A1

TEST VALLEY LOCAL PLAN REVIEW Land at New Grange, Andover, Hampshire

> Agricultural Land Classification Semi detailed survey November 1996

Resource Planning Team Guildford Statutory Group ADAS Reading

ADAS Reference1512/96/96MAFF ReferenceEL 15/00292LUPU Commission02467

AGRICULTURAL LAND CLASSIFICATION REPORT

TEST VALLEY LOCAL PLAN REVIEW LAND AT NEW GRANGE ANDOVER SEMI DETAILED SURVEY

INTRODUCTION

1 This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 84 hectares on the south eastern fringe of Andover in Hampshire The survey was carried out during October 1996

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food s (MAFF) Land Use Planning Unit Reading in connection with the revision of the Test Valley Local Plan This survey supersedes previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group in ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the site was all recently prepared arable land The areas mapped as Other include a road and some houses and their associated grounds

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 it is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	/ Total site area	/ Surveyed Area
3a 3b Other land	56 7 23 4 3 5	67 8 28 0 4 2	70 8 29 2
Total surveyed area Total site area	80 1 83 6	95 8 100	100

Table I Area of grades and other lar

7 The fieldwork was conducted at an average soil observation density of 1 boring per 1 5 hectares A total of 53 borings and 4 soil pits was described 8 The land quality on the site includes Subgrade 3a (good quality agricultural land) and Subgrade 3b (moderate quality) land For the better quality land soil droughtiness is the main limiting factor Here medium and heavy textured soils overlie chalk The limited soil depth restricts the amount of water available for plants this is somewhat offset by the available reserves in the chalk, but roots can only penetrate moderate distances into the chalk Given the local climatic regime these soils experience a significant soil droughtiness limitation Where the soil resource is very shallow the droughtiness limitation is more significant both crop growth and crop yield will be affected by the inadequate supply of soil moisture throughout the growing season, and therefore the land cannot be graded higher than Subgrade 3b Both crop growth and the eventual yield will be affected by the inadequate supply of soil moisture throughout the growing season

9 Parts of the Subgrade 3b land experience a soil wetness limitation Here the soil profiles show some signs f significant wetness related to the presence of poorly structured clay subsoils This degree of wetness will restrict seed germination and growth as well as limit the timing of cultivations

FACTORS INFLUENCING ALC GRADE

Climate

9 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

10 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989) Data from two interpolations are given but many more interpolations were made to help assess the variation in moisture deficits (for both wheat and potatoes) across the site Given the shallow nature of the soils and the chalk geology detailed local climatic information is essential for the accurate grading of land in this area, as soil droughtiness is one of the limiting factors

Factor	Units	Values	
Grid reference	N/A	SU377453	SU384449
Altitude	m, AOD	120	95
Accumulated Temperature	day C (Jan June)	1406	1435
Average Annual Rainfall	mm	778	762
Field Capacity Days	days	168	165
Moisture Deficit Wheat	mm	100	105
Moisture Deficit, Potatoes	mm	90	97
Overall climatic grade	N/A	Grade 1	Grade 1

11 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions 12 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

13 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. There are also no local climatic factors such as exposure or frost risk, affecting the site. The site is climatically Grade 1

Site

14 The site contains typical chalkland topography dry valleys gentle slopes and higher plateaux Nowhere on the site are gradient microrelief or flooding significant

Geology and soils

15 The published geological information for the site (BGS 1983) shows the area to be underlain by Upper Chalk (soft white chalk with many flint nodules)

16 The published soils information for the site (SSEW 1983 and 1984) shows two soil associations in this area Soils of the Carstens Association are shown along the northern and eastern boundary These soils are described as fine silty over clayey' and occur where the Chalk is covered by aeolian silty drift over clay with flints and plateau drift Soils of the Andover Association occur over the rest of the site These soils are described as variably flinty and chalky silty loam over chalk

Agricultural Land Classification

17 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

18 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Subgrade 3a

19 The majority of the site falls into Subgrade 3a, good quality agricultural land with soil droughtiness as the main limiting factor Two soil pits (Pit 1 and Pit 2) show the typical soils in this grade with chalk occurring at or just within 30cm depth The topsoils are medium or heavy silty clay loams with up to 10% chalk stone present. The topsoils will either sit directly over the chalk or a thin subsoil may exist containing approximately 25% chalk. In both instances roots are unable to penetrate further than 40cm at most into the chalk, as the chalk becomes markedly harder from approximately 65cm depth. The calculations of available water therefore do not extend further. Given this limited amount of soil resource together with the degree of rooting into the chalk, the impact of soil droughtiness is significant. However, given the moisture deficits that prevail, there is still sufficient available water to classify this land as Subgrade 3a.

Subgrade 3b

Three units of Subgrade 3b have been mapped on the site defining areas of moderate quality agricultural land Again, two soil pits (Pit 3 and Pit 4) illustrate the type of soils that make up this grade They fall into two camps soils with a wetness limitation and those with an even more significant droughtiness limitation. The wet Subgrade 3b land contains heavy profiles typically clays over clays with clear evidence of gleying at shallow depths related to the presence of slowly permeable layers in the upper subsoil. These layers possess a moderately developed coarse prismatic structure. The droughty Subgrade 3b land relates to the south eastern of the three units and shows an area that either has a very shallow soil resource over the chalk or which may have been disturbed by construction works associated with the A303(T). A shallow topsoil sits over chalk, which then gives way to a thin but very stony horizon of coarse sand before going back into pure chalk. This degree of stoniness allied to very limited root penetration, means that there is insufficient available water for this area to be graded higher than Subgrade 3b

> DE Black Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1983) Sheet No 283 Andover BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
Ш	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
III	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
īv	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91 210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

ļ

.

