A1 Proposed Keston Park Hotel and Country Club, **Golf Course Proposal London Borough of Bromley** Agricultural Land Classification Semi detailed Survey **ALC Map and Report** January 1997

Resource Planning Team **Guildford Statutory Group ADAS Reading**

ADAS Reference MAFF Reference LUPU Commission 02733

2703/200/96 EL 27/01515

AGRICULTURAL LAND CLASSIFICATION REPORT SEMI DETAILED SURVEY

PROPOSED KESTON PARK HOTEL AND COUNTRY CLUB GOLF COURSE PROPOSAL LONDON BOROUGH OF BROMLEY

INTRODUCTION

- This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of 86 5 hectares of land to the south of Farnborough in the London Borough of Bromley The survey was carried out during November 1996
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in response to a survey previously carried out by Reading Agricultural Consultants (RAC) in connection with proposals for a golf course hotel and country club on this land. Access to the boring and pit data collected by RAC was available to ADAS prior to this survey. The results of this ADAS survey supersede any previous MAFF ALC information for this land.
- The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- At the time of survey the agricultural land at this site was mostly in Set aside. The remaining agricultural areas were either permanent grass arable derelict orchard or a derelict pick your own fruit enterprise. The areas mapped as Other Land include semi natural deciduous woodland evergreen wind breaks and an area of dumped soil towards the south west of the site. In addition hard development, which is also mapped as Other Land includes a substantial dwelling with significant grounds towards the north east of the site farm buildings around. Viners Farm to the east of the site and a site works office run by Thames Water adjacent to the reservoirs towards the centre of the site.

SUMMARY

- 5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 15 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf
- The fieldwork was conducted at an average density of approximately 1 boring per 1 75 hectares of agricultural land A total of 48 borings and five soil pits were described

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	/ site area	/ surveyed area			
2	15 7	18 2	23 6			
3a	99	11 4	14 9			
3b	37 1	42 9	55 9			
4	3 7	4 3	56			
Other Land	20 1	23 2				
Total surveyed area	66 4		100 0			
Total site area	86 5	100 0				

- The agricultural land at this site has been classified in the range Grade 2 (very good quality) to Grade 4 (poor quality) with substantial areas of Subgrade 3a (good quality) and Subgrade 3b (moderate quality) land Limitations to land quality include soil wetness soil droughtiness slope and land disturbance
- The land mapped as Grade 2 is principally limited by soil droughtiness. The soils on the site were found to be of two types. Towards the south of the site they comprise slightly stony clay loams and sandy clay loams. Towards the north and east of the site the soils comprise slightly stony sandy loams and loamy sands. In the local climate, soils of this nature are limited by soil droughtiness as available water to plants is slightly limited.
- The areas mapped as Subgrade 3a (good quality) are limited by both soil wetness and soil droughtiness. Towards the east of the site the soils commonly comprise sandy loam topsoils overlying gleyed and slowly permeable clays at shallow depths in the profile. Slowly permeable horizons cause drainage to be impeded such that land utilisation is restricted. In the local climate the depth of these slowly permeable horizons, the light topsoil texture and the degree of soil wetness is sufficient to place this land in Subgrade 3a. Towards the south of the site, the area mapped as Subgrade 3a is limited by soil droughtiness. In this area solid chalk occurs at shallow to moderate depths beneath silty clay loam upper horizons. Chalk causes plant rooting to be restricted causing water availability to plants to be restricted to the extent that in the local climate. Subgrade 3a is appropriate.
- The areas mapped as Subgrade 3b (moderate quality) are principally limited by soil wetness soil droughtiness and slope. The majority of these areas are limited by soil wetness slowly permeable clay subsoils occur at shallow depths in the profile beneath clay loam topsoils. These slowly permeable horizons cause drainage to be impeded such that land utilisation is restricted. In the local climate the depth of these slowly permeable horizons, the medium topsoil texture and the degree of soil wetness is sufficient to place these areas in Subgrade 3b. The small area of Subgrade 3b mapped towards the south west of the site is principally limited by soil droughtiness. In this area slightly stony clay loams overlie sandy loams and loamy sands which become impenetrable due to flints at moderate depths. In the local climate soils of this nature are assigned to Subgrade 3b on the basis of soil droughtiness as a result of a likely deficiency in plant water availability. In addition, parts of the Subgrade 3b mapping unit have been downgraded where gradients were measured in excess of 7. This

causes a restriction in land potential as most farm machinery cannot be efficiently or safely operated on such gradients

The area mapped as Grade 4 (poor quality) is a disturbed area. This area was not assessed in great detail. The soil resource was found to extend to approximately 40cm and exhibited clear evidence of wetness and compaction within this depth. These factors significantly restrict the range of crops and level of yields possible. Therefore this area was considered to be mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which may be variable.

FACTORS INFLUENCING ALC GRADE

Chmate

- 13 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 below these were obtained from the published 5km grid datasets using standard interpolation procedures (Met Office 1989)

Factor	Units	Values										
Grid reference	N/A	TQ 432 635	TQ 434 644	TQ 432 635								
Altıtude	m, AOD	100	120	140								
Accumulated Temperature	day°C	1397	1374	1397								
Average Annual Raınfall	mm	738	742	738								
Field Capacity Days	days	153	153	153								
Moisture Deficit Wheat	mm	103	101	103								
Moisture Deficit Potatoes	mm	95	92	95								

Table 2 Climatic and altitude data

- 15 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- 17 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are also believed not to affect the site. The site is climatically Grade 1

Site

The site lies at altitudes in the range 100 140 m AOD. The land across the site gently undulates the lowest lying land is towards the south and the highest towards the west. To the north and south east summits occur at 125m and 130m respectively, these lie either side of a dry valley running from west to east across the site. To the west and south of Broom Bank (TQ 429 639) slopes in excess of 7° were measured, this is sufficient to be significant in terms of agricultural land quality, these areas are limited to a best grade of Subgrade 3b.

