A1
Maidstone Borough Local Plan
Site 32 Land at Hermitage Lane
Maidstone
Agricultural Land Classification
ALC Map and Report
August 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

MAIDSTONE BOROUGH LOCAL PLAN SITE 32 LAND AT HERMITAGE LANE, MAIDSTONE

1 Summary

- ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on la diquality for a whole of sites in the Maidstone district of Kent This work forms part of MAFF's statutory input to the Maidstone Borough Local Plan
- Site 32 comprises approximately 29 hectares of land to the north-west of Maidstone in Kent. An Agricultural Land Classification (ALC) survey was carried out in August 1994. The survey was undertaken at a detailed level of approximately one boring per hectare of agricultural land. A total of 21 borings and two soil inspection pits were assessed in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land. (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture. In addition, information from a previous detailed survey undertaken in 1988 was used in the grading of the site.
- The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- At the time of the survey the agricultural land on the site was mainly unmanaged permanent grassland with significant scrub encroachment locally. To the west of the track the land was an orchard and south of the large area of woodland mapped the land was closely grazed grassland. The non agricultural land mapped comprises dense scrub and a metalled track running across the site has been mapped as urban.
- The distribution of grades and subgrades is shown on the attached ALC map and the areas a egiven in the table role. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading. This map supersedes any previous survey information for this site.

Table 1 Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site	% of Agricultural Land
2	17 3	59 7	71 5
3a	4 6	15 9	19 0
3b	2 3	7 9	<u>95</u>
Woodland	3 8	13 1	100% (24 2 ha)
Non Agricultural	0 5	1 7	
Urban	<u>05</u>	<u>17</u>	
Total area of site	29 0	100%	

- Appendix 1 gives a general description of the grades and landuse categories identified in this survey. The main classes are described in terms of the type of limitation that can occur the typical cropping range and expected level and consistency of yield.
- The agricultural land on the site has been classified mainly as Grade 2 very good quality land with smaller units of Subgrade 3a and 3b land. Grade 2 land comprises sandy loam or medium textured topsoils passing to heavier subsoils. This land is affected by slight soil droughtiness and/or soil wetness limitations. Land assigned to Subgrade 3a comprises similar soils which overlie poorly structured clay at moderate depth thereby being imperfectly drained and affected by soil wetness. Subgrade 3b has been mapped due to soil droughtiness limitations arising as a result of freely draining sandy soils derived from Folkestone Beds. Gradient limits a very small area of land to Subgrade 3b.

2 Climate

- The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality
- A detailed assessment of the prevailing climate was made by interpolation from a 5km grid point dataset (Met Office 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site. However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations. At this locality, the climate is relatively warm and dry in national terms.
- No local climatic factors such as exposure or frost risk are believed to affect the site

 Table 2
 Climatic Interpolations

Grid Reference	TQ736565	TQ734562
Altıtude (m AOD)	65	80
Accumulated Temperature		
(degree days Jan June)	1433	1416
Average Annual Rainfall (mm)	686	692
Field Capacity (days)	140	140
Moisture Deficit Wheat (mm)	114	112
Moisture Deficit Potatoes (mm)	109	107
Overall Climatic Grade	1	1

3 Relief

The site lies at an altitude in the range of 60 84 m AOD rising gently towards the south. A small area of land in the south western part of the site is affected by relatively steep gradients. Soil droughtiness is equally limiting and Subgrade 3b has been mapped accordingly. Elsewhere on the site land quality is not affected by gradient or relief.

4 Geology and Soil

- British Geological Survey (1976) shows a series of geological deposits to underlie the site. Moving from the first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site is underlain by Hythe Beds (sain first outly the northern-most part of the site outly the northern-most part
- Soil Survey of England and Wales (1983) Sheet 6 shows the entire site to comprise soils of the Malling association. These are described as well drained fine loamy soils over limestone at variable depths. Some deep well drained coarse loamy soils and similar fine loamy over clayey soils. (SSEW 1983)
- Detailed field examination found the scals on the site to be very variable but generally comprising medium textured topsoils over similar upper subsoils and passing to heavier lower subsoils which may impede drainage. Around the woodland towards the south of the site, walls are derived from Folkestone Beds and as such are more saidly it nature and freely draining.

5 Agricultural Land Classification

- Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- The location of the soil observation points are shown on the attached sample point map

Grade 2

Very good quality land has been mapped across the majority of the site it being affected by minor soil wetness and/or dro ightiness limitations

Profiles comprise non-calcareous topsoils of fine or medium sandy loam or medium clay loam which may be very slightly stony containing up to about 5% total hard sandstone fragments by volume. These overlie similarly textured or sandy clay loam upper subsoils and pass to heavier textures with depth ie heavy clay loam or clay. Clay horizons in the lower subsoil have slowly permeable structures and thereby impede drainage slightly resulting in gleying within or above the slowly permeable layer. Such profiles are assigned to Wetness Class II given these drainage characteristics. Where clay horizons are absent from the profile Wetness Class I is appropriate.

