A1 Oxfordshire Structure Plan Wantage Road Didcot Agricultural Land Classification Reconnaissance Survey ALC Map & Report December 1996

Resource Planning Team **Guildford Statutory Group** ADAS Reading

ADAS Reference MAFF Reference LUPU Commission 02820

3303/168/96 EL 33/00127

AGRICULTURAL LAND CLASSIFICATION REPORT

OXFORDSHIRE STRUCTURE PLAN WANTAGE ROAD DIDCOT

INTRODUCTION

- This report presents the findings of a reconnaissance Agricultural Land Classification (ALC) survey on approximately 163 hectares of land to the south west of Didcot between the dismantled railway the A34 and Wantage/Didcot Road in Oxfordshire The survey was carried out during December 1996
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the Oxfordshire Structure Plan. The results of this survey supersede any previous ALC information for this land. Land to the north of the site was the subject of a reconnaissance ALC survey (ADAS Ref. 3304/001/96) carried out earlier in 1996. Information from this survey and three smaller detailed surveys (ADAS Refs. 3303/169/93. 3303/149/94. & 3303/221/94) has been used in the grading of the current site.
- The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- At the time of survey the agricultural land on this site was either under permanent grassland or in arable use (winter wheat oil seed rape and maize) The area mapped as Other Land comprises farm and residential buildings a park a road and a track

SUMMARY

- 5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 15 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Table 1 Area of grades and other land

Grade/Other Land	Area (hectares)	/ Total Site Area	% Surveyed Area
2	77 1	47 4	49 3
3า	79 3	48 7	50 7
Other Land	6 3	3 9	
Total Surveyed Area	156 4	96 1	100 0
Total Site Area	162 7	100 0	

- 7 The current fieldwork was conducted at an average density of less than 1 boring every 3 hectares A total of 50 boring and 4 soil pits were described
- 8 All of the agricultural land on this site has been classified as best and most versatile quality Subgrade 3a (good quality) and Grade 2 (very good quality) The key limitations are soil droughtiness and/or soil wetness
- The majority of soils comprise well drained very slightly stony to very stony medium and heavy clay loams or occasionally clays over weathered sandstone bedrock at variable depths. The sandstone was shown to be medium grained and soft thus allowing roots to penetrate it. Despite the rooting depth, however, the amount of moisture held in sandstone is markedly less than in a soil medium. In this locally dry climatic regime, the combination of stony upper subsoils over sandstone bedrock acts to reduce the amount of profile available water for crops. As a result this land is limited to either Subgrade 3a or Grade 2 due to soil droughtiness.

FACTORS INFLUENCING ALC GRADE

Climate

- 10 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)
- The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2 Climatic and altitude data

Factor	Units	Values	Values
Grid reference	N/A	SU 514 887	SU 506 896
Altıtude	m AOD	70	80
Accumulated Temperature	day°C (Jan June)	1441	1429
Average Annual Rainfall	mm	590	587
Field Capacity Days	days	125	124
Moisture Deficit Wheat	mm	114	114
Moisture Deficit Potatoes	mm	109	108

- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However climatic factors can interact with soil properties to influence soil

wetness and droughtiness. At this locality the crop adjusted soil moisture deficits are relatively high thus increasing the likelihood of soil droughtiness restrictions. Conversely the field capacity day values are relatively low thus decreasing the likelihood of soil wetness.

Local climatic factors such as frost risk and exposure are unlikely to adversely affect agricultural land use on this site. The site is climatically Grade 1

Site

- The land on this site slopes very gently from approximately 80m AOD in the north west to just under 65m AOD in the south east
- 17 Gradient microrelief and flooding do not affect land quality in this area

Geology and soils

- 18 The relevant geological sheet (BGS 1971) maps the entire site as Upper Green Sand over Gault Clay
- The most recently published soils information for this area (SSEW 1983) maps the Harwell soil association across all of the site. These soils are described as Well drained loamy soils over sandstone and some similar soils with slight seasonal waterlogging. Shallow stony soils locally. Some slowly permeable seasonally waterlogged fine loamy or fine silty over clayey soils mainly on scarp slopes. Risk of water erosion. (SSEW 1983)
- 20 Detailed field examination broadly confirmed the existence of soils similar to those described above as the Harwell soil association

