AGRICULTURAL LAND CLASSIFICATION REPORT.

HAMPSHIRE STRUCTURE PLAN REVIEW LAND NORTH OF THE M27, BISHOPSTOKE TO WEST END RECONNAISSANCE SURVEY

1. Summary

1.1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of 'areas of search' in connection with MAFF's input to the Hampshire Structure Plan Review.
1.2 Land to the north of the M27 at Eastleigh comprises approximately 782 hectares of land bounded by Eastleigh, West End, Hedge End, Horton Heath, Fair Oak and Bishopstoke. An Agricultural Land Classification (ALC) survey was carried out during January 1995. The survey was completed at a reconnaissance level of detail on a 'free' survey basis. The primary purpose of the survey was to update the $\mathrm{I}: 63,360$ scale provisional ALC maps for the area of search. Consequently the results are designed for strategic planning purposes only. For site specific proposals, further more detailed surveys may be required. A total of 100 borings and two soil inspection pits were assessed in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long-term limitations on its use for agriculture.
1.3 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS.
1.4 At the time of the survey the majority of the agricultural land was under permanent grassland. Areas of cereal and maize stubble were also observed on the site. Areas marked as urban include a Royal Navy depot, tarmac roads and private dwellings. Unmanaged scrubland and woodland is shown as Non-agricultural. Some areas of the site remain unsurveyed due to difficulties in obtaining access in order to carry out the survey
1.5 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in Table 1. The map has been drawn at a scale of $1: 50,000$. It is accurate at this scale, but any enlargement would be misleading.
1.6 Appendix I gives a general description of the grades, subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur, the typical cropping range and the expected level and consistency of yield.

Table 1 : Distribution of Grades and Subgrades

Grade	Area (ha)	\% of Site	\% of Agricultural Land
3a	166	21.2	
3b	455	58.2	25.5
4	31	4.0	69.8
Urban	44	5.6	$\underline{4.7}$
Non-Agricultural	10	1.3	100% (652 ha.)
Not surveyed	$\underline{76}$	$\underline{9.7}$	
Total area of Site	$\mathbf{7 8 2}$	$\mathbf{1 0 0 \%}$	

1.7 The principal limitation upon quality for the majority of the agricultural land within this 'area of search' tends to be soil wetness. Areas of poor quality land showing a severe wetness limitation, exhibiting signs of being waterlogged for long periods, have been mapped as Grade 4. Moderate quality Subgrade 3 b land is mapped on the lower parts of the area where heavy or medium textured topsoils overlie slowly permeable clay subsoils at relatively shallow depths. These shallow clay subsoils significantly impede drainage such that a classification of Subgrade 3 b is appropriate. Where the clays occur deeper in the profile or topsoils comprise lighter and sandier textures, the wetness limitation is less severe, such that land can be classified as better quality Subgrade 3a.
On the higher land soils tend to be more freely draining, comprising lighter and sandier textured topsoils and subsoils which are occasionally stony. These soils show some restriction upon profile available water, which can affect the level and consistency of crop yields. At this scale of mapping, an overall classification of Subgrade 3a is appropriate for land exhibiting this droughtiness limitation.

2. Climate

2.1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe climatic limitations will restrict land to low grades irrespective of favourable site or soil conditions.
2.2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall, as a measure of overall wetness, and accumulated temperature as a measure of the relative warmth of a locality.
2.3 A detailed assessment of the prevailing climate was made by interpolation from a 5 km gridpoint dataset (Met. Office 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site.
2.4 However, climatic factors do interact with soil factors to influence soil wetness and droughtiness limitations.
2.5 No local climatic factors such as exposure or frost risk are believed to affect the site.