The land in the Grade 2 mapping may be affected by slight soil wetness where minor drainage imperfections occur. Alternatively soil properties particularly textures structures and stone contents interact with the relatively dry climatic regime to give rise to slight restrictions on profile available water and thereby cause minor soil droughtiness to be a limitation. In either case, the utilisation of the land is very slightly restricted in terms of timings of cultivations and effects on crop growth and yield potential.

Subgrade 3a

Good quality land has been mapped where soils are similar to those described above the difference being that clayey horizons which impede drainage occur higher up the profile than in the Grade 2 mapping unit. Consequently the soil wetness limitation which prevails is more significant. Profiles typically comprise non calcareous medium clay loam topsoils containing 2% total hard sandstone fragments by volume. These overlie similar upper subsoils and pass to poorly structured clay horizons in the lower subsoil. Imperfect drainage through these lower subsoils causes seasonal waterlogging resulting in soils being gleyed below the topsoil. Such drainage characteristics equate to Wetness Class III and the land is thereby assigned to Subgrade 3a.

Seasonal waterlogging of the soil will adversely affect seed establishment root development and therefore crop growth. Yield potential may be depressed as a result. In addition wet soils will restrict the opportunities for trafficking cultivations and grazing.

Subgrade 3b

Moderate quality land on this site is associated with freely draining sandy soils derived from Folkestone Beds. Profiles comprise non calcareous sandy loam topsoils containing 2 10% total flints by volume. These overlie similarly textured upper subsoils which may contain up to 20% total stones and pass to loamy sand or sand lower subsoils which are stonefree. These sandy textured profiles drain freely and hold only small reserves of soil water which may be available to plant roots. As a result soil droughtiness acts to restrict the use of the land and depress yield potential.

A very small area of land in the Subgrade 3b mapping unit is equally limited by gradient as soil droughtiness. Slopes of 8 5° were recorded using an optical reading clinometer. Such gradients restrict the safe and efficient use of farm machinery.

ADAS Ref 2007/171/94 MAFF Ref EL20/328

Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 Maidstone 1 50 000 Solid & Drift Edition

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatic datasets for Agricultural Land Classification

Soil Survey of England and Wales (1983), Sheet 6 Soils of South East England 1 250 000 and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religious buildings cemetries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately. Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Definition of Soil Wetness Classes

Wetness Class	Duration of Waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²
п	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
V	The soil profile is wet within 40 cm depth for 211-335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note

Soil Pit Descriptions

Database Printout - Boring Level Information

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Failow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Croj	os			

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stoning	SS			-

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described
 - F few <2% C common 2 20% M many 20 40% VM very many 40% +
- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
CH	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
		_	

SI soft weathered igneous/metamorphic rock

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development WK weakly developed MD moderately developed

ST strongly developed

ped size F fine M medium

C coarse VC very coarse

ped shape S single grain M massive

GR granular AB angular blocky

SAB sub angular blocky PR prismatic

PL platy

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm

EM extremely firm EH extremely hard

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat

APP available water capacity (in mm) adjusted for potatoes

MBW moisture balance, wheat MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name MAIDSTONE LP SITE 32 Pit Number 1P

Grid Reference TQ73305650 Average Annual Rainfall 691 mm

Accumulated Temperature 1421 degree days

Field Capacity Level 140 days

Land Use

Slope and Aspect degrees

HORI	ZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	32	MSL	10YR42 00	0	2	HR					
32	46	MCL	75YR56 00	0	0		С	MDCSAB	FR	М	
46	70	С	10YR56 00	0	0		С	MDCAB	FM	P	

Wetness Grade 2 Wetness Class III

Gleying 046 cm SPL 046 cm

Drought Grade 3A APW 095mm MBW -19 mm

APP 107mm MBP 0 mm

FINAL ALC GRADE 2

MAIN LIMITATION Soil Wetness/Droughtiness

SOIL PIT DESCRIPTION

Site Name MAIDSTONE LP SITE 32

Pit Number 2P

Grad Reference TQ73205620

Average Annual Rainfall

691 mm Accumulated Temperature 1421 degree days

Field Capacity Level

Land Use

140 days

Slope and Aspect

Permanent Grass

02 degrees W

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 24	MSL	10YR42 00	6	10	HR					
24- 41	MSL	10YR43 00	0	20	HR				М	
41-120	MS	10YR66 00	0	0			S	VF	M	