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Grade 2

Approximately half of the agricultural land on this site has been classified as Grade 2 due to either a minor soil droughtiness or soil wetness and droughtiness limitation. The soil profiles typically comprise stoneless to slightly stony (0.15% medium grained soft sandstone by v/v) medium clay loam topsoils over similarly stony medium or heavy clay loam upper subsoils. At between 50 70cm depth slightly to moderately stony (10.30% MSST) heavy clay loam and clay lower subsoils occur. In general, the profiles become impenetrable to the soil auger between 70.95cm depth. However, information from soil inspection. Pit 3 shows that the soil resource does continue to depth. The lower subsoils are generally comparable in texture and stone content to those horizons above, but they tend to be poorly structured and occasionally slowly permeable at depth (the soils still fall into Wetness Class II., see Appendix

- II) In this locally dry climatic regime the combination of soil textures structures and stone contents slightly depletes the amount of profile available water for crops leading to a minor soil droughtiness limitation. As a result, the level and consistency of crop yields will be slightly reduced
- Some profiles within the Grade 2 mapping unit were found to be deeper and less stony than those described above. These are also limited by soil droughtiness but here the mottled poorly structured slowly permeable subsoils occur at slightly shallower depths (e.g. from 45 75cm depth). This results in a slight drainage impedance consistent with Wetness Class II (Appendix II) as wet soils such as these will slightly inhibit seed germination and growth. This degree of soil wetness in combination with the medium textured topsoils may also lead to slight structural damage through over trafficking by agricultural machinery and grazing livestock. As a result the timing and flexibility of cultivations is slightly restricted. This land is therefore equally limited by soil wetness and soil droughtiness restrictions to Grade 2.
- Occasional borings of either slightly higher or lower quality were also included in this mapping unit where they were too limited in number and extent to map separately

Subgrade 3a

- The remaining agricultural land has been classified as Subgrade 3a mostly due to soil droughtiness. These profiles tend to be similar to the Grade 2 soils described in paragraph 23 above, but they are generally more stony (15.25% medium grained soft sandstone by v/v) from 27.60cm depth, and subsequently become impenetrable at 40.65cm depth. Soil inspection Pits 1 and 2 showed that the stone content increases to 50% for approximately 10cm before the underlying sandstone bedrock begins. The pits also showed that crop roots are able to penetrate this soft sandstone substrate and extract water for an additional 35.55cm depth. However, the amount of available water for crops is distinctly less in sandstone than in a soil medium so these profiles are more drought prone.
- Some of the Subgrade 3a profiles also include poorly structured slowly permeable subsoils from between 38 55cm depth. In this local climatic regime, the resultant drainage impedance leads to a soil wetness limitation consistent with Wetness Class III. Subgrade 3a (Appendix III). These profiles are therefore equally limited by soil wetness and soil droughtiness restrictions. However, where the sandstone is not encountered until lower in the profile soil wetness is the most limiting factor.
- Occasional profiles also contained between 10 15% large sandstone fragments in the topsoil. These large fragments increase the likelihood of damage to farm machinery and crops as well as disrupting the consistency of crop growth. This land is therefore also limited to Subgrade 3a by a topsoil stoniness limitation.
- Again some of the profiles within this mapping unit are of either slightly better or worse quality but they have not been mapped separately as they are too limited in number and extent

Helen Goode Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No 253 Abingdon 1 63360 Series Drift Edition BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
ĭ	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
II	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
III	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
V	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map

Soil abbreviations Explanatory Note

Soil Pit Descriptions

Soil boring descriptions (boring and horizon levels)

Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Conferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Croi	os			

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	$\mathbf{W}\mathbf{D}$	Soil Wetness/Droughtiness
ST	Topsoil Stonine	22			

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	\mathbf{CL}	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR all hard rocks and stones SLST soft oolitic or dolimitic limestone
CH chalk FSST soft fine grained sandstone
ZR soft argillaceous or silty rocks GH gravel with non porous (hard) stones
MSST soft medium grained sandstone GS gravel with porous (soft) stones
SI soft weathered igneous/metamorphic rock

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development WK weakly developed MD moderately developed

ST strongly developed

ped size F fine M medium

C coarse VC very coarse

ped shape S single grain M massive

GR granular AB angular blocky

SAB sub angular blocky PR prismatic

PL platy

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm

EM extremely firm EH extremely hard

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat

APP available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat

MBP moisture balance potatoes

Site Name OXON SP WANTAGE RD DIDCT Pit N mbe 1P

Grid Reference SU51008920 Average Ann al Rainfall 588 mm

Accumulated Temperature 1446 degree days

Field Capacity Level 125 days

Land Use

Slope and Aspect degrees

HOR1	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	25	MCL	10YR42 00	0		1	MSST					
25	52	MZCL	10YR54 00	0		2	MSST		MCSAB	FR	M	
52	65	MZCL	10YR54 00	0		50	MSST				М	
65-	-120	MS\$T	25Y 72 00	0		0					М	