Table 2 : Climatic Interpolations

Grid Reference	SU478177	SU476164	SU490160
Altitude (m)	15	20	35
Accumulated Temperature	1536	1533	1514
(Day ${ }^{\circ}$ C, Jan-June)			
Average Annual Rainfall (mm)	802	786	830
Field Capacity (days)	169	162	171
Moisture Deficit, Wheat (mm)	110	113	106
Moisture Deficit, Potatoes (mm)	104	108	100
Overall Climatic Grade	1	1	1

3. Relief

3.1 Land within the 'area of search' lies at an altitude of approximately $15-35 \mathrm{~m}$. AOD. The land tends to be gently undulating in parts, although notably flat around Chalcroft Farm and Little Moorgreen Farm.
3.2 Nowhere on the site do gradient or relief pose any limitation upon agricultural use.

4. Geology and Soils

4.1 The published geological information (BGS, 1973) shows the majority of the site to be underlain by Bracklesham Beds, comprising glauconitic sand and clay. Alluvium is mapped along a tributary of the River Itchen which runs across the site. A small area of Bagshot Sands with pebbles is mapped in the far northern tip of the site.
4.2 The published Soil Survey map (SSEW, 1983) shows three soil types across the site. The majority of the site is mapped as soils of the Wickham 3 and Wickham 4 associations. Wickham 3 soils are described as 'slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils, and similar more permeable soils with slight waterlogging'. Wickham 4 soils are described as 'slowly permeable seasonally waterlogged fine loamy over clayey and fine silty over clayey soils associated with similar clayey soils' (SSEW, 1983). Towards the south of the site a small area of soils of the Frilford association are mapped. These are described as 'deep well drained sandy and coarse loamy soils. Some ferruginous sandy and some coarse loamy soils affected by groundwater' (SSEW, 1983).
4.3 The site is also covered by a more detailed soil survey carried out by the Soil Survey and Land Research Centre in 1989 at a $1: 10,000$ scale of survey. Within the 'area of search', 19 different soil series were identified in the 1989 survey. This map was used to some extent for the land classification survey, yet to describe all of the identified soil series in this report would not be appropriate.
4.4 Field examination for the purposes of land classification found three broad soil types. The majority of the site comprises poorly drained loamy soils with clay subsoils, being prevalent on the lowlying flatter land. Towards the south-west of the site, sandier textured topsoils were found to overlie poorly drained clay subsoils, these clays being occasionally interbedded with sands. On the higher ground towards the north and east of the site, more
free draining coarse textured sandy soils were observed, sometimes showing evidence of stonier subsoils.

5. Agricultural Land Classification

5.1 The location of the soil observation points are shown on the attached sample point map.

Subgrade 3a

5.2 A number of areas of agricultural land on the site have been classified as Subgrade 3a, good quality land, with soil droughtiness and wetness as the main limitations.
5.3 On the higher ground, principally towards the north-east and south-east of the site, soil droughtiness tends to be the main limitation. Coarser textured sandier soils tend to dominate within these areas. Topsoils tend to be more sandy, commonly comprising medium sandy loams, with coarse textures such as loamy medium sand and some sandy clay loams prevailing in the subsoils. However, the banded sand and clay nature of the geology means that some more loamy textures were occasionally observed in the subsoils. A soil inspection pit (pit no.1) was dug in the northern tip of the site. At this location, a slightly stony (10% total flints v / v) medium sandy loam topsoil was found to overlie a slightly stony (10% total flints v / v) and well structured loamy medium sand upper subsoil which became stoneless at 50 cm and extended to 90 cm . The lower subsoil was found to comprise a medium sand extending to 120 cm . The profile was well drained and suitably assigned to Wetness Class I. However, there was found to be a moderate restriction upon profile available water for plant growth, which can affect the level and consistency of crop yields. Therefore a classification of Subgrade 3a is appropriate due to this moderate droughtiness limitation. It should be noted that some better quality land was observed within this mapping unit, but at this scale of survey it would be unfeasible to map these as a separate unit.
5.4 Subgrade 3a land on the lowerlying reaches of the site, principally on the southern edges, shows signs of a moderate wetness limitation. Profiles within this area tend to comprise coarse textured topsoils such as medium sandy loams and medium sandy silt loams, overlying variably texture upper subsoils which in turn tend to overlie clay lower subsoils. In certain areas, particularly around Moorgreen Farm, medium sandy loam topsoils were found to rest directly upon clay subsoils. The clay subsoils are slowly permeable (see soil inspection pit no.2) and where they occur at shallow depths, act to cause a significant soil drainage impedance (Wetness Class IV). This drainage impedance is evidenced by gleying from the surface or at shallow depths within the soil profile. However, the interaction between the relatively light and easily worked topsoil textures and the soil drainage status means that this land is subject to moderate restrictions upon the flexibility of cropping, stocking and cultivations if soil structural damage is to be avoided. Variability in textures and depths to the slowly permeable clays across the site and within this mapping unit means that some instances of better quality land were observed. Yet once again at this scale of survey, the dispersed nature of these observations means that they do not warrant mapping as a separate unit.