Wetness Grade

Wetness Class

Gleying

SPL

cm No SPL

Drought Grade 3В APW 091mm MBW

23 mm

074mm APP MBP 33 mm

FINAL ALC GRADE MAIN LIMITATION

3В

Droughtiness

					MOTTLE	S	PED			ST	ONES		STRUCT/	SUI	3\$						
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	/ >2	6	LITH	TOT	CONSIST	ST	R POR	IMP	SPL	CALC			
									•	•		^							TMO	20	CTONES
1	0-30	fsl	10YR44 00						0	0	HR	2							IMP	30	STONES
1P	0 32	msl	10YR42 00						0	0	HR	2									
•••	32 46	mcl	75YR56 00	75YR5	8 00 C		00MN00	00 S	0	0		0	MDCSAB	FR M							
	46-70	c	10YR56 00				00MN00	00 Y	0	0		0	MDCAB	FM P	Υ		Υ				
2	0 30	fsl	10YR44 00						0	0	HR	2									
	30 40	fsl	10YR44 00						0	0		0		M							
	40 75	scl	10YR53 54	10YR	8 00 0	;	00MN00	00 Y	0	0		0		М							
	75 120	lfs	10YR66 00					Y	0	0		0		М							
2P	0 24	ms l	10YR42 00						6	0	НB	10									
21	24 41	msl	101R42 00						0		HR	20		М							
	-								0		FIIX		s	VF M							
	41 120	ms	10YR66 00						U	U		Ü	3	AL L							
3	0-29	fs1	10YR44 00	10YR	58 00 B	;			0	0		0									
	29 45	scl	10YR44 00	10YR	58 00 B	:	00MN00	00	0	0		0		М							
	45-60	scl	10YR43 00	10YR	58 00 0	;	00MN00	00 Y	0	0		0		М							
	60-100	С	10YR53 00	10YR	58 00 6	:	00MN00	00 Y	0	0		0		P	Υ		Υ				
	0-25	fsl	10YR44 00						٥	٨	HR	2									
4	25 35	fsl	107R44 00						0		LIK	0		М	ı						
			10YR43 54		EQ 00 /	,		v				0									
	35 55 55 70	scl c	101R43 54				00MN00	Y 00 V		0		0		M P			γ				
	55 70	C	101832 00	IUTK.	י טט פכ	•	OOMINOO	00 1	U	Ů		Ü		,	т		•				
5	0-25	msl	10YR33 00						0	0	HR	2							IMP	25	STONES
6	0 29	msl	10YR42 00			_				0		2									
	29 65	mcl	10YR53 00				10YR64			0		2		М							
	65 120	С	10YR63 00	75YR!	56 00 1	1	00MN00	00 Y	0	0	HR	10		P	Y		Υ				
7	0 25	mc1	10YR44 00						0	0	HR	4									
	25 42	hcl	10YR43 00	10YR	58 00 6	2		Υ	. 0	0		0		۲							
	42 80	С	10YR54 00	10YR	58 00 (2		\$	0	0		0		P	Y		Υ				
		_									_										
8	0 26	mc)	10YR42 00							0	HR	2									
	26 40	mc1	10YR43 52					Y		-		0		M							
	40 70	hc1	10YR43 00	10YR	58 00 (;	00MN00	00 Y	0	0		0		M					IMP	70	STONES
10	0 30	msl	10YR42 00						0	0	HR	2									
•	30 32	msl	10YR54 00							0		2		М					IMP	32	STONES
	-								,	-	•	-									
11	0-30	msl	10YR43 00						0	0		0									
	30 42	wcJ	10YR54 00		1	=	00MN00	00	0	0		0		۲	1						
	42 55	scl	10YR54 00	75YR	46 00 (10YR63	00 S	0	0		0		۲	l						
	55 65	sc	10YR54 00	75YR	58 00 1	=	00MN00	00 S	0	0		0		۲	l						
	65 85	ms l	10YR54 00	75YR	58 00 1	•	00MM00	00 S	0	0		0		۲	l						
	85-120	scl	75YR58 00		i	=	00MN00	00 S	0	0		0		۲	l						