Wetness Grade 1 Wetness Class I
Gleying cm
SPL No SPL

Drought G de 3A APW 107mm MBW 8 mm APP 104mm MBP 5 mm

FINAL ALC GRADE 3A

MAIN LIMITATION Droughtiness

Site Name OXON SP WANTAGE RD DIDCT P t Number 2P

G id Reference SU51008880 Ave age Ann al Rainfall 588 mm

Accumulated Tempe ature 1446 degree days

Field Capacity Level 125 days

Land Use Permanent Grass

Slope and Aspect degrees

HOR!	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH MOTTL	ES STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	27	MCL	10YR42 00	0		1	MSST				
27	40	HCL	25Y 53 00	0		2	MSST	MCSAB	FR	M	
40	52	С	25Y 52 00	0		2	MSST	MCSAB	FM	M	
52	66	С	25Y 52 00	0		50	MSST			M	
66	100	MSST	25Y 72 00	0		0				M	

Wetness Grade 1 Wetness Class I Gleying cm SPL No SPL

Drought Grade 3A APW 100mm MBW 15 mm APP 102mm MBP 7 mm

FINAL ALC GRADE 3A

MAIN LIMITATION Droughtiness

Site Name OXON SP WANTAGE RD DIDCT Pit N mbe 3P

Grid Reference SU51008840 Ave ge A nual Rai f 11 588 mm

Accumulated Tempe ature 1446 degree days

Field Capacity Level 125 days
Land Use Permanent Grass

Slope and Aspect degrees

HORIZON	TEXTURE	COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 28	MCL	10YR42 00	0		0						
28- 58	MZCL	05Y 63 00	0		0			MCSAB	FR	M	
58- 63	MCL,	05Y 53 00	0		2	MSST		MCSAB	FR	M	
63- 82	MCL	05Y 53 00	0		10	MSST		MCSAB	VM	М	
82 100	MCL	05Y 63 00	0		10	MSST		MVCPL	VM	Р	
100 120	HCL.	05Y 63 00	0		10	MSST	C			Р	

Wetness G ade 1 Wetness C1 I Gleying 100 cm

SPL 100 cm

Drought Grade 2 APW 143mm MBW 28 mm

APP 120mm MBP 11 mm

FINAL ALC GRADE 2

MAIN LIMITATION Droughtiness

Site Name OXON SP WANTAGE RD DIDCT Pit Number 4P

Grid Reference SU50808900 Average Annual Rainfall 588 mm

Accumulated Temperature 1446 degree days

Field Capacity Level 125 days

Land Use Permanent G ass

Slope nd Aspect degrees

HORIZON	TEXTURE	COLOUR	STONES	2 TOT STONE	LITH MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 22	MCL	10YR42 00	11	15	MSST				
22 37	MCL.	10YR53 00	0	45	MSST			M	
37 43	HCL	25 Y52 00	0	45	MSST C			М	
43- 55	C	25 Y52 00	0	10	MSST C	STOOAB	FM	Р	
55-100	С	25 Y62 00	0	10	MSST C	STCOAB	FM	Р	
100-110	HCL	25 Y62 00	0	10	MSST C			Р	