Geology and soils

- The published geological information for the site (BGS 1971) shows the north of the site to be underlain by Blackheath beds. Moving south the majority of the site is mapped as Woolwich Beds. A narrow band of Thanet Beds is mapped to the south of the Woolwich Beds which corresponds with the steeper slopes on the site near Broom Bank as mentioned above (para 18). Towards the south of the site Upper Chalk is mapped with a narrow band of undivided and floodplain river terrace gravels to the extreme south of the site on the lowest lying land.
- The most detailed published soils information for the site (SSEW 1983 and 1984) shows the site to comprise soils of the Fyfield 4 and Frilsham associations. Fyfield 4 soils are mapped to the north of the site and are described as. Deep well drained often stoneless coarse loamy and sandy soils. Some fine loamy soils with slowly permeable subsoils and slight seasonal waterlogging and some slowly permeable seasonally waterlogged fine loamy over clayey soils. Risk of water erosion. (SSEW 1983). Soils of this broad type were found across the site approximately where Blackheath. Woolwich and Thanet Beds are shown on the geology map. Frilsham association soils are described as. Well drained mainly fine loamy soils over chalk some calcareous. Shallow calcareous fine loamy and fine silty soils in places. (SSEW 1983). Soils of this broad type were found approximately where Upper Chalk and river terrace gravels are shown on the geology map.

Agricultural Land Classification

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1
- The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III

Grade 2

- Land of very good quality has been mapped in a total of three separate mapping units across the site. The principal limitation is soil droughtiness, although soil wetness is equally limiting in a number of areas.
- Within this grade on this site there are two separate soil types. The most common occurs towards the east and south of the site and is characterised by the soil pit 3P (see Appendix III). The profiles in these areas commonly comprise a very slightly stony (up to 5% v/v total flints including up to 2% >2cm) medium clay loam occasionally medium silty clay.

loam topsoil This passes to a similarly stony occasionally gleyed medium or heavy clay loam sandy clay loam or rarely medium silty clay loam upper subsoil. The lower subsoil horizons are similar in texture commonly gleyed and stoneless to very slightly stony (up to 5% v/v total flints) Occasionally the lower subsoil was impenetrable due to a single large flint or flint stones between 65 and 75cm depth. Over the majority of these areas, the combination of soil textures stone content and moderate subsoil structural condition means that they are slightly restricted in terms of soil droughtiness. Soil droughtiness affects plant growth and development especially in drier years. In addition, the presence of gleving in the profile indicates that either groundwater levels are commonly relatively shallow during wetter periods or that an impedance to drainage is present below the depth of augering as is likely here The depth to gleying (<40cm) over some of this land indicates that Wetness Class II is appropriate and Grade 2 is applied on the basis of a soil wetness limitation given the local climate and the moderate workability of the topsoil However the majority of the observations here are placed in Wetness Class I by virtue of either being gleved at depths in excess of 40cm or not being gleyed within 120cm Occasional observations in these areas were of slightly better quality but these were scattered and therefore are not mapped separately

- Soil wetness restricts land utilisation by reducing the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock as well as adversely affecting crop growth and development
- The second less common soil type in the Grade 2 mapping units occurs towards the north and south east of the site. The principal limitation is soil droughtiness. Soils in these areas are characterised by the pit observation 5P (see Appendix III). They commonly comprise a slightly stony (up to 12% v/v total flints including up to 4% >2cm) occasionally gleyed fine or medium sandy loam occasionally loamy fine sand topsoil. This passes to a very slightly stony (up to 5% v/v total flints) occasionally gleyed medium sandy loam or loamy medium or fine sand. The lower subsoils in this area are commonly stoneless gleyed and comprise loamy fine or medium sands occasionally fine sand and fine sandy loam to depth. The combination of soil textures stone content and moderate to good subsoil structural condition means that these areas are slightly restricted in terms of soil droughtiness. Soil droughtiness affects plant growth and development especially in drier years.

Subgrade 3a

- Land of good quality has been mapped in a total of two mapping units across the site. These are located towards the east and south of the site. Principal limitation to land quality in these areas includes both soil wetness and soil droughtiness.
- Within this Subgrade on this site two distinct soil types were identified. The most common occurs towards the east of the site where the principal limitation is soil wetness. Soils in this area commonly comprise a slightly stony (up to 12% v/v total flints including up to 3%>2cm) medium sandy loam sandy clay loam or medium clay loam topsoil which passes to a commonly gleyed slightly to moderately stony (up to 16% v/v total flints) narrow medium sandy loam sandy clay loam or heavy clay loam upper subsoil horizon. The lower subsoil horizons which occur from between 38 and 60cm to depth comprise a gleyed and slowly permeable slightly stony (up to 15% v/v total flints) clay. A slowly permeable horizon causes a drainage impedance which, given the local climate leads these observations to be

placed in Wetness Classes III and IV (see Appendix II) Where the topsoils are lighter (medium sandy loam) and more workable the depth of the slowly permeable clay indicates that Wetness Class IV is appropriate and Subgrade 3a is applied given the local climate Where the topsoils are heavier (medium clay loam and sandy clay loam) the slowly permeable clay horizon is deeper and Wetness Class III has been appropriately applied which given the local climate leads to Subgrade 3a also as the topsoil is less workable in wet conditions. The effects of soil wetness in terms of land utilisation are detailed above (para 25)