Subgrade 3b

5.5 Moderate quality Subgrade 3 b land is mapped across the majority of the site, showing signs of a wetness limitation which is related to the prevalence of heavily textured clayey soils which exists within the 'area of search'. Topsoils tend to comprise medium clay loams, and to a lesser extent heavy clay loams. These overlie similar textured or clay upper subsoils and clay lower subsoils. The clay subsoils are slowly permeable, causing a significant drainage impedance. Signs of a wetness imperfection in the form of gleying were commonly observed from the topsoils or upper subsoils. The presence of gleying and the relatively shallow depth to the slowly permeable clays equates these soils to Wetness Class IV. The combination of topsoil textures and the local climatic regime (which is relatively wet in a regional context) means that a classification of Subgrade $3 b$ is appropriate. Poorly drained wet soils can inhibit plant and root development, and may be more susceptible to structural damage through trafficking by agricultural machinery or poaching by grazing livestock.

Grade 4

5.6 Approximately 30 hectares of land on the site has been classified as Grade 4, poor quality land, with soil wetness as the main limitation. Hydrophilic plant species such as Juncus rushes were obsereved in these areas. The presence of such species suggests that the land is waterlogged for long periods of time, such that a classification of Grade 4 is appropriate.

ADAS Ref: 1503/247/94
MAFF Ref: EL $15 / 518$

Resource Planning Team
Guildford Statutory Group
ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1973), Sheet No. 315, Southampton, 1:50,000 Series (drift edition).
MAFF (1988), Agricultural Land Classification of England and Wales : Revised guidelines and criteria for grading the quality of agricultural land.

Meteorological Office (1989), Climatological Data for Agricultural Land Classification.
Soil Survey of England and Wales (1983), Sheet 6, Soils of South East England, 1:250,000 and accompanying legend.

Soil Survey and Land Research Centre (1989), Southampton District maps, 1:25,000 and accompanying report 'Applied soil mapping in the Southampton area'.

SOIL PIT DESCRIPTION
Site Name : HANTS STRUC BISHOPSTOKE Pit Number : ip

Grid Reference: SU48501850 Average Annual Rainfall : 802 mm
Accumulated Temperature : 1536 degree days
Field Capacity Level : 169 days
Land Use : Permanent Grass
Slope and Aspect: 01 degrees S

| HORIZON | TEXTURE | COLOUR | STONES >2 | TOT. STONE | LITH | MOTTLES | STRUCTURE | CONSIST | SUBSTRUCTURE CALC |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0-35$ | MSL | 10YR43 00 | 6 | 10 | HR | | | | |
| $35-50$ | LMS | 10YR44 00 | 0 | 10 | HR | MDCSAB | VF | G | |
| $50-90$ | LMS | $10 Y R 4400$ | 0 | 0 | | MDCSAB | VF | G | |
| $90-120$ | MS | $10 Y R 7600$ | 0 | 0 | | WKMSAB | VF | M | |

Wetness Grade : 1	Wetness Class		: I	
	Gleying			cm
	SPL		:	No SPL
Drought Grade : 3A	APW : 108 mm	MBW		0 mm
	APP : 086mm	MBP		-16 mm

