4206-2-97

A1

Land South of Sayers Common West Sussex Structure Plan

Agricultural Land Classification Reconnaissance survey ALC map report January 1997

Ministry of Agriculture Fisheries and Food

A1

Land South of Sayers Common West Sussex Structure Plan

Agricultural Land Classification January 1997

Resource Planning Team Guildford Statutory Group ADAS Reading

 ADAS Reference
 4206/002/97

 MAFF Reference
 EL 42/00768

 LUPU Commission
 02997

AGRICULTURAL LAND CLASSIFICATION REPORT

LAND SOUTH OF SAYERS COMMON, WEST SUSSEX STRUCTURE PLAN

INTRODUCTION

1 This report presents the findings of a reconnaissance Agricultural Land Classification (ALC) survey of 23.3 hectares of land on the southern edge of Sayers Common in West Sussex The survey was carried out during January 1997

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food s (MAFF) Land Use Planning Unit in Reading in connection with its statutory input to the West Sussex Structure Plan This survey supersedes previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group in ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the site was mostly grassland with one ploughed bare field The areas mapped as Other include woodland farm buildings houses and roads

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 20 000 it is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	% surveyed area	% site area
3b	12	63	5 2
4	177	93 7	76 0
Other land	4 4	N/A	18 8
Total surveyed area	189	100	81 1
Total site area	23 3		100

Table 1	Area of grades and other land	
---------	-------------------------------	--

7 The fieldwork was conducted at an average density of 1 boring per 3 hectares of agricultural land A total of 6 borings and 1 soil pit was described

8 The majority of the agricultural area has been classified as Grade 4 (poor quality) with a small area of Subgrade 3b (moderate quality) in the north west Soil wetness is the main limitation across the site related to clay topsoils overlying poorly structured clay subsoils that significantly restrict the drainage of the profiles The differentiation between the two grades relates to the improvement of the climate on the lower land to the west and north, which is slightly drier than elsewhere on the site. In these better areas the impact of soil wetness is less severe in terms of the restriction on the flexibility of the land (related to the number of days when the soils can be cultivated or grazed by livestock) and the types of crop that are suitable to such conditions

FACTORS INFLUENCING ALC GRADE

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values								
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m, AOD day°C (Jan June) mm days mm mm	TQ277178 25 1506 826 175 109 103	TQ276176 24 1507 829 176 109 104	TQ278179 30 1500 826 176 108 103						
Overall climatic grade	N/A	1	1	1						

Table 2 Climatic and altitude data

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

13 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. There are also no significant local factors such as exposure or frost risk affecting the area. The site however straddles the important 175 day field capacity level and this has implications for assessing the impact of soil wetness and the workability of the land Only a small area in the north-west of the site lies at or below 175 FC days

Site

14 The site mostly occupies gently sloping west facing land or flatter crest tops between approximately 20-35 metres In the extreme south there is a limited area of steep gradients

(in the Grade 4 range) probably related to previous disturbance Microrelief and flooding do not affect the site

Geology and soils

15 The most detailed published geological information for the site (BGS 1978) shows the majority of the area to be underlain by Weald Clay with a minor fringe of Head deposits along the eastern edge

16 The most detailed published soils information for the site (SSEW 1983 and 1984) shows the whole area to comprise soils of the Wickham 1 Association These are generally described as slowly permeable seasonally waterlogged fine silty over clayey fine loamy over clayey and clayey soils During the fieldwork, clays over clays were found to be the typical soil on the site

AGRICULTURAL LAND CLASSIFICATION

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Subgrade 3b

A small area of this subgrade occurs in the north-west of the site The soil pit for the site (Pit 1 see Appendix II) is located in this map unit and describes a clay topsoil and subsoil with a significant soil wetness limitation The soils are gleyed from approximately 25 cm and the subsoil is slowly permeable (with a structure described as moderately developed coarse angular blocky but tending to massive) and fall into Wetness Class IV This degree of soil wetness in combination with the prevailing field capacity level at this point (175 days) means that the land is limited to Subgrade 3b

Grade 4

The rest of the site fails into this lower grade The soils are similar to those described above but are downgraded due to the fact that the rest of the site is somewhat higher and crosses an important field capacity day threshold The soils still fall into Wetness Class IV but their workability is reduced (i e there will be fewer days when the soil is in a suitable condition for cultivation, trafficking by machinery or grazing by livestock) because the climate is marginally wetter There may also have been some previous disturbance on the south eastern field and this in combination with the presence of one area of Grade 4 slopes reinforces Grade 4 as the appropriate grade for this area

> DE Black Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1978) Sheet No 318/33 Brighton and Worthing BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 South East England SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals, grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set-Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, 'Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