The second less common soil type in this Subgrade occurs towards the south of the site and is principally limited by soil droughtiness. It is characterised by the soil pit 2P (see Appendix III) Soils in this area commonly comprise a slightly stony (up to 10% v/v total flints including up to 6% >2cm and up to 5% chalk fragments in addition) calcareous medium silty clay loam topsoil. This commonly passes to a narrow upper subsoil horizon of calcareous medium silty clay loam which contains approximately 50% chalk fragments and up to 5% flints by volume. This horizon was not always present. These soils pass to solid chalk from between 28 and 40cm. Solid chalk and flints in the profile have the effect of restricting plant rooting which restricts water availability to plants. In the pit observation roots were observed to extend to a maximum of 75cm in the chalk. Given the local climate and the rooting restriction imposed by the chalk substrate these profiles are appropriately placed in Subgrade 3a on the basis of a soil droughtiness limitation. Soil droughtiness affects plant growth and development especially in drier years

Subgrade 3b

- Land of moderate quality has been mapped over the majority of the agricultural land at this site in a total of two mapping units Principal limitations to land quality include soil wetness soil droughtiness and slope
- The majority of the area mapped as Subgrade 3b is limited by soil wetness. Soils in this area are characterised by the pit observation, 1P (see Appendix III). Soils commonly comprise either a sandy clay loam medium clay loam heavy clay loam or clay topsoil which contains up to 15% flints by volume of which up to 8% are >2cm. It was commonly gleyed especially where clay or heavy clay loam textures were encountered. This overlies slowly permeable poorly structured clay subsoils. The presence of a slowly permeable layer indicates a drainage impedance in these soils. In the local climate, the depth of the slowly permeable horizon means that Wetness Class IV is appropriate and Subgrade 3b given the moderate workability of the topsoils on the basis of a soil wetness limitation. The effects of soil wetness in terms of land utilisation are detailed above (para 25).
- In the small discrete area shown as Subgrade 3b around Mill Hill (TQ 438 640) to the east of the site soil droughtiness is the principal limitation to land quality. In this area slightly stony (10% v/v total flints 3%>2cm) heavy clay loam topsoils overlie clay which becomes moderately stony (c 30% v/v total flints) from 40cm and impenetrable to the soil auger at 45cm. Given the local climate these soils are appropriately placed in Subgrade 3b as the combination of soil texture and stone content are sufficient to reduce water availability to plants to a significant degree. Significant soil droughtiness will affect plant growth and yield in this area in most years. The boundaries of this area were defined by the topography of the surrounding landscape.

To the west and south of Broom Bank (TQ 429 639) gradient is the principal limitation to land quality. In these areas gradient was measured at between 7 and 11. This causes a restriction in potential land utilisation as most farm machinery cannot be efficiently or safely operated on such gradients.

Grade 4

Land of poor quality has been mapped to the west of the site where the soils have been disturbed. The soils in this area were found to comprise a slightly stony (c. 5% v/v total flints) gleyed medium clay loam topsoil overlying a narrow similarly stony gleyed medium or heavy clay loam upper subsoil. This passes to a narrow (5.10cm) similarly stony gleyed clay horizon which overlies the infill material from approximately 30.40 cm. The latter was impenetrable to the soil auger. The soil wetness exhibited by the soil horizons that could be examined in combination with compaction perceived during the survey work has led to this area being classified as of Grade 4 quality. The soil wetness and compaction significantly restrict the range of crops and level of yields possible. Therefore this area was considered to be mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which may be variable.

Matthew Larkin Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet 271 Dartford Drift Edition 1 50 000 Scale BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Meteorological Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Soils of South East England 1 250 000 Scale SSEW Harpenden

Soil Survey of England and Wales (1984) Soils of South East England Bulletin No 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹										
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2										
П	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years										
111	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years										
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years										
v	The soil profile is wet within 40 cm depth for 211 335 days in most years										
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years										

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map

Soil abbreviations Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- GRID REF national 100 km grid square and 8 figure grid reference
- USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	LEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Crops				

- **GRDNT** Gradient as estimated or measured by a hand held optical clinometer 3
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- AP (WHEAT/POTS) Crop adjusted available water capacity 5
- MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD) 6
- 7 DRT Best grade according to soil droughtiness
- If any of the following factors are considered significant, Y' will be entered in the relevant column 8

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
\mathbf{FL}	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Drought

tiness

ST Topsoil Stoniness

Soil Pits and Auger Borings

TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	\mathbf{SL}	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Sılt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66 % of the sand less than 0 2mm) F
- Medium (less than 66 % fine sand and less than 33 % coarse sand) M
- Coarse (more than 33 % of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content

M Medium (<27 / clay) H Heavy (27 35 / clay)

- MOTTLE COL Mottle colour using Munsell notation 2 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described 3 M many 20-40/ F few <2/ C common 2 20% VM very many 40/6+ MOTTLE CONT Mottle contrast faint indistinct mottles evident only on close inspection D distinct mottles are readily seen prominent mottling is conspicuous and one of the outstanding features of the horizon P PED COL Ped face colour using Munsell notation 5 If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed, an S will 6 **GLEY** appear STONE LITH Stone Lithology One of the following is used 7 all hard rocks and stones **SLST** soft oolitic or dolimitic limestone HR chalk **FSST** soft, fine grained sandstone CH soft, argillaceous or silty rocks GH gravel with non porous (hard) stones ZR soft, medium grained sandstone GS gravel with porous (soft) stones MSST SI soft weathered igneous/metamorphic rock Stone contents (>2cm >6cm and total) are given in percentages (by volume) STRUCT the degree of development, size and shape of soil peds are described using the following 8 notation WK weakly developed MD moderately developed degree of development ST strongly developed F fine M medium ped size C coarse VC very coarse S single grain M massive ped shape **GR** granular AB angular blocky SAB sub angular blocky PR prismatic PL platy CONSIST Soil consistence is described using the following notation 9 L loose VF very friable FR fnable FM firm VM very firm EH extremely hard EM extremely firm SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness 10 M moderate G good P poor **POR** Soil porosity If a soil horizon has less than 0.5 / biopores >0.5 mm a Y' will appear in this 11 column 12 **IMP** If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y' will appear in this column CALC If the soil horizon is calcareous a Y will appear in this column 14
 - APW available water capacity (in mm) adjusted for wheat
 APP available water capacity (in mm) adjusted for potatoes
 MBW moisture balance wheat
 MBP moisture balance potatoes