Wetness Grade 3A Wetness Class III
Gleying 037 cm

SPL 043 cm

Drought Grade 3A APW 103mm MBW 12 mm

APP 88 mm MBP 21 mm

FINAL ALC GRADE 3A

MAIN LIMITATION Soil Wetness/Droughtiness

SAMP	LE	A	SPECT				-WET!	NESS	WHE	EAT	PO	TS	м	1 REL		EROSA	(F	ROST	CHEM	ALC		
NO.	GRID REF			RDNT	GLEY	SPL		GRADE	AP	MB		MB	DRT		LOOD		EXP	DIŞT			COMMENTS	3
1	SU51008970	SAS			025	038	3	3A	115	0	106	3	3 A						WD	3 A		
1P	SU51008920	ORC					1	1	107	8	104	5	3A						DR	3A	Pit88 Roc	ots120
2	SU50608960	ARA			028	028	3	3A	110	5	102	7	3A						WD	ЗА		
2P	SU51008880	PGR					1	1	100	15	102	7	3A						DR	3 A	Pit66 Roc	ots100
3	SU50808960	ARA			060		1	1	171	56	143	34	1							1		
_		_				_																
	SU51008840				100		1	1	143		120	11							DR		At Boring	42
4	SU51008960				075	-	2	2	134		114	5	_						WD	2		
	SU50808900				037	043	3	3A	103	12		21							MD		T/S ST 34	
5 = c	SU51208960						1	1	87	28		19							DR		I55 See 1	
6	SU50458955	AKA					1	1	102	13	106	3	3 A						DR	2	180 See 3	SP
- 7	SU51308952	DCD					1	1	102	13	108	1	3A						DR	2	I75 See 3	0
– 8	SU50608940				060		1	1	107		114	5							DR DR		175 See 3	
9	SU50808940				040	040	3	ЗА	89	26			3B						WD		170 MSST)F
10	SU51008940				055		1	1	137		116		2						DR	2	170 11001	
11	SU51208940				048		1	-	122		115		2						DR		190 See 3	tp
12													**							_		•
12	SU50628920	STB					1	1	105	10	110	1	3 A						DR	2	180 See 3	JP
13	SU50808920	STB					1	1	108	7	106	3	3 A						DR	2	190 See 3	SP 9
14	SU51008920	ORC			040		1	1	91	24	96	13	3B						DR	3 A	160 See 1	P
15	SU51208920	STB			040	040	3	3A	128	13	105	4	2						WE	3A	See 4P	
16	SU51308923	STB					1	1	80	35	80	29	3B						DR	3 A	150 See 1	P
17	SU50608900				060		1	1	110		112		3A						DR	2	185 See 3	3P
— 18	SU50808900				045		2	2	141		110	1	_						WD		See 4P	
19	SU51008900				050		2	2	117		108		3A						HD	2	195 See 3	3P
20 21	SU51208900 SU50438880				028	V35	3 1	3A 1	130		106		2 2						WE Dr	3A 2	TOE MOOT	
2	3030430000	AKA					'	'	122	'	114	3	2						UK	۷	195 MSST	
22	SU50608880	ΔRΔ			055		1	1	100	15	112	3	3A						DR	2	170 See 3	ID.
23	SU50808880				045	045	2	2	106		107		3A						₩D		185 See 3	
	SU51208882				090		1		137		115	6								3A		
	SU51208880						1	1	90	25		14							DR		160 See 2	P.
26	SU51408880	CER	s c)1			1	1	62	53		47							DR		I40 POSS	
27	SU51608880	PGR					1	1	77	38	77	32	38						DR	3A	I45 QSee	2P
28	SU51808880	PGR	s c)1			1	1	151	36	115	6	2						DR	2		
_	SU52008880						1	1	94	21		10	38						DR	3A	160 See 2	P
30	SU52208875				048	048	2	2	111		109		3A						MD		190 See 3	
31	SU50658863	PGR					1	1	107	-8	114	5	3A						DR	2	175 See 3	IP
	CHEDDOOOCO	D^ D					•	,	110	_	115	_	24						**	_	700 C ^	
	SU50808860				0E0		1		110		115		3A						DR		IBO See 3	
33 34	SU51008860 SU51208860				050 035				115	43	112	3 37	3A						DR		I85 See 3	
35	SU51408860		5 (035 047	Ω 47	2		72 150		72 113	4							DR ₩D	3A 2	I45 QSee	45
	SU51608860		5	, '	V 1	 /	1		137		114	5							DR	2		
~ ~	555,50000	, un					•	•	,			•	-						O.C.	-		
37	SU51808860	PGR	s c)1			1	1	86	29	88	21	38						DR	ЗА	I55 See 1	Р
_	SU51508870								110		113		3A						DR		180 See 3	
•																						

SAMPI	_E	A	SPECT				WET	NESS	WHE	EAT	PC	TS	М	REL	EROSN	FROST	CHEM	ALC		
NO	GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMEN	ITS
39	SU52208860	ΛCD					1	,	105	10	114		3A				00	•	175 0	- 20
							•			-							DR	2	I75 See	· ·
40	SU52388862	OSR			050	050	2	2	114	1	107	2	3A				MD	2	190 See	3P
41	SU50828840	PGR			045	045	2	2	103	12	107	2	3 A				WD	2	180 See	3P
42	SU51008840	PGR					1	1	112	3	114	5	3A				DR	2	I80 Sec	3P
43	SU51208840	PGR					1	1	147	32	116	7	2				DR	2		
44	SU51408840	CER	s	01			1	1	72	43	72	37	38				DR	3 A	145 QSe	e 2P
45	SU51608840	PGR					1	1	99	16	108	1	3A				DR	3 A	I65 See	2P
46	SU51808840	PGR	S	01			1	1	80	35	80	29	38				DR	3 A	I50 See	2P
47	SU52008840	OSR			030	030	3	3A	88	27	97	12	38				MD	3 A	168 Sec	2P
48	SU52208840	OSR					1	1	99	16	108	1	3A				DR	3A	I65 See	2P
49	SU50858828	PGR					1	1	99	16	107	2	3A				DR	ЗА	I65 See	2P
50	SU51218828	CER	s	01	030	030	3	3A	119		117	8	3A				WD	3A	Imp 90	