S LS Loamy Sand SL Sand Sandy Loam Clay Loam SZL Sandy Silt Loam CL ZCL Silty Clay Loam Silt Loam SCL Sandy Clay Loam ZL С Clay SC Sandy Clay ZC Silty Clay OL Organic Loam Loamy Peat SP Sandy Peat LP Р Peat PL Peaty Loam PS Peaty Sand MZ Marine Light Silts

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation

6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear

7 STONE LITH Stone Lithology - one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft, argillaceous or silty rocks	СН	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	sıngle graın granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extrem	ely firm	EH extremely	hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

SOIL PIT DESCRIPTION

		Site Name		ND SE	SAYERS	COMMO	N	Pit	Number	- 1	P								
		Grid Refe	rence	TQ21	5701780		-	nnual Ra ed Tempe			6 mm 6 d eg re	o dave							
-								acity Le			days	e uays							
							nd Use	actoy Le		Ley	Jays								
•								Aspect		-	degrees	W							
_							•				-								
		HORIZON	TEXT	URE	COLOU	R S	TONES	>2 TOT	STONE	LITH	MOTTLE	S STRU	ICTURE	CONSIST	SUBS	TRUCTU	RE CA	ALC	
		0- 25	С		10YR42	00	0		0										
		25- 60	С		25Y 62	00	0		0		м	MCA	AB	FM		Ρ			
							_	_											
		Wetness G	rade	3B			ness C	lass	IV										
							ying		025										
						SPL			025	cm									
		Description C		34		A DL	1 002	mm MDL	6	·									
		Drought G	rade	3A						i3 mm 5 mm									
		Drought G	rade	3A		AP AP				53 mm 5 mm									
		_			R														
		FINAL ALC	GRAD	E 3															
		_	GRAD	E 3	B etness														
		FINAL ALC MAIN LIMI	GRAD	E 3		APF	9 088 9	mm MBP	-1	5 mm	/97 LA	ND SE S	SAYERS (COMMON					page 1
		FINAL ALC	GRAD	E 3		APF	9 088 9		-1 EADERS	5 mm 6 28/01	/97 LA		SAYERS	COMMON					page 1
		FINAL ALC MAIN LIMI	GRAD	E 3		APF	9 088 9	mm MBP	-1 EADERS	5 mm 6 28/01			SAYERS	COMMON					page 1
		FINAL ALC MAIN LIMI am ALCO12	GRAD	E 3	etness	APF	088 St of B	mm MBP	-1 EADERS	5 mm 6 28/01		······	SAYERS (COMMON EROSN	FROS	тС	HEM	AL	
	ogra 1PLE	FINAL ALC MAIN LIMI am ALCO12	GRAD TATIO	E 3	etness		9 088 57 OF B 	ann MBP ORINGS H	EADERS	5 mm 6 28/01	 POTS-	······		EROSN		T C DIST	Hem Lim		
SAN	ogra 1PLE	FINAL ALC MAIN LIMI am ALCO12	GRAD TATIO	E 3	etness		9 088 57 OF B 	mm MBP ORINGS H 	EADERS	5 mm 6 28/01 	 POTS-	м	REL	EROSN					c
SAN NO	ogra 1PLE	FINAL ALC MAIN LIMI am ALCO12	GRAD TATIO A USE	e 3 N W SPECT	etness GRDNT		D 088 ST OF B 	mm MBP ORINGS H 	EADERS	5 mm 5 28/01 MB A	 POTS-	м	REL	EROSN				IT	C COMMENTS
SAN NO	ogra 1PLE 1PTT	FINAL ALC MAIN LIMI am ALCO12 E GRID REF	GRAD TATIO	e 3 N W SPECT	etness GRDNT 02	APF LIS 	088 GT OF B W SPL CLA 25 4	mm MBP ORINGS H HETNESS SS GRADE	-1 EADERS WHE AP	5 mm 6 28/01 MB A 63 08	POTS- P MB	M DRT 3A	REL	EROSN			LIM	IT 38	C COMMENTS
SAN	ogra MPLE 1P T 2 T	FINAL ALC MAIN LIMI am ALCO12 E GRID REF TQ26701780	GRAD TATIO	e 3 N W SPECT W	etness GRDNT 02	AP LIS GLEY S 025 02	088 57 OF B W SPL CLA 25 4 25 4	mm MBP ORINGS F HETNESS SS GRADE 3B	-1 EADERS WHE AP 082	5 mm 6 28/01 MB A 63 08	POTS- P MB 8 -15 7 -16	M DRT 3A 3A	REL	EROSN			LIM WE	IT 3B 4	C COMMENTS 175FCD SPL
SAN	ogra 1PLE 1PT 2T 5T	FINAL ALC MAIN LIMI am ALCO12 E GRID REF TQ26701780 TQ26901800	GRAD TATIO USE LEY PLO PGR	e 3 N W SPECT W	GRDNT 02 03	APF LIS GLEY S 025 02 025 02	088 57 OF B W 5PL CLA 25 4 25 4 25 4	orings f Orings f Hetness SS grade 3B 4	1 EADERS 	5 mm 5 28/01 5 AT MB A 63 08 62 08	POTS- P MB 8 -15 7 -16 8 -15	M DRT 3A 3A 3A 3A	REL	EROSN			LIM WE WE	IT 38 4 38	C COMMENTS 175FCD SPL
SAN NO	ogra 1PLE 1PT 2 5 7 3 7	FINAL ALC MAIN LIMI am ALCO12 GRID REF TQ267017800 TQ26901800 TQ26701780	GRAD TATIO USE LEY PLO PGR ARA	e 3 N H SPECT W	etness GRDNT 02 03	APF LIS GLEY S 025 02 025 02 025 02	0 088 57 OF B W 5PL CLA 25 4 25 4 25 4 25 4	mm MBP ORINGS H HETNESS SS GRADE 3B 4 3B	EADERS	5 mm 5 28/01 MB A 63 08 62 08 63 08 63 08	POTS- P MB 8 -15 7 -16 8 -15 0 -13	M DRT 3A 3A 3A 3A 3A	REL	EROSN			LIM WE WE WE	IT 3B 4 3B 4	C COMMENTS 175FCD SPL 175 FCD
SAN NO	ogra 1PLE 1PT 2 5 7 3 7	FINAL ALC MAIN LIMI am ALCO12 GRID REF 1026701780 1026701780 1026901800	GRAD TATIO USE LEY PLO PGR ARA	e 3 N H SPECT W	etness GRDNT 02 03	APF LIS GLEY S 025 02 025 02 025 02	0 088 57 OF B W 5PL CLA 25 4 25 4 25 4 25 4	mm MBP ORINGS H SS GRADE 3B 4 3B 4 3B 4	1 EADERS 	5 mm 5 28/01 5 AT MB A 63 08 62 08 63 08 63 08 63 08 63 08	POTS- P MB 8 -15 7 -16 8 -15 0 -13	M DRT 3A 3A 3A 3A 3A	REL	EROSN			LIM WE WE WE	IT 3B 4 3B 4	C COMMENTS 175FCD SPL 175 FCD SPL
SAN NO 2 4 4 4 4 4 12 12	99ra 1PLE 1PT 2 5 5 5 7 3 7 1 1 7 3 7	FINAL ALC MAIN LIMI am ALCO12 GRID REF 1026701780 1026701780 1026901800	GRAD TATIO USE LEY PLO PGR PGR	E 31 N H SPECT W W	GRDNT 02 03 02	APF LIS GLEY S 025 02 025 02 025 02	0 088 GT OF B W SPL CLA 25 4 25 4 25 4 25 4 25 4 25 4 25 4	mm MBP ORINGS H SS GRADE 3B 4 3B 4 3B 4	1 EADERS 	5 mm 28/01 AT MB A 63 08 62 08 63 08 63 08 63 08 59 07	POTS- P MB 8 -15 7 -16 8 -15 0 -13	M DRT 3A 3A 3A 3A 3A 3A 3A 3A	REL	EROSN			LIM WE WE WE	IT 3B 4 3B 4 4 4	C COMMENTS 175FCD SPL 175 FCD SPL