15

Other notations

SOIL PIT DESCRIPTION

Site Name HOLWOOD PARK HOTEL/CLUB Pt N mbe 1P

G id Refer nce TQ43746438 A e age A al R fall 738 mm

Acc mulated Tempe at re 1397 degree d y

Field Capacity Le el 153 days

Land Use Set ide

Slope and Aspect degrees

STONES 2 TOT STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC HORIZON **TEXTURE** COLOUR 0 25 HCL. 10YR42 43 1 3 HR **WKCAB** 25 39 С 25Y 51 00 0 3 М FM Ρ MDCAB 39 55 C 05Y 51 00 0 1 HR М

SPL 25 cm

Drought G d 3B APW 079mm MBW 24 mm

APP 082mm MBP 11 mm

FINAL ALC GRADE 3B
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

S te Name HOLWOOD PARK HOTEL/CLUB P t N be 2P

G d Reference TQ43106350 A age A al Ra f ll 738 mm

Acc m lated Tempe at e 1397 deg ee days

F eld Capac ty Le el 153 days
L nd Use Set aside
Slope and Aspect 2 deg ees S

HORIZON TEXTURE COLOUR STONES 2 TOT STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC 0 28 MZCL 10YR42 00 6 10 HR 28 75 СН 10YR81 00 0 3 HR Y

Wetness G ade 1 Wet ess Class I

G1 y ng cm SPL cm

Doght G ad 3A APW 085mm MBW 18 mm

APP 088mm M8P 7 mm

FINAL ALC GRADE 3A MAIN LIMITATION D o ght

SOIL PIT DESCRIPTION

Sit Name HOLHOOD PARK HOTEL/CLUB Pit Nimbe 3P

Grid Referenc TQ42806380 A ag A al Rai f ll 738 mm

Accumul ted Tempe at re 1397 degree days

F eld Capac ty Le el 153 days

L nd Use Permane t Grass Slope a d Aspect 5 degrees E

STONES 2 TOT STONE LITH MOTTLES STRUCTURE CONSIST SUBSTRUCTURE CALC TEXTURE COLOUR HORIZON HR 0 27 MCL 10YR42 00 1 5 MDCSAB М 10YR54 00 5 FR 27 48 MCL 0 MDCSAB М 10YR54 00 3 HR С FR 48 110 MCL 0 М HR С 110 120 HCL 10YR54 00 0 3

Wetness Grade 1 Wetness Class I

Gley ng 48 cm SPL cm

Drought G ade 1 APW 149mm MBW 46 mm

APP 113mm MBP 18 mm

FINAL ALC GRADE 1 MAIN LIMITATION

SOIL PIT DESCRIPTION

S te Name HOLWOOD PARK HOTEL/CLUB P t N mbe 4P

G d R ference TQ43606420 A e ge A 1 Ra fall 738 mm

Acc mul ted Tempe t e 1397 deg ee days

F eld Capac ty Le el 153 d ys

Land Use Set as de

Slope nd Aspect 4 deg ees N

HOR I	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	30	MSL	10YR41 42	3		12	HR					
30	40	SCL	10YR54 53	4		16	HR	С	MDCSAB	FR	м	
40	70	С	25Y 61 62	0		15	HR	М	WKCAB	FM	Р	
70	120	C	05Y 41 00	0		3	HR	М	MDCAB	FM	Р	

Wetnes G ade 3A Wet ess Clss IV

G1 y g 30 cm SPL 40 cm

Drought G ad 2 APW 116mm MBW 13 mm

APP 092mm MBP 3 mm

FINAL ALC GRADE 3A MAIN LIMITATION W t

SOIL PIT DESCRIPTION

Site Name HOLWOOD PARK HOTEL/CLUB P t N mbe 5P

G id Refe ence TQ43706410 A e ge A 1 R i f 11 738 mm

Acc mulated Temperat 1397 degree d y

F eld Capacity Le el 153 days
Land Use Set aside
Slope and Aspect 2 deg ees N

HOR1	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC	-
0	28	MSL	10YR42 00	3		8	HR						
28	48	MSL	10YR43 00	0		5	HR		MDCAB	FR	G		
48	83	LMS	10YR63 00	0		0		С	MDCAB	FR	G		
83	120	LMS	10YR63 62	0		0		M	MDCAB	FR	G		