FINAL ALC GRADE : 3A
MAIN LIMITATION : Droughtiness

```
Site Name : HANTS STRUC BISHOPSTOKE Pit Number : 2P
Grid Reference: SU48101550 Average Annual Rainfall : }802\textrm{mm
                            Accumulated Temperature : }1536\mathrm{ degree days
                            Field Capacity Level : 169 days
                            Land Use : Permanent Grass
                            Slope and Aspect : degrees
\begin{tabular}{rcccccccccc} 
HORIZON & TEXTURE & COLOUR & STONES >2 & TOT. STONE & LITH & MOTTLES & STRUCTURE & CONSIST & SUBSTRUCTURE CALC \\
\(0-29\) & MSZL & 1OYR41 00 & 0 & 2 & HR & C & & & \\
\(29-36\) & SCL & \(25 Y 5300\) & 0 & 1 & HR & M & MDCSAB & FR & M \\
\(36-50\) & HCL & \(05 G 6200\) & 0 & 1 & HR & M & MDCSAB & FM & \(M\) \\
\(50-62\) & HCL & \(05 Y 6200\) & 0 & 10 & HR & M & WKCSAB & FM & \(P\) \\
\(62-120\) & C & \(05 G 6200\) & 0 & 1 & HR & M & MASSIV & FM & \(P\)
\end{tabular}
```

Wetness Grade : 2

Drought Grade : 2

```
\begin{tabular}{ll} 
Wetness Class & \(:\) III \\
Gleying & \(: 0 \mathrm{~cm}\) \\
SPL & \(: 050 \mathrm{~cm}\) \\
& \\
APW : 134 mm & MBW : \\
APP : 110 mm & MBP : \\
\end{tabular}
```

FINAL ALC GRADE : 2
MAIN LIMITATION : Soil Wetness/Droughtiness

progr	ram: ALC012	LIST Of BORINGS HEADERS 26/06/95 hants Struc bishopstoke																page 1
SAMPL		ASPECT					--WETNESS--		-WHEAT-		-POTS-	M. REL		EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	Y SPL	CLASS	GRADE	AP	MB AP	MB	DRT	FLOOD	EXP	DIST	LIMIT		COMMENTS
1	SU48661845	PGR	S	01	050	050	3	2	129	22106	5	2				WD	2	
1 P	SU48501850	PGR	S	01			1	1	108	0086	-16	3A				DR	3A	SANDY
2	SU48531832	PGR	S	02	035		2	1	135	28110	9	2				DR	2	
2 P	SU48101550	PGR				050	3	2	134	27110	9	2				WD	2	
3	SU48701847	PGR	S	01			1	1	136	29107	6	2				DR	2	SANDY
4	SU48751830	PGR	S	01	035	055	3	3 A		0	0					WE	3A	
5	SU47751815	TUR					1	2	126	16118	14	2				DR	2	WK ALSO
6	SU48501820	PGR	E	01	60		1	1	157	50119	18	1					1	3A MORE LIKELY
7	SU49321795	PGR	S	03	085		1	1	118	8082	-22	3A				DR	3 A	SAND \& GRAVEL
8	SU49251765	PGR	N	01		045	4	3 A		0	0					WE	3A	
9	SU49501757	PGR				045	4	38		0	0					WE	38	POACHED
10	SU48951740	STB			S55		1	1	143	36096	-5	2				DR	2	SANDY
11	SU47651745	PGR	S	0.1		065	3	2		0	0					WE	2	SURFACE WATER
12	SU48551732	STB	S	02	055	063	2	1	140	33117	16	1					1	
13	SU48801725	STB				045	4	3B		0	0					WE	38	
14	SU49071712	CER	S	02	065		1	1	147	40116	15	1					1	SANDY
15	SU47621715	PGR				035	4	38		0	0					WE	3 B	POACHED
16	SU48601705	PGR	S	02		028	4	38		0	0					WE	38	POACHED
17	SU48161690	PGR	W	0.1	025	25	4	3 B		0	0					WE	38	
18	SU49021687	PGR	W	03		048	3	3A		0	0					WE	3 A	
19	SU47951676	PGR			0	30	4	38		0	0					WE	38	
20	SU47561670	PGR			0	28	4	38		0	0					WE	38	
21	SU48461660	PGR				032	4	38		0	0					WE	38	
22	SU48701646	PGR				025	4	3B		0	0					WE	3B	
23	SU49501650	PGR				025	4	38		0	0					WE	3 B	
24	SU47751637	PGR	N	02		035	4	38		0	0					WE	3B	POACHED
25	SU48801634	PGR				020	4	38		0	0					WE	3B	
26	SU47921625	PGR	N	05		055	3	38		0	0					WE	3 B	
27	SU47771612	PGR	W	03			1	1	118	11086	-15	3A				DR	3 A	SANOY
28	SU47871605	PGR	E	02	068	068	2	1	114	7116	15	2				DR	2	
29	SU49071665	PGR	S	03		055	3	3A		0	0					WE	3 A	
30	SU49641617	PGR			030		4	3B		0	0					WE	3 B	
31	SU47361587	PGR				045	4	3A	136	29110	9	2				WE	3 A	
32	SU47471582	PGR	W	02	025		4	3A		0	0					WE	3 A	
33	SU47851592	PGR				035	4	3B		0	0					WE	3 B	POACHED
34	SU48071597	PGR	W	01		028	4	3B		0	0					WE	38	
35	SU48201592	PGR	E	01		028	4	3B		0	0					WE	38	
36	SU48351585	PGR	W	0.1	028	040	4	3 B		0	0					WE	3 B	
37	SU48571585	PGR				048	3	3A		0	0					WE	3 A	
- 38	SU49101595	PGR			040	055	3	3A		0	0					WE	3 A	
39	SU49301597	PGR				042	4	3B		0	0					WE	3B	
40	SU49021578	STB			030	060	3	2		0	0					WE	2	