1				-	MOTTLES	;	PED			STON	ES-	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LI	тн тот	CONSIST	STR P	OR I	IMP SPL CA	LC	
1	0 25	mcl	10YR42 00						0	0 MS	ST 1						
1	25-38	mcl	10YR58 00	10YR5	38 00 C			Y	0	0 MS	ST 5		M			S	oft
	38-110	С	25Y 62 61	10YR6	66 00 C			Y	0	O MS	ST 1		Р		Y	I	(mp MSST
1P	0 25	mc1	10YR42 00						0	O MS	ST 1					A	At Bo ing 14
	25-52	mzcl	10YR54 00						0	0 MS	ST 2	MCSAB F	RM			C	Colouration from
	52 65	mzcl	10YR54 00						0		ST 50		M				weathered S t
	65–120	msst	25Y 72 00						0	0	0		M			7	75% MSST Sieved
2	0 28	mzcl	10YR41 00						1	0 MS	ST 3					F	-1rm
1	28 75	hzcl	25Y 53 00	10YR6	6 00 C			Y	0		ST 2		Ρ		Y	F	R/Imp MSST
	75-100	С	25Y 62 72						0	0 MS	ST 15		М				
2P	0 27	mc1	10YR42 00						0	0 MS	ST 1					N	lear Boring 24
1	27-40	hc1	25Y 53 00						0	0 MS	ST 2	MCSAB F	RM			C	Colouratio in
)	40 52	c	25Y 52 00						0		ST 2	MCSAB F	M M			Н	4 is from the
	52 66	c	25Y 52 00						0		ST 50		M			w	weathered Sst
	66 100	msst	25Y 72 00						0	0	O		M				
3	0 28	fszl	10YR42 00						0	O MS	ST 2						
l	28 60	fszl	10YR52 62						0	0 MS			M				
	60 110	mc1	25Y 72 00	10YR6	58 00 C			Y	0	0 MS	ST 1		М			S	Soft/Imp Stony
3P	0 28	mcl	10YR42 00						0	0	0					A	At Boring 42
	28 58	mzcl	05Y 63 00						0	0	0		RM				Colou tion i
	58-63	mc1	05Y 53 00						0	0 MS			RM				12 5 is from the
	63-82	mcl	05Y 53 00						0		ST 10		MM				meathered Sst
	82 100 100 120	mcl hcl	05Y 63 00 05Y 63 00	10YR	58 00 C			Υ	0		ST 10 ST 10	MVCPL \	/M P P		Y	V	/ Dry/Hard
7	100 120																
1 4	0 25	mcl	10YR43 00						0		ST 2						
	25-48	hc1	10YR53 00						0	0 MS			M			_	
ļ	48 75	C	25Y 63 00					.,	0	0 MS			M		.,		riable
l	75-120	С	25Y 62 00	TOYR	56 00 C			Y	υ	0 MS	S1 1		Р		Y	۴	irm
4P	0 22	mcl	10YR42 00						11		ST 15						At Bo ing 18
	22 37	mc]	10YR53 00						0		ST 45		M				Colou at on in
	37 43	hcl	25 Y52 00					Y	0		ST 45	CTCC+0 F	M		.,		12 3 i from the
J	43 55	С	25 Y52 00				35 VC1 1	Υ	0			STOOAB F		Y	Y	₩	reathered Sst
	55-100 100 110		25 Y62 00 25 Y62 00			4	25 Y61 (Y	0		ST 10 ST 10	STCOAB F	т Р	Y	Y Y	I	Imp MSST 110
																	•
5	0 25	mcl	10YR43 00						_	0 MS							
1	25-50	mc]	10YR53 00						0				M				MOOT
	50 55	mcl	25Y 52 00						0	UMS	\$T 15		М			I	Imp MSST
6	0 30	mcl	10YR41 00						8	0 MS	ST 10						
)	30 70	hc1	25Y 53 00						0	0 MS	ST 15		M			F	iable
i	70-80	С	25Y 62 72						0	0 MS	ST 20		М			I	Imp MSST
-																	