Wetness G ade 1 Wetness Class I Gley g 48 cm cm

Drought G ade 2 APW 129mm MBW 26 mm APP 098mm MBP 3 mm

FINAL ALC GRADE 2

MAIN LIMITATION D oughtiness

s	AMPI	LE	A	SPECT				WETN	NESS	WHE	AT	PO	TS	М	REL	EROSN	FROST	CHEM	ALC	
N	0	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
					_															
)		TQ43156454		NW	3	55		1	1	165		106	11					TS	2	LMS TOPSOIL
		TQ43746438				25	25	4	3B	079		082	11	38				WE	3B	PIT 55
		TQ43306457			1	30		2	1	167		106	11						1	
1		TQ43106350		S	2			1	1	085		088	7	3A				DR	ЗА	PIT 80 ROOTS75
	3	TQ43206450	SAS	N	1	28	28	4	38		0		0					WS	3B	WET & TOP ST
,	3P	TQ42806380	PGR	Ε	5	48		1	1	149	46	113	18	1					1	
1	4	TQ43306450	SAS	SW	2	38	75	2	1	116	13	086	9	2				DR	2	
	4P	TQ43606420	SAS	N	4	30	40	4	3A	116	13	092	3	2				WE	3A	PIT 90 AUG 120
•	5	TQ43406450	SAS	SW	2	30	60	3	3A		0		0					WE	3A	
	5P	TQ43706410	SAS	N	2	48		1	1	129	26	098	3	2				DR	2	PIT 95 AUG 120
	_	T0.13005.1.0		_				_	•		_		_							
		TQ43206440		S	1	30	30	4	3B		0		0					WE	38	
h	7	TQ43406440				30	30	4	3B		0		0					WE	38	
Ĺ		TQ43806440		NM NM	1	30	30	4	3B	126		103	8	2				WE	3B	
,		T043006430		NE	1	28 0	28 30	4	3B 3B		0		0					WE	3B	
	10	TQ43126433	SAS			U	30	4	36		0		0					WE	3B	
	11	TQ43316429	SAS	N	1	0	28	4	3B		0		0					WE	38	
•	12	TQ43706430	SAS	NE	1	25	25	4	38		0		0					WE	3B	
	13	TQ43806430	SAS	NW	1	30		2	2	154	51	115	20	1				WE	2	
L	14	TQ42736426	PGR	Ε	1	25	25	4	3B		0		0					WE	38	
	15	TQ43206420	SAS	N	1	0	20	4	3B		0		0					WE	3B	RUSHES QGDE4
_											_								_	
B		TQ43406420			1	25	25	4	3B		0		0					WE	3B	
_	17	TQ43606420			3	26	40	4	3A		0		0					WE	3A	
	18	TQ43806420		N	3	30	30	4	3B	100	0		0	24				WE	38	**** 75
		TQ43906420 TQ43056405		MLI	2	25	25	1	1 38	106	0	112	17 0	3A				DR	2	IMP 75
	20	1043030403	rak	1474	č	23	23	4	36		U		Ū					WE	3B	
_ :	21	TQ43306410	SAS	N	3	0	40	4	3B	119	16	097	2	2			Q	WE	3B	
•	22	TQ43506410	SAS	NW	3	38	38	4	3A		0		0					WE	3A	
•	23	TQ43706410	SAS	SE	1	85		1	1	118	15	087	8	2				DR	2	
	24	TQ43906410	SAS	N	5	75		1	1	150	47	112	17	1					1	
1	25	TQ42706400	PGR	NE	1	22	22	4	3B		0		0					₩E	38	
	26	TQ42816397	DCD	МГ	1) E	25	4	20				^						20	
		TQ42816397			1 3	25 25			3B 3B		0		0					WE WE	3B 3B	
		TQ42946401			3		35 25	4	3B		0		0					WE	3B	
-		TQ43306395			J	30	30	4	3B		0		0					WE	3B	
		TQ43406400		NW	1		85		1	115		086	9	2				DR	2	
					•	Ū	-	_		•		•••	_	_				5	_	
•	31	TQ43576401	SAS			30	48	3	3A		0		0					WE	3 A	
		TQ43856400				30	30	4	3B	066		066	29	3B				WD		IMP FLINTS 45
		TQ42676392			1	25	45		3A		0		0					WE	3 A	
		TQ43106389			5	28			2	152		112	17					WE	2	
,	35	TQ42706380	PGR	SE	4	35		2	2	091	12	096	1	3A				DR	3A	IMP 60 Q GDE 2
	36	TQ42806380	PGR	Ε	3	55		1	1	101	2	110	15	3A				DR	2	IMP FLINTS 65
		TQ42906380			2				1	115		123	28					DR		IMP 75 Q GDE 1
	•			-	-				•					_				J.1.	_	12 d apr .

SAMP	LE	A	SPECT				WET	NESS	WHI	EAT	PC	OTS	М	REL	EROSN	FR	OST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	ΧP	DIST	LIMIT		COMMENTS
38	TQ43106380	PGR	s	4	28		2	2	150	47	110	15	1					WE	2	
39	TQ42606370	SAS					1	1	064	39	064	31	3B				γ	DB	4	Q GDE 3B
40	TQ42806370	SAS	S	2	15		2	2	074	29	076	19	38					DR	38	IMP FLINTS 60
41	TQ42906366	ARA	S	2			1	1	119	16	116	21	2					DR	2	IMP FLINTS 85
42	TQ42976370	ARA					1	1	082	21	082	13	3B					DR	3B	IMP 50 QGDE 3A
43	TQ43106367	SAS	s	4			1	1	091	12	097	2	3A					DR	3 A	IMP 42 HARD CH
44	TQ42506360	SAS					1	1	073	30	073	22	3B				Υ	DB	4	Q GDE 3B
45	TQ43006360	ARA	S	3			1	1	102	1	113	18	3A					DR	3 A	IMP FLINTS 68
46	TQ43206360	SAS	S	3			1	1	093	10	095	0	3A					DR	3A	
47	TQ43106350	SAS	S	4			1	1	065	38	065	30	3B					DR	38	IMP FLINTS 45
48	TQ43216347	SAS					1	1	095	8	101	6	3 A					DR	3 A	IMP FLINTS 60