program: ALCO12				LIST OF BORINGS HEADERS 26/06/95								HANTS STRUC BISHOPSTOKE				CHEM	page 3	
SAMP						--WET	NESS--	-WHE	AT-	-PO	TS-			EROSN			ALC	
No.	GRID REF	USE	GRDNT	GLEY	Y SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EXP	DIST	LIMIT		COMMENTS
83	SU48301700	PGR			027	4	3 B		0		0					WE	3B	
- 84	SU48251742	PGR			028	4	38		0		0					WE	3B	
85	SU48461732	PGR			048	3	3 A		0		0					WE	3A	
86	SU48401750	PGR			035	4	38		0		0					WE	3B	
87	SU47801756	PGR			036	4	38		0		0					WE	38	
- 88	SU48021740	STR		026		3	3 A		0		0					WE	3A	
89	SU47801746	NUR		045		1	1		0		0					DR	2	IMPEN 75
190	SU48061761	STB			050	3	3 A		0		0					WE	3A	
91	SU47901785	PGR			028	4	3 B		0		0					WE	38	
92	SU48151810	PGR			040	4	38		0		0					WE	38	
93	SU48611792	PGR			024	4	3 B		0		0					WE	3B	
94	SU48281815	PGR			053	3	3A		0		0					WE	3A	
	SU48451810				029	4	3 B		0		0					WE	3B	
, 96	SU48601812	PGR			050	3	3 A		0		0					WE	3A	
97	SU48381771				037	4	3B		0		0					WE	3B	
98	SU48481785				029	4	38		0		0					WE	3B	
99	SU48551760				029	4	38		0		0					WE	38	
100	SU48771762	PGR			045	4	3B		0		0					WE	3B	

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS
COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