program ALCO11

COMPLETE LIST OF PROFILES 20/01/97 LAND SE SAYERS COMMON

SAMPLE	DEPTH	TEXTURE	COLOUR	• ! COL	NOTTLES ABUN	CONT		GLEY		-	. –		STRUCT/				IMP	SPL	CALC
1P	0-25 25-60	c c	10YR42 00 25Y 62 00	75yr68	3 00 M		OOMNOO	00 Y	0 0	0 0		0 0	мсав	FM	P			Ŷ	
2	0-25 25-60	c c	10YR42 00 25Y 52 00	000000	00 M			Ŷ	-		HR	2 0			Ρ	Y		Y	
6	0-25 25-60	c c	25 Y44 00 25 Y54 00	10YR58	3 00 M			Ŷ	-	0 0		0 0			Ρ	Y		Y	
8	0-25 25-60	hc1 c	10YR42 00 25Y 63 00	000000	00 M			Ŷ	-	0 0	HR	2 0			Ρ	Y		Y	
■ 14	0-25 25-60	c c	10YR42 00 25Y 62 00	000000	0 00 M			Y	-	0 0		0 0			Ρ	Y		Y	
1 8	0-25 25-50	hcì c	10YR42 00 25Y 62 00					Y Y	-	0 0		0 0			Ρ	Y		Y	
24	0-25 25-60	c c	10YR42 00 (25Y 62 00 (Y Y	0 0	0 0		0 0			P	Y		Y	

page 1