					MOTTLES	;	PED			Sī	ONES		STRUCT	/	SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR			CONT		GLEY	2				CONSIS			POR	IMP	SPL	CALC	
1	0 28	lfs	10YR31 41						3	0	HR	10								
	28 55	lfs	25Y 61 71						0	0	HR	5			G					BORDER FS
	55 120	lfs	25Y 62 00	10YR6	8 00 C			Υ	0	0	HR	3			G					
1P	-	hcl	10YR42 43								HR	3			_					
	25 39	С	25Y 51 00					Υ			HR		WKCAB					Y		3% CHALK FRAGS
	39 55	С	05Y 51 00	10YR5	8 00 M			Y	0	0	HR	1	MDCAB	FM	Р	Y		Y		
2	0 30	fsl	10YR42 00						5	0	HR	10								BORDER MSL
2	30 50	1fs	101R42 00		6 00 C			γ	0		HR	3			G					DORUCK POL
	50 70	fs	25Y 61 62					Ÿ	0	0	TIK	0			G					BORDER LFS
	70 120		25Y 71 00					Ÿ	_	0		0			M					DONDER EI S
	,0 120	131	23, 7, 00	101110	0 00 0			•	Ť	·		·								
2P	0 28	mzcl	10YR42 00						6	3	HR	10							Υ	5% CHALK FRAGS
	28 75	ch	10YR81 00						0	0	HR	3			Р				Y	65 75 ROOTS FEW/FIN
3	0 28	mzcl	10YR31 00						17	2	HR	25								POSS ORGANIC
	28 50	С	25Y 51 61	75YR5	8 00 M			Y	0	0	HR	20			Ρ			Y		IMP STONES 50
3P	0 27		10YR42 00								HR	5								SLIGHTLY SANDY
	27 48		10YR54 00					_			HR		MDCSAB							SLIGHTLY SANDY
ı	48 110		10YR54 00						0				MDCSAB	FR						SLIGHTLY SANDY
	110 120	hcl	10YR54 00	10YR6	6 58 C			Y	0	0	HR	3			М					SLIGHTLY SANDY
4	0 30	m l	10YR41 00						_	0	HR	15								BORDER FSL
•	30 38		101R41 50								HR	5			M					BORDER FSL
	38 75	lms	10YR54 53		6 00 C			Υ		0	TIK.	٥			G					
]	75 120	=	25Y 61 00					Y		0		0			P			Υ		
4P	0 30	ms1	10YR41 42						3	0	HR	12								
)	30 40	1	10YR54 53	10YR5	6 00 C			γ	4	0	HR	16	MDCSAB	FR	М					
	40 70	С	25Y 61 62	75YR6	M 00 8	C	OOMNOO C)O Y	0	0	HR	15	WKCAB	FM	Р	Y		Υ		
,	70 120	c	05Y 41 00	75YR5	8 00 M	C	05Y 41 C)O Y	0	0	HR	3	MDCAB	FM	Р	Y		Y		
ì																				
5	0 30	mcl	10YR42 00						_	0	HR	8								BORDER HCL
,	30 60	hc1	10YR52 53					Υ	0			0			M					
,	60 90	С	25Y 71 00	10YR6	8 00 M			Υ	0	0		0			P			Y		
5P	0.20	1	10YR42 00						2	Λ	นอ	0								
) 5P	0 28 28 48	msl msl	10YR42 00						0	0	nk HR	8	MDCAB	ED	c					
	48 83	lms	101R43 00		6 NN C			Υ	0	0	ПК	_		FR						
	83 120		10YR63 62					Ÿ		0		0								
ı				, •	• •• • • •			•	•	•		•			-					
. 6	0 30	hcl	10YR43 42						0	0		0								
	30 70	С	25Y 61 00	10YR6	M 00 8			Y	0	0		0			Р			Y		
)																				
7	0 30	С	10YR43 00						0	0	HR	3								BORDER HCL
!	30 70	С	05Y 21 00	75YR5	M 00 8			γ	0	0		0			P			Y		

				м	OTTLES		PED			ST	ONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A		CONT		GLEY	2						IMP SPL CALC	
8	0 30	hcl	10YR42 00							0		5				
	30 70	С	25Y 51 53					Y		0	CH	5		Р	Y	5% FLINTS
	70 120	С	05Y 51 00	05YR56	00 M			Y	0	0		0		Р	Y	
0	0.20	L-1	10YR43 00						^	•	un.	2				BODDED OLAV
9	0 28 28 55	hcl c	25Y 51 52		00 M		DOMNOO	00 V		0 1		2		P	Y	BORDER CLAY
		c	25Y 61 00			,	DUMHUU	γ		0 (15		P	Ϋ́	
	33 70	·	231 01 00	TOTROO	00 11			,	•	•	ω :	,,		•	•	
10	0 30	С	25Y 42 00	10YR58	00 C			Υ	0	0 (СН	1				
	30 60	С	10YR52 00	10YR58	00 C			Υ		0 (1		P	Y	
11	0 28	С	25Y 42 00	10YR68	00 C			Y	0	0 (CH	1				
	28 60	c	25Y 62 00	10YR58	00 C			Y	0	0 (CH	1		P	Y	
12	0 25	mc1	10YR43 00							0 1		3		_		
	25-50	С	25Y 63 64					Y	-		HR	2		P	Y	2% CHALK
	50 70 70 80	C bal	25Y 61 00 25Y 71 00					Y	0			0		P M	Y Y	SLIGHTLY SANDY
	80 120	hc1	05Y 51 00					Y	0			٥		P	Y	SLIGHTLY SANDY
	50 120	Č	031 31 00	1011130	00 0			•	٠	Ü		J		•	,	
13	0 30	mcl	10YR42 00						0	0 1	HR	2				BORDER SCL
	30 60	mcl	10YR53 51	10YR66	00 C			Y	0	0 1	HR	2		М		BORDER SCL
	60 75	scl	25Y 61 63	10YR66	00 C			Y	0	0	HR	2		M		
	75 120	scl	25Y 63 62	10YR68	00 M			Υ	0	0		0		М		BORDER HCL
14	0 25	hc1	10YR42 43							0		15		_		
	25 70	С	25Y 61 62	10YR68	00 M			Y	0	0	HR	10		Р	Y	
15	0 20		25Y 42 00	107059	00 C			Y	Λ	0	СĦ	1				BORDER HCL
13	20 60		25Y 51 52					Ÿ		0		1		Р	Y	BONDER FICE
								•	Ĭ		•	·				
16	0 25	С	25Y 52 00						0	0	СН	1				
	25 38	С	25Y 53 62	10YR66	00 C			Y	0	0	СН	1		Р	Y	
	38 70	c	25Y 62 00	10YR58	00 C			Y	0	0	CH	1		P	Y	
17	0 26		10YR41 42							0		10				4P LOCATION
	26 40		10YR53 54								HR			M	.,	CL TOUTLY CANDY
	40 65 65 120		25Y 51 61 05Y 41 00					Y		0		10 0		P P	Y Y	SLIGHTLY SANDY
	05 120	C	031 41 00	/51800	00 M			7	U	U		V		r	T	
18	0 30	mc1	10YR42 00						5	0	HR	15				
	30 55	С	25Y 53 00		00 M			γ				5		Р	Y	BORDER SC
	55 100		25Y 53 00					Y		0		5		Ρ	Y	
19	0 30	mcl	10YR42 00							0		5				BORDER FSZL
	30 65	mcl	10YR44 54							0 1		5		M	.,	BORDER FSZL
	65 75	mc1	10YR54 00						Ō	0	ιн	5		М	Y	5% FLINTS IMP 75