1 | $0-30$ | ms |
| :---: | :---: |
| $30-50$ | sc |
| $50-120$ | c |

1 P	$0-35$	ms 1	10YR43	00
$35-50$	7 ms	$10 \mathrm{YR44}$	00	
$50-90$	lms	10 YR 44	00	
	$90-120$	ms	$10 Y R 76$	00

2 0-35 ms 10 YR42 00
35-55 ms 1 10YR53 0010 YR56 00 C $55-90$ scl 25Y 5200 90-120 1ms 25Y 5262 10YR58 00 M

2P $0-29 \mathrm{msz} 10 \mathrm{YR41} 0075 \mathrm{YR} 4600 \mathrm{C}$ 29-36 sc1 25 Y 5300 75YR58 00 M 36-50 hel 05G 620075 YR 5800 M 50-62 hel 05 Y 6200 75YR58 00 M 62-120 c O5G 6200 75YR58 00 M

3	$0-30$	ms 1	10YR42 00
	$30-45$	scl	10YR42 00
	$45-85$	scl	10YR54
	00		
	$85-120$	lms	75 YR 56
		00	

4 0-35 mc
35-48 hel 10 YR52 00 10YR58 00 C 48-55 hel 10 YR54 0010 YR58 00 C 55-80 c $\quad 10$ YR53 00 75YR58 00 C $80-120$ hel 10 YR54 00 10YR58 00 C

5 0-30 hcl 10 YR43 00
30-50 hcl 10 YR43 44 50-100 c $\quad 10$ YR54 00 OOMNOO 00 F
$6 \quad 0-35 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$
35-60 mcl $10 \mathrm{YR44} 0010 \mathrm{YR56} 00 \mathrm{~F}$ 60-90 hel 25Y $626310 \mathrm{YR58} 00 \mathrm{C}$ $90-120$ hcl 25Y 616210 YR5 500 M

7 0-15 ms 10 YR32 00
$15-40$ ms 1 10YR32 00
40-85 1ms 10YR32 00
85-95 ms 1 10YR53 00 75YR58 00 C $95-120 \mathrm{scl} 10 \mathrm{YR} 630010$ YR58 00 C

8 0-25 mszl 10 YR52 00 10YR58 00 C 25-35 mcl 10 YR52 0010 YR58 00 C 35-45 hel 10 YR52 0010 YR58 00 C 45-75 hel 10YR52 0010 YR5 500 M