				_	MOTTLES		PED			STONES		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT		GLEY	2	6 LITH	TOT	CONSIST	STR POR	IMP SP	L CALC	
7	0 28	mcl	10YR53 00						0							=
	28 55	hcl	25Y 62 00							0 MSST			M			V Fri ble
	55-75	hc1	25Y 72 00						U	0 MSST	15		M			VF/Imp MSST
8	0 30	mcl	10YR42 00						1	0 MSST	3					
-	30 60	hc1	25Y 52 00							0 MSST			м			Soft
	60 75	hc1	25Y 62 72	10YR6	8 00 C			Y		0 MSST			M			FR/Imp MSST
9	0 28	mcl	10YR42 00							0 MSST						
	28-40	hc1	25Y 52 00							0 MSST			М			Friable
	40 70	zc	25Y 62 00	10YR6	8 00 C			Y	0	0 MSST	10		P	Y		Imp MSST
10	0 28	mc1	10YR42 00						0	0 MSST	2					
	28-55	hc1	25Y 52 72						0	0 MSST			м			
	55-80	С	25Y 52 72	10YR6	8 00 C			Υ	0	0	0		М			Friable
	80 90	c	25Y 62 72	10YR6	8 00 C			Y	0	0	0		P	Y		Firm
	90 120	С	25Y 73 00	10YR6	8 00 C			Y	0	0	0		P	γ		Firm
		_							_		_					
11	0 30	mc]	10YR43 00							0 MSST						
	30-48 48 78	mcl bel	10YR54 00 10YR52 00					Y		0 MSST 0 MSST			М			FR Not SPL
	78 90	hcl mcl	25Y 62 00	IUTKS	6 00 C			Ť		0 MSST			M M			Imp MSST
	70 30	116.1	231 02 00						Ŭ	0 1001	13		••			1mp 1801
12	0 30	mc1	10YR42 00						0	0 MSST	2					
	30 50	hc1	10YR53 00						0	0 MSST	2		М			Soft
	50 80	С	25Y 62 00						0	0 MSST	2		Р	Y		Imp MSST
		_							_							
13	0 28	mc3	10YR42 00							0 MSST						
	28 70 70 90	hc1 c	10YR53 00 25Y 62 72							0 MSST 0 MSST			M M			FR/Imp MSST
	70 30	•	231 02 12						٠	0 1001	50		••			r Ry Imp 1831
14	0 30	mcl	10YR41 00						0	0 MSST	1					
	30-40	mcl	10YR53 00						0	0 MSST	10		M			
	40-60	mcl	10YR63 00	10YR5	8 00 C			Y	0	0 MSST	15		M			Imp MSST
		_							_							
15	0 28	mcl	10YR42 00							0 MSST						F.1.63.
	28 40 40 85	mc1 c	25Y 63 00 25Y 63 00	10VD6	B 00 C			Υ		0 MSST 0 MSST			M P	Y		Friable Firm
	85-120		25Y 73 00					Y		0 MSST			P	Y		r itui
	55 .55		20. ,0 00					•	•				•	•		
16	0 30	mcl	10YR52 00							0 MSST						
	30-40	mcl	10YR52 62							0 MSST			М			
	40 50	mcl	10YR62 00						0	0 MSST	15		М			Imp MSST
17	0 30	mcl	10YR42 00						n	0 MSST	2					
.,	30 60	hal	25Y 53 00							0 MSST			м			Soft
	60 70	c	25Y 62 00	10YR6	6 00 C			Υ		0 MSST			P			
	70 85	c	25Y 62 72		· - -			Y		0 MSST			М			VF/Imp MSST