				ı	40TTLES	,	PED				STONES	s	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	ΩL	GLE	EY :	2	6 LIT	н тот	CONSIST	STR POR	IMP SPL CALC	
20	0 25	hc1	10YR42 00						(0	O HR	5				
	25 70	c	25Y 61 62	75YR6	8 00 M			١		0		0		P	Y	
21	0 30	scl	25Y 53 00					Y			O HR	3				POSS DISTURBED
	30 40	lms	25Y 72 00					۲ مم		0	_	0		G		
-	40 58	C	75YR52 00	-	_		OMNOO			0	-	0		P	Y	OF TOUTING CANDY
	58 90 90 120	c	25Y 63 61 75YR42 00				OMNOO OMNOO				O HR	5 5		P P	Y Y	SLIGHTLY SANDY
	90 120	С	731K4Z 00	IUTKX	3 00 M	·	IUMNUU	00 i	'	U	O HR	Э		r	1	
22	0 30	msl	10YR41 42						ļ	5	0 HR	10				
1	30 38	msl	10YR44 54						(0	O HR	5		М		BORDER SCL
,	38 100	c	25Y 63 00	10YR6	3 00 M			۲	/ (0	0	0		P	Y	BORDER SC
23	0 30	ms 1	10YR42 32							1	O HR	5				5P LOCATION
	30 50	lms	10YR54 00								O HR	2		G		BORDER MSL
	50 85	lms	10YR63 00						(0	0	0		G		BORDER LFS
•	85 120	lms	25Y 63 00	75YR56	3 00 C			Y	/ (0	0	0		G		BORDER LFS
24	0 30	mc1	10YR42 00							1	O HR	5				SLIGHTLY SANDY
	30 75	hc1	10YR53 00								0 HR	5		М		SLIGHTLY SANDY
	75 85	hc1	10YR63 00	10YR66	5 00 C	0	OMNOC	00 Y	, (0		0		М		SLIGHTLY SANDY
	85 120	hc1	10YR63 62	10YR66	5 00 C	0	0011100	00 Y	(0	O HR	1		М		BORDER MCL
-										_	_	_				
25	0 22	hc1	10YR42 00	35,406							O HR	3			.,	
	22 70	С	25Y 61 62	/51KG	3 UU M			Y	'	0	U	0		Р	Y	
26	0 25	hc1	10YR42 00						;	3	O HR	10				
	25 35	hc1	10YR42 00	10YR46	5 00 C			Υ	′ (0	O HR	5		М		BORDER CLAY
	35 70	С	25Y 61 62	75YR68	3 00 M			Y	′ (0	O HR	5		Р	Y	
27	0 25	hcl	10YR42 00						3	3	O HR	10				BORDER CLAY
	25 35	С	25Y 42 00	10YR46	00 C			Y	, ()	0 HR	25		М		
	35 70	С	257 51 61	75YR58	3 68 M			Y	(0	0	0		P	Υ	
20	0.05	1	100041 00							_	0 UD	,				
28	0 25 25 70	mcl c	10YR41 00 25Y 41 51	757050	элл м			Y			0 HR 0 CH	3 5		Р	Υ	CI TOUTI V CANDY
	25 /0	C	231 41 31	731KX	, 00 11			1	•	•	о сн	3		r	,	SLIGHTLY SANDY
29	0 30	scl	10YR41 00						4	1	O HR	12				
	30 60		25Y 71 00	75YR58	3 00 M	0	OMN00	00 Y	′ (0	O HR	2		Р	Y	SLIGHTLY SANDY
_	60 75	С	05Y 63 00	10YR58	3 00 M			Y	′ (0	O HR	5		Р	Y	SLIGHTLY SANDY
30	0 35	ms 1	10YR52 53	75YR68	3 00 C			Υ	, ,	4	O HR	12				BORDER LMS
	35 85	lms	10YR63 00	10YR58	3 00 C			Y	′ (0	O HR	2		G		
•	85 120	С	05Y 62 00	75YR68	3 00 M			Y	′ (0	O HR	5		Р	Y	SLIGHTLY SANDY
31	0 30	scl	10YR41 00	10YR58	3 00 F				á	2	0 HR	10				BORDER MCL
	30 48	hc1	25Y 53 00	10YR58	3 00 C			Y	, ()	0 HR	5		M		
	48 68	С	25Y 63 00	75YR58	3 68 M			Y	' ()	O HR	2		P	Y	
.	68 80	c	25Y 53 00	75YR56	3 00 M			Y	′ ()	O HR	5		P	Y	