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

SAMPLE	DEPTH	texture	COLOUR	----MOTTLES-----			$\begin{aligned} & \text { PED } \\ & \text { COL. } \end{aligned}$	GLEY	----STONES---- STRUCT/				SUBS				
				COL	Abun	CONT					6 LIT	TOT CONSIST			IMP	SPL CALC	
33	0-35	mc 1	$10 \mathrm{YR42} 00$	75YR46	600 C			Y	0		0 HR	1					
	35-60	c	05Y 5200	75YR58	00 M			Y	0		0 HR	1	P	Y		Y	
34	0-28	hel	$10 \mathrm{YR42} 00$	75YR58	00 M			Y	0		0 HR	1					
	28-60	c	10YR62 D0	10yR58	00 M			y	0		0 HR	2	P	y		Y	
35	0-28	hcl	10YR52 00	75YR46	00 M			Y	0		0 HR	2					Q SPL FROM TOPSOIL
	28-60	c	10YR61 00	10YR58	00 M			\checkmark	0		0 HR	1	P	Y		Y	
36	0-28	mcl	$10 \mathrm{YR42} 00$	75YR58	00 M				0		0 HR	1					
	28-40	mcl	$10 \mathrm{YR62} 00$	75YR58	00 M			Y	0		0 HR	1	M				
	40-70	c	05 Y52 00	75YR58	00 M			Y	0		0 HR	1	P	Y		Y	
37	0-28	mcl	$10 \mathrm{YR42} 00$	10YR58	00 C			Y	0		0 HR	1					
	28-48	scl	25 Y 5200	10yR58	00 C			Y	0		0 HR	1	M				
	48-70	c	05 Y52 00	10YR88	00 M			Y	0		0 HR	1	P	Y		Y	
38	0-30	mcl	$10 \mathrm{YR42} 00$						0		0 HR	3					
	30-40	msl	10YR42 43						0		0	0					
	40-55	hcl	10YR52 62	10YR68	00 C			Y	0		0 HR	10	M				
	55-80	c	10YR62 00	10YR68	00 M			Y	0		0	0	P	Y		Y	
39	0-25	mcl	$10 \mathrm{YR42} 00$	10YR58	800 C			Y	0		0	0					
	25-42	hcl	10YR42 52	10YR68	00 C			Y	0		0	0					
	42-70	c	10YR62 00	10YR68	61 M			Y	0		0	0	P	Y		Y	
40	0-30	ms 1	10 YR42 00						0		0 HR	2					
	30-50	1 ms	10YR52 62	10YR68	00 C			Y	0		0	0	M				
	50-60	hel	10 YR52 00	10YR68	00 C			Y	0		0	0	M				
	60-80	c	10YR62 00	10YR68	800 M			Y	0		0	0	P	γ		Y	
41	0-25	msz1	10YR41 00						0		0 HR	2					
	25-39	ms 1	10YR54 00						0		0 HR	2	M				
	39-70	ms 1	10YR52 00	10YR56	600 C			Y	0		0	0	M				
	70-110	mszl	25 Y 5200	10yR66	600 M			Y	0		0	0	M				
	110-120	c	05Y 5100	10YR58	00 M			Y	0		0	0	P	Y		Y	
42	0-25	mcl	O5G 5100	$10 \mathrm{YR46}$	00 C			Y	0		0 HR	2					
	25-45	nc 1	05Y 5100	10yR46	00 M			Y	0		0	0	M				
	45-80	c	05Y 5100	10YR68	00 M			Y	0		0	0	P	Y		Y	
43	0-25	ms 1	10YR42 43						0		0	0					
	25-55	ms 1	$25 Y 5152$	10YR46	00 F				0		0	0	M				
	55-120	c	25 Y 6100	10YR68	00 M			Y	0		0	0	P	Y		Y	
44	0-30	mcl	$10 \mathrm{YR42} 00$						0		0	0					
	30-45	scl	10YR41 51	$10 \mathrm{YR46}$	00 F			Y	0		0	0	M				
	45-70	msz1	$10 \mathrm{YR53} 00$	10yR56	00 C			Y	0		0	0	M				
	70-120	c	05Y 5300	10YR58	00 M			Y	0		0	0	P	Y		Y	

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

45	0-30	mszl	10YR42 4	
	30-45	msz 1	10YR53	10YR56 00 C
	45-65	he 1	$25 Y 5300$	10YR56 00 M
	65-120	c	05G 620	10YR68 00 M
46	0-30	ms 1	10YR41 5	10YR46 56 F
	30-45	ms 1	10YR52 6	$10 Y \mathrm{R} 4656 \mathrm{C}$
	45-55	scl	05BG51	10YR58 00 M
	55-120	hel	05G 62	10YR58 00

		0	0 HR	3			
	Y	0	0	0	M		
	Y	0	0 HR	10	M		
	Y	0	0	0	P	Y	Y
		0	0	0			
	Y	0	0	0	M		
	Y	0	0	0	M		
	Y	0	0	0	M		
	Y	0	0 HR	1			
	Y	0	0 HR	1	P	Y	Y
	Y	0	0 HR	1			
	Y	0	0 HR	1	p	Y	Y
		0	0 HR	2			
10YR51 00	Y	0	0	0	P	Y	Y
		0	0	0			
	Y	0	0	0	M		
	Y	0	0	0	p	Y	Y
		0	0	0			
	Y	0	0	0	P	Y	Y
	Y	0	0	0			
10YR61 00	Y	0	0	0	p	Y	Y
		3	0 HR	5			
	Y	0	0 HR	3	M		
	Y	0	0	0	P	Y	Y
		3	0 HR	5			
	Y	0	0 HR	3	M		
	Y	0	0	0	P	Y	Y
		2	0 HR	5			
05GY41 00	Y	0	0	0	P	Y	Y
	Y	0	0	0			
	Y	0	0	0	M		
	Y	0	0	0	P	Y	Y
	Y	0	0	0			
	Y	0	0	0	P	Y	Y
10YR61 00	Y	0	0	0			
	Y	0	0	0	P	Y	Y