					MOTTLES	;	PED			STONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT	COL.	GLEY	2			-		IMP SPL CALO	;
_															
18	0 25	mcl	10YR42 00						0	0 MSST					
	25-45	നമി	10YR53 00						0	0 MSST			М		
	45-75	С	25Y 52 00					Y	0	0 MSST			Р	Y	Firm
	75–95	С	25Y 62 00	10YR6	6 00 C			Y	0	0 MSST			Р	Y	V Firm
	95–120	hc1	25Y 62 72					Y	0	0 MSST	5		Р	Y	Soft
		-	10/040 00						^	A MCCT	2				
19	0 30	mcl	10YR42 00							0 MSST					
	30 50	mc1	25Y 62 00	10006	5 00 C			Y		0 MSST			M P	Y	Firm
_	50 90	C bal	25Y 72 00 25Y 72 00					Y		0 MSST			M	,	FR/Imp MSST
-	90 95	hcl	231 /2 00	IUTKO	0 00 C			T	Ü	0 15531	13		11		FR/ Imp 1651
20	0 28	mc1	10YR42 00						2	0 MSST	5				
_	28 55	hcl	25Y 62 00	10YR56	8 00 C			Y	0	0 MSST	15		М		Friable
-		С	25Y 62 00	10YR5	8 00 C			Υ	0	0 MSST	1		Р	Y	Firm
	105 120	С	25Y 72 00					Y	0	0 MSST	1		М		Fiable
21	0 35	mc1	10YR42 00						0	0 MSST					
	35 58	hcl	25Y 53 00						0	0 MSST			М		Soft
	58 80	hcl	25Y 52 00						0	0 MSST			М		Friable
_	80 95	С	25Y 62 72						0	0 MSST	25		М		VF/Imp MSST
22	0 30	mc1	10YR42 00						0	O HR	2				
	30 55	hc1	25Y 52 00						•	0 MSST			м		Soft
_	55 70	c	25Y 62 72	10YR6	8 00 C			Y	0	0 MSST			M		FR/Imp MSST
															·
23	0 30	mcl	10YR42 00						0	0 MSST	2				
_	30 45	mc1	10YR53 00						0	0 MSST	2		М		V Soft
	45-60	hc1	25Y 62 00					Y		0 MSST			P	Y	Firm
	60 85	С	25Y 62 72	10YR6	6 00 C			Y	0	0 MSST	20		М		FR/Imp MSST
24	0 30	1	10YR42 00						0	0 MSST	1				
24	30 50	mcl mcl	25Y 52 00						0	0 MSST			м		
	50 60	hc1	25Y 52 00										н		Soft
	60 90	c	25Y 62 00							0 MSST			н		Friable
	90 120		25Y 62 00	10YR6	6 00 C			Y	0	0 MSST			Р	Y	Firm
25	0 32	mcl	10YR42 00						0	0 MSST	5				
	32 55	hc1	25Y 62 00							0 MSST			М		
6	55-60	hcl	25Y 62 00						0	0 MSST	35		Р		FR/Imp MSST
26	0 27	mcl	10YR43 00						2	0 MSST	А				
20	27 40	mc1	25 Y63 00							0 MSST			М		Imp MSST
•	L/ 40		25 105 00						•						3000
27	0 35	mc1	10YR42 00						0	0 MSST	2				
	35 45	hc1	25Y 53 00						0	0 MSST	5		М		Imp MSST
		_							^	0	_				
28	0 30	mcl	10YR42 00							0 MSST					
	30 45 45 130	mcî bel	25 Y52 00							0 MSST 0 MSST			M M		
	45-120	NC 1	25 Y53 00						U	v maai	3		П		

				_	MOTTLES		PED			STONES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	CΩL	ABUN	CONT	COL	GLEY	1 2	6 LITH	TOT	CONSIST	STR POR	IMP SPL CALC	
29	0 25	mc1	10YR42 00						٥	0 MSST	1				
23	25-55	mcl	10YR53 00							0 MSST			М		V Soft
	55 60	hc1	25Y 62 00						0	0 MSST			M		Imp MSST
	33 00	(IC)	231 02 00						·	0 1801	,,,		''		Imp 1001
30	0 30	mcl	10YR43 00						0	0 MSST	2				
	30-48	hcl	25Y 53 00						0	0 MSST	2		M		V Soft
	48-65	c	25Y 62 00	10YR5	8 00 C	(COMPLOC	00 Y	0	0 MSST	5		P	Y	Firm
	65-90	С	25Y 62 72					Υ	0	0 MSST	20		M	Y	FR/Imp MSST
31	0 30	mcl	10YR42 00						0	0 MSST	2				
	30 65	hc1	25Y 53 00						0	0 MSST	5		M		Soft
	65–75	hc1	25Y 62 72						0	0 MSST	20		M		FR/Imp MSST
32	0 30	mcl	10YR41 00						_	0 MSST					
	30 70	hcl	25Y 62 00						0	0 MSST			M		Friable
	70 80	С	25Y 62 72						0	0 MSST	20		М		VF/Imp MSST
33	0 28	mcl	10YR42 00						0	0 MSST	2				
33	28-50	mc1	25Y 52 00						0	0 MSST			М		Soft
	50-85	hc1	25Y 62 72	10VR6	6 00 C			Y	-	0 MSST			 M		Friable
	∞ -03	16.1	231 02 72	10110	0 00 0			•		0 1.001			••		111210
34	0 35	mcl	10YR42 00						0	0 MSST	5				
	35-45	hc1	25Y 62 00	10YR5	8 00 C			Y	0	0 MSST	35		М		FR/Imp MSST
35	0 27	mcl	25 Y42 00						0	0 MSST	1				
	27-47	mcl	25 Y52 00	10YR6	6 00 F				0	0 MSST	1		M		
	47 120	hcl	25 Y52 00	10YR6	6 00 C	;	25 Y72	00 Y	0	0 MSST	1		Р	Y	
36	0 30	mcl	10YR42 00						0	0 MSST					
	30 55	h¢l	25Y 52 00						0	0 MSST			М		
	55-105		25Y 63 00						0	0 MSST			M		
	105-120	С	05 Y72 00						0	0 MSST	2		М		
37	0 30	1	10YR52 00						0	0 MSST	5				
3/	30 55	mc]	25 Y52 00						0	0 MSST			М		Imp MSST
	30 33	1101	25 152 00						·	0 1.001					1mp 1001
38	0 30	mcl	10YR42 00						0	0 MSST	2				
	30 60	hc1	25Y 52 00						0	0 MSST			М		
	60-80	hcl	25Y 62 72						0	0 MSST			M		Imp MSST
39	0 30	mcl	10YR42 00						0	0 MSST					
	30 60	hc1	10YR54 00						0	0 MSST			М		Gla co itic
	60 75	c	25Y 62 72						0	0 MSST	20		M		FR/Imp MSST
		_							_	o 1-00-	_				
40	0 30	mcl	10YR42 00						0	0 MSST					0.5
	30 50	hc1	25Y 53 00	35.40	0 00 0				0	0 MSST			M	u	Soft
	50 75	hc1	25Y 52 00					Y		0 MSST			P	Y	Firm
	75 90	hcl	25Y 62 00	/5YR5	S OO C			Y	0	0 MSST	15		M	Y	V Soft/ImpMSST