				-MOTTLES	PED			STONES	3	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN CONT		GLEY	2			-	STR POR IMP SPL CALC	:
32	0 30	hc1	25Y 43 00				3	O HR	10			
	30 40	С	=	10YR68 00 M		Y	0	0 HR	2		Р	
	40 45	С	10YR62 00	10YR68 00 M		Y	0	O HR	30		Р	IMP FLINTS 45
		_					_		_			_
33	0 25	mc)	10YR41 42					0 HR	3			BORDER MZCL
	25 45	hcl		10YR58 00 M		Y		O HR	3		M	BORDER CLAY
	45 80	С	25Y 61 00	75YR68 00 M		Y	0	0	0		P Y	
34	0 28	mc1	10YR42 00	10YR46 00 F			0	Q HR	3			SLIGHTLY SANDY
	28 40	scl	10YR53 52	10YR58 00 C		γ	0	O HR	2		M	FINE SAND
	40 60	scl		10YR56 00 C		γ	0	0	0		М	BORDER FSL
	60 120	scl	25Y 53 00	10YR56 00 M		Υ	0	0	0		М	HEAVY SCL
35	0 35	mcl	10YR42 00				0	O HR	5			
	35 60	mc1	10YR53 00	10YR58 00 C		Υ	0	O HR	10		М	IMP FLINTS 60
36	0 28	mz 1	10YR42 00				0	O HR	2			3P LOCATION
	28 55	mzc]	10YR54 00				0	O HR	2		M	
	55 65	mzcl	10YR53 52	10YR56 00 C		Y	0	0 HR	25		М	IMP STONES 65
37	0 30	mzcl	10YR42 00				0	O HR	2			
•	30 55	mzc1	10YR54 00				0	0	0		M Y	
	55 75	mzcl	10YR64 00					0 CH	5		M Y	IMP FLINTS 75
38	0 28	mcl	10YR42 00				0	O HR	2			SLIGHTLY SANDY
	28 60	scl	25Y 53 51	10YR58 00 C		Y	0	0	0		M	BORDER MCL
	60 120	cl	25Y 61 00	10YR68 00 M		Y	0	0	0		М	FINE SCL
20	0.10						_	A 115	_			
39	0 18	mcl		10YR58 00 C			0	0 HR	5			DISTURBED
	18 25	mcl		75YR56 00 M			0	O HR	5		M	REMNANT MOTTLING?
	25 30	C 1		10YR58 00 M			0	O HR	5		P	TMD AS INCILL
	30 45	mcl	101K41 00	10YR58 00 C			0	O HR	10		Р	IMP 45 INFILL
40	0 15	mcl	10YR41 00				0	0 HR	2			NR DIST AREA
	15 30	ms 1	25Y 53 00	10YR58 00 C		Y	0	0	0		М	
	30 60	lms	25Y 53 62			Υ	0	0 HR	5		G	IMP FLINTS 60
41	0 30	mc1	10YR42 00					OHR	3			
	30 65	hc1	10YR54 00					O HR	1		M	00
	65 85	hc1	10YR54 00	10YR58 00 F			O	0 HR	1		М	IMP FLINT 85
42	0 28	mc)	25Y 42 00				1	O HR	5			
·-	28 50	mc1	10YR42 00				0	0 HR	5		М	IMP FLINTS 50
		=					-		-			· -
43	0 35	mz 1	10YR42 00				0	0 HR	5		Y	5% CHALK
	35 40	mz 1	10YR53 43				0	0 CH	50		M Y	5% FLINTS
	40 70	ch	10YR81 00				0	O HR	5		Р У	IMP 42 HARD CHALK

				-MOTTLES		PED		STONES			STRUCT/ SUBS									
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	TOT	CONSIST	STR PO	R IMP	SPL CAL	:			
44	0 25	mcl	10YR41 00	100050	2 00 C				n	0 1	ub	5					DISTUR	DEN		
44												_							T. ***	
	25-30	hcl	25Y 62 72							0 1		5		M			REMNAN	I MUI	ILING?	ſ
	30 40	С	25Y 72 00	75YR68	3 00 M				0	0 1	HR	5		Р						
١	40 50	hc1	25Y 62 00	25YR68	3 00 M				0	0 1	HR	20		Р			IMP 50	IN	FILL	
45	0 35	mcl	25Y 42 00						2	0 1	HR	4								
	35 50	hc1	10YR42 00						0	0 1	HR	1		M						
	50 68	hcl	10YR43 44						0	0	HR	1		М			IMP FL	INTS	68	
J																				
46	0 30	mzc]	10YR42 00						0	0 1	HR	5				Y	27 CH	ALK		
)	30 40	mzcl	10YR53 43						0	0 (CH	50		M		Y	5% FL	INTS		
	40 75	ch	10YR81 00						0	0	HR	5		P		Y	SOFT C	HALK		
47	0 28	mzcl	10YR42 00						4	0 1	HR	6				Y	5% CH	ALK	2P LC	C
	28 45	ch	10YR81 00						0	0 1	HR	5		Ρ		Υ	IMP FL	INT 4	5	
48	0 35	mzcl	10YR42 00						0	0 1	HR	5				Y	27 CH	ALK		
	35-50	mzcl	10YR54 00						0	0 1	HR	8		M		Y	+27 CH	ALK		
}	50 60	mzcl	10YR44 00						0	0 1	HR	10		M		Υ	IMP FL	INTS	60	