$60 \quad 0-25 \mathrm{mcl} \quad$ 10YR42 43 10YR58 00 C 25-70 c 25Y 630010 YR 6871 M

61 0-27 ms $1 \quad$ 10YR42 $4110 Y R 5800 \mathrm{C}$ 27-65 c $05 \mathrm{Y} 520075 \mathrm{YR5} 863 \mathrm{M}$
$62 \quad 0-23 \mathrm{mcl} \quad 10 \mathrm{YR42} 0010 \mathrm{YR} 5861 \mathrm{C}$ 23-70 c 10YR52 00 75YR68 62 M
$63 \quad 0-22 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$ 10YR58 00 C 22-35 hel 10 YR62 00 10YR68 00 C 35-70 c 10 YR63 72 10YR68 71 M
$64 \quad 0-29 \mathrm{mcl}$
29-70 c

65 0-29 mcl
29-41 scl 41-70 c

66 0-22 mcl
22-32 scl $10 Y R 720010 Y R 6871 \mathrm{M}$ 32-70 c 10 YR62 00 10YR68 71 M 67 0-22 ms 39-60 c 05Y 5200 75YR68 63 M
$68 \quad 0-30 \mathrm{~ms} 1 \quad 10 \mathrm{YR42} 00$
$30-46 \mathrm{~ms} 1$ 10YR42 00 10YR58 00 C 46-58 scl $10 \mathrm{YR} 720010 \mathrm{YR58} 00 \mathrm{C}$ $58-80$ c $\quad 25 Y 520075 Y R 6862 \mathrm{C}$
$69 \quad 0-23 \mathrm{~ms} 1 \quad 10 \mathrm{YR42} 4110 \mathrm{YR} 5800 \mathrm{C}$ $23-43 \mathrm{mcl} \quad 10 Y R 4200$ 10YR58 00 C 43-70 c $25 Y 5200$ 75YR58 62 C
$70 \quad 0-23 \mathrm{~ms} 1 \quad 10 \mathrm{YR} 3100$
23-70 c 10YR62 00 75YR68 61 C
$71 \quad 0-25 \mathrm{~ms} 1 \quad 10 Y R 310010 \mathrm{YR} 5800 \mathrm{C}$ 25-35 hel 10YR52 00 10YR58 00 C 35-70 c 10 YR72 00 10YR68 71 M
$\begin{array}{llll}Y & 0 & 0 & 0\end{array}$
$\begin{array}{lllll}Y & 0 & 0 & 0 & M\end{array}$

Y	0	0	0	M

| Y | 0 | 0 | P | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |

Y	0	0	0		
Y	0	0	0	P	Y
Y	0	0	0		
Y	0	0	0	P	Y

y	0	0	0		
y	0	0	0	P	Y

Y	0	0	0		
Y	0	0	0	M	
Y	0	0	0	P	Y

Y	0	0	0
r	0	0	0

| Y | 0 | 0 | 0 | P |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Y | 0 | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Y | 0 | 0 | 0 | M | |
| Y | 0 | 0 | 0 | P | Y |

Y	0	0	0		
Y	0	0	0	M	
Y	0	0	0	P	Y

Y	0	0	0		
Y	0	0	0	M	
Y	0	0	0	P	Y

| | 0 | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Y | 0 | 0 | 0 | M | |
| Y | 0 | 0 | 0 | M | |
| Y | 0 | 0 | 0 | P | Y |

Y	0	0	0		
Y	0	0	0	M	
y	0	0	0	P	Y
	0	0	0		Y
Y	0	0	0	P	
Y					
Y	0	0	0		
Y	0	0	0	M	
Y	0	0	0	P	Y

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS
COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