-- -- -----

					MOTTLES	;	PED			-STO	ONES.		STRUCT/	SUBS	ı					1
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2 :	>6	LITH	TOT	CONSIST	STR	POR	IMP	SPL CALC			
13	0 30	ms]	10YR42 00						0	0 1	HR	2								
	30-55	mc1	10YR53 00	75YR5	8 00 C		10YR63	V 00	0	0 1	HR	5		M						
	55 60	c	10YR53 00	75YR5	8 00 C			Υ	0	0 1	HR	5		Р						
	60-65	С	10YR53 00	75YR5	8 00 C			Υ	0	0 1	HR	20		Р				IMP	65	STONES
16	0-30	mcl (10YR42 00						0	0	HR	2						IMP	30	STONES
17	0 28	mcl	10YR42 00						0	0	HR	2								
	28 75	С	10YR54 00		8 00 C		00MN00	00 Y	0	0	HR	2		Р	Y		Y			
19	0-25	fsl	10YR43 00						0	0	HR	2								
	25 30	fsl	10YR44 00						0	0	HR	5		M						
	30 50	lfs	10YR54 00						0	0	HR	10		М				IMP	50	STONES
22	0-35	mc]	10YR43 00						0	0	HR	2								
	35 60	scl	10YR53 00	75YR5	6 00 C		10YR63	00 Y	0	0	HR	5		М						
	60 70	С	10YR56 00	75YR5	8 00 C		COMMOO	00 Y	o	0	HR	5		P	γ		Υ			
	70-90	С	75YR56 00	75YR4	6 00 C		ООММОО	00 Y	0	0	HR	2		Р	Υ		Υ			
23	0 30	mc1	10YR43 00)					0	0	HR	2								
	30 47	mcl	10YR42 00	10YR	58 00 C			Υ	0	0	HR	10		М						
	47 75	C	75YR66 00	05YR	58 00 C			Y	0	0	HR	5		P	Y		Y			
25	0-22	fs1	10YR43 00)					0	0		0								
	22-55	fsl	10YR54 00)					0	0	HR	5		М						
	55 70	scl	10YR53 00	10YR	58 00 C			Υ	0	0	HR	2		М				IMP	70	STONES
26	0 25	fsl	10YR44 00)					0	0		0								
	25 40	fsl	10YR56 00)					0	0	HR	10		М				IMP	40	STONES
29	0 32	mcl	10YR43 00)					0	0		0								
	32-38	mcl	10YR44 00)					0	0	HR	2		M						
	38-60	hc1	10YR54 00	75YR	58 00 C		10YR73	3 00 S	0	0	HR	2		М						
	60 75	hcl	10YR64 00	75YR	58 00 C	:	10YR7	3 00 Y	0	0	HR	2		М				IMP	75	STONES

{

program ALCO12 LIST OF BORINGS HEADERS 05/12/94 MAIDSTONE LP SITE 32 page 1

SAMPI	. E	A:	SPECT				WETN	IESS	WHE	EAT	PO	TS~	М	REL	EROSN	FRO	OST	CHEM	ALC				
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	TZIO	LIMIT		COM	MENT	S	
							_																
	TQ73405660							1	053		053	-54	•					DR		IMP			1P
	TQ73305650				046	046	3	2	095	-19		0	3A					MD	-	PIT	TO 7	0	
	TQ73505660				040		2	1	169		116	9	2					DR	2				
	TQ73205620		W	02			1	1	091		074	33						DR	38				
3	TQ73305650	ORC			045	060	3	2	122	8	112	5	2					MD	2	SEE	1P		
4	TQ73405650	ORC			035	055	3	2	100	14	112	5	3A					MD	2				
5	TQ73505650		ΝE	02			1	1	042		042	-67	-					DR	2	IMP	25	SEE	1P
6	T073605650			02	029	065	3	2	131		111		2					WD	2				•
7	T073205640				025	042	3	3A	102		107		3A					WE	3A				
8	TQ73305640	ORC			026		2	2	104	-10	116		3A					WD	2	IMP	70	PRC)B 2
ì																							_
10	TQ73605640	RGR	MM	02			1	1	053	61	053	56	4					DR	2	IMP	32	SEE	. 1P
11	TQ73705640	RGR	ИM	02			1	1	154	40	112	3	2					DR	2	SL	GLEY	1 42	<u>}</u>
13	TQ73265630	RGR	N	01	030		2	1	091	23	100	9	3B					DR	2	IMP	65	SEE	1P
16	TQ73705630	RGR	N	02			1	1	053	61	053	-56	4					DR	3A	SEE	88	SUF	₹VEY
17	TQ73805630	RGR	W	02	028	028	4	3B	095	-19	103	6	3A					WE	3B				
19	TQ73205620						1	1	000		000	0						DR	38	IMP	50	SEE	. 2P
22	TQ73455621			02		060	3	ЗА	114		113	4						WE	3A				
23	TQ73605620		N	01	030	047	3	3A	098		106	3	ЗА					ME	3 A				
25	TQ73305610				055		1	1	109		118	11	ЗА					DR	2	IMP	70	SE	E 1P
26	TQ73405610	PGR					1	1	069	45	069	38	3B					DR	3B	IMP	40	SEI	∄ 2P
29	TQ73705610	RGR	N	02	060		1	1	110	4	117	8	3A					DR	2	SL	GLE.	Y 38	3