				-	MOTTLES	;	PED			STONES	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLEY	2					IMP SPL CALC	
41	0 30	mcl	10YR42 00						0	0 MSS	2				
	30-45	hc1	25Y 52 00						0	0 MSS	Г 2		М		Soft
	45-65	hc1	25Y 62 00	10YR6	8 00 C			Y	0	0 MSS	Г 2		Р	Y	Firm
	65-80	С	25Y 62 72					Y	0	0 MSS	r 20		М		Imp MSST
42	0 28	mcl	10YR42 00						0	0 MSST	Г 2				
_	28 60	mcl	25Y 52 00						0	0 MSS	Γ 2		M		Soft
	60 80	hc1	25Y 62 72						D	O MSS	15		М		FR/Imp MSST
43	0 28	mc1	10YR42 00						0	0 MSS	7 2				
	28-48	hc1	25Y 62 00						0	0 MSS	1		M		
J	48-85	hc1	25Y 62 00						0	0 MSS1			M		Soft
	85 120	С	25Y 72 00						0	0 MSS	Γ 1		M		friable
44	0 28	mcl	25 Y42 00							0 MSS					
_	28 45	h¢1	25 Y52 00						0	0 MSS1	20		M		Imp MSST
-															
45	0 28	mcl	10YR42 00						0	0 MSS1					
-	28-47	hc1	25Y 52 00						0	0 MSS1			M		
_	47 65	hcl	25Y 64 00						0	0 MSS1	1		M		Imp MSST
									_						
46	0 30	fszl	10YR42 00							0 MSST					PSD
	30 45	mcl	25 Y52 00							0 MSST			M		T MOOT
	45-50	hc1	25 Y52 42						U	0 MSS1	20		М		Imp MSST
47	0 30	mc1	10YR42 00						2	0 MSS1					
47	30 60	hcl	25Y 52 00	10705	8 nn c			Υ		0 MSS1			Р	Y	Firm
	60 68	hcl	25Y 62 72	TOTAG	000			Y		0 MSST			и	Y	Imp MSST
	00 00	1,21	20. 02 .2					•	•	0 1.00			••	•	THIP FROM
_ 48	0 35	mcl	10YR42 00						۵	O MSST	. 2				
•	35-50	hc1	25Y 53 00						0	0 MSST			M		
	50 60	hcl	25Y 62 00						0	O MSST			M		
•	60 65	hc1	25Y 62 72						0	O MSST			М		V FR/Imp MSST
_															
49	0 30	mcl	10YR42 00						0	0 MSST	. 2				
	30 60	hc1	25Y 52 00						0	0 MSS1	2		М		Soft
_	60 65	hc1	25Y 62 72						0	0 MSS1	15		M		Imp MSST
50	0 30	mcl	10YR42 00							0 MSST					
	30 70	c	25 Y53 00					Y		0 MSST			Р	Y	Firm
1	70-80	mc1	25 Y63 00					Y		0 MSST			M		Q Weathered SST
	80 90	С	25 Y\$4 00	10YR60	6 00 C			Y	0	0 MSST	5		P	Y	Imp MSST