural land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 very good quality agricultural land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1

Grade 3 good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Source MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land MAFF Publications Alnwick

APPENDIX II

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 and 90 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

Notes The number of days specified is not necessarily a continuous period

In most years is defined as more than 10 out of 20 years

Source Hodgson J M (In preparation) Soil Survey Field Handbook Revised Edition

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below These conform to definitions contained in the Soil Survey Field Handbook (Hodgson 1974).

1 Terms used on computer database in order of occurrence

GRID REF National 100 km grid square and 8 figure grid reference

LAND USE At the time of survey

WHT	Wheat	SBT	Sugar Beet	HTH	Heathland
BAR	Barley	BRA	Brassicas	BOG	Bog or Marsh
OAT	Oats	FCD	Fodder Crops	DCW	Deciduous Wood
CER	Cereals	FRT	Soft and Top Fruit	CFW	Coniferous Woodland
MZE	Maıze	HRT	Horticultural Crops	PLO	Ploughed
OSR	Oilseed Rape	LEY	Ley Grass	FLW	Fallow (inc Set aside)
РОТ	Potatoes	PGR	Permanent Pasture	SAS	Set Aside (where known)
LIN	Linseed	RGR	Rough Grazing	OTH	Other
BEN	Field Beans	SCR	Scrub		

GRDNT Gradient as estimated or measured by hand held optical clinometer

GLEY SPL Depth in centimetres to gleying or slowly permeable layer

AP (WHEAT/POTS)	Crop adjusted available water capacity			
MB (WHEAT/POTS)	Moisture Balance MD)	(Crop adjusted AP	crop potential	

DRT Best grade according to soil droughtiness

If any of the following factors are considered significant Y will be entered in the relevant column

MREL EXP CHEM	Microrelief limita Exposure limitatio Chemical limitatio	tion F on F on	TLOOD TROST	Flood risk Frost prone	ER DIS	OSN ST	Soil erosion risk Disturbed land
LIMIT	The main limit used	itation to	o land qu	ality The fol	llowing	g abbrev	viations are
OC	Overall Climate	AE	Aspect	E	X	Exposi	ure
FR	Frost Risk	GR	Gradie	nt N	1R	Місгог	elief

FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil

Wetness/Droughtmess

ST Topsoil Stoniness

TEXTURE Soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Sılt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay	С	Clay
SC	Sandy clay	ZC	Loam Silty clay	OL	Organic Loam
Р	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

F Fine (more than 66% of the sand less than 0 2mm)

M Medium (less than 66% fine sand and less than 33% coarse sand)

C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (< 27% clay) H heavy (27 35% clay)

MOTTLE COL Mottle colour using Munsell notation

MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40%+

MOTTLE CONT Mottle contrast

- **F** faint indistinct mottles evident only on close inspection
- D distinct mottles are readily seen
- P Prominent mottling is conspicuous and one of the outstanding features of the horizon
- PED COL Ped face colour using Munsell notation
- **GLEY** If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- **STONE LITH**⁻ Stone Lithology One of the following is used⁻

HR All hard rocks and stones SLST Soft oolitic or dolimitic limestone

СН	Chalk	FSST	Soft fine grained sandstone
ZR	Soft argillaceous or silty rocks	GH	Gravel with non porous (hard) stones
MSST	Soft medium grained sandstone	GS	Gravel with porous (soft) stones
SI	Soft weathered igneous or metamorp	-	

Stone contents are given in % by volume for sizes >2cm >6cm and total stone >2mm

STRUCT The degree of development size and shape of soil peds are described using the following notation

<u>Degree of development</u>	WK ST	Weakly developed Strongly developed	MD	Moderately developed
<u>Ped size</u>	F C	Fine Coarse	M VC	Medium Very coarse
Ped Shape	S GR SAB PL	Single grain Granular Sub angular blocky Platy	M AB PR	Massıve Angular blocky Prısmatıc

CONSIST Soil consistence is described using the following notation

L	Loose	VF	Very Friable	FR	Friable	FM	Fırm
VM	Very fırm	EM	Extremely firm		EH	Extremely Ha	ard

SUBS STRSubsoil structural condition recorded for the purpose of calculating
profile droughtinessG GoodM ModerateP Poor

POR Soil porosity If a soil horizon has poor porosity with less than 0 5% biopores >0 5mm a Y will appear in this column

IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon

SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column

CALC If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a Y will appear this column

2 Additional terms and abbreviations used mainly in soil pit descriptions

STONE ASSESSMENT

VIS Visual S Sieve D Displacement

MOTTLE SIZE

EF VF F	Extremely fine <1mm Very fine 1 2mm> Fine 2 5mm	M C	Medium 5 15mm Coarse >15mm
MOT	FLE COLOUR	May be described by (OM) or grey (GM)	Munsell notation or as ochreous
ROOT	CHANNELS	In topsoil the present also be noted	e of rusty root channels should
MANO	GANESE CONCRET	IONS Assessed by vo	olume

Ν	None		Μ	Many	20 40%
F	Few	<2%	VM	Very Many	>40%
С	Common	2 20%			

STRUCTURE Ped Development *

WA	Weakly adherent	Μ	Moderately developed
W	Weakly developed	S	Strongly developed

POROSITY

Р	Poor	less than 0 5% biopores at least 0 5mm in diameter
G	Good	more than 0 5% biopores at least 0 5mm in diameter

ROOT ABUNDANCE

The number of	f roots per 100cm ²	Very Fine and Fine	Medium and Coarse
F	Few	1 10	1 or 2
С	Common	10 25	2 5
Μ	Many	25 200	>5
Α	Abundant	>200	

ROOT SIZE

VF	Very fine	<1mm	Μ	Medium	2 5mm
F	Fine	1 2mm	С	Coarse	>5mm

HORIZON BOUNDARY DISTINCTNESS

Sharp	<0 5cm	Gradual	6 13cm
Abrupt	05 25cm	Diffuse	>13cm
Clear	25 6cm		

HORIZON BOUNDARY FORM Smooth wavy irregular or broken *

* See Soil Survey Field Handbook (Hodgson 1974) for details