Sample location map Soil abbreviations Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
НТН	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other
HRT	Horticultural Cro	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТХ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column if slightly gleyed an S will appear
- 7 **STONE LITH** Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandston	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamor	phic roo	ck

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
ped shape	 S single grain GR granular SAB sub angular blocky PL platy 	M massive AB angular blocky PR prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very frable FR frable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0 5% biopores >0 5 mm, a Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a Y' will appear in this column

15 Other notations

APW	available water capacity (in mm) adjusted for wheat
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MBP	moisture balance potatoes

Site Name TEST VA	ALLEY LP NEWGRANG	E Pit N mbe	1P			
Grid R ference SU3	37904505 Average Accumu Field (Land Us Slope a	e Ann al Rainfall 1 ted Tempe ture Capacity Level Se and Aspect	762 mm 1435 degree d 165 days A able 03 degrees E	days		
HORIZON TEXTURE 0 22 HZCL 22 30 HZCL	COLOUR STONE 10YR54 00 2 25 Y54 00 0	ES 2 TOT STONE 2 10 0 25	LITH MOTTLES CH CH	STRUCTURE CONSIST	SUBSTRUCTURE	CALC Y Y
30 05 CH Wetness G ade 2	Wetness Gleying SPL	sCiss I G	ୁ କା ଦା		n	
Drought Grade 3A	APW 8 APP 8	33 mm MBW 1 37 mm MBP	8 mm 4 mm			
FINAL ALC GRADE 3	3A					

MAIN LIMITATION Orought ness

Site Name TEST VALLEY L	PNEWGRANGE	Pit N mbe	2P				
Grid Reference SU3795449	5 Ave age A n Accumulated 1 Field Capacii Land Use Slope and Asj	l Rainfall Temperature ty Level pect	762 mm 1435 degree 165 days A able 01 degrees S	days E			
HORIZON TEXTURE COLO O 28 MZCL 10YR4 28-66 CH 10YR8	JR STONES 2 3 00 1 1 00 0	tot stone 10 0	LITH MOTTLES CH	STRUCTURE	CONSIST	SUBSTRUCTURE M	CALC Y
Wetness G ade 1	Wetness Class Gleying SPL	s I c	m m				
Drought Grade 3A	APW 84 mm APP 89 mm	мв и 17 мвр 3	់ ការក ពិតារ				
FINAL ALC GRADE 3A							

MAIN LIMITATION Droughtiness

Site Nam	e TEST	VALLEY LP N	IEHGRANG		Pit	Numbe	3	I P				
Grid Ref	erence	SU37904470	Average Accumu Field (Land Us Slope a	a A lated Capac Ge and A	al Ra Tempe ity Le spect	infall rature wel	l 76 a 143 165 A a 01	52 mm 15 degree 5 days 161e degrees S	days E			
HORIZON	TEXTUR	e colour	STON	:S 2	тот	STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 25	ZC	10YR43 (0 3	2		5	HR					
25- 52	С	75YR54 (00 0)		2	HR	С	MDCPR	FM	Р	
52 80	С	75YR54 (90 ()		5	HR	м	MDCPR	FM	Р	
Wetness (Grade	38	Wetness	: Cla	ss	111	ſ					
			Gleying)		025	cm					
			SPL			025	ຕາ					
Drought (Grade	3A	APW S)2 mm	MBW	/ 1	l3 mm					
			APP 9	97 mm	MBP	•	0 mm					
FINAL AL	C GRADE	3B										

MAIN LIMITATION Wetness

Site Nam	e TEST V/	ALLEY LP N	IEWGRANGE	PtN	lumbe 4	P				
Grid Ref	erence SU:	38354483	Average /	Ann al Rai	nfall 76	2 mm				
			Accumulat	ed Tempe	ature 143	5 degree	days			
			Field Cap	pacity Lev	mel 165	d ys				
			LndUe		Aa	ble				
			Slope and	Aspect		degrees				
HORTZON	TEXTURE		STONES	2 TOT S	TONE ITTH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0 25	M7CI	107853 0	10 4	2 101 0		INTILLO	01110010112	00/10101	0000000000	V
25- 37		10/001 0	no n	0					м	v
23-31	сл СС	101001 0							н м	v
37 48	5			00	нк				ni M	T
48- 58	CH	109881 0	0 0	U	ł				M	Ŷ
Wetness	Grade 1		Wetness (Class	I					
			G1 ying		cm					
			SPL		Ċm					
Drought	Grade 3B		APW 66	mm MBW	39 mm					
			APP 68	mm MBP	29 mm					
FINAL AL	C GRADE	3B								

MAIN LIMITATION Droughtiness

-

|--|

SAMP	LE	A	SPECT			W	TNESS	WH	EAT	PC	TS-	м	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY S	PL CLAS	ss grade	AP	MB	AP	MB	DRT	FL000	Ε	XP DIST	r LIMIT		COMMENTS
1	SU38204570	ARA	NE	02		1	2	88	17	93	-4	ЗА				DR	3A	
1P	SU37904505	ARA	Ε	03		1	2	83	18	87	-4	3A				DR	3A	
2	SU38004560	ARA	N	04		1	2	88	17	94	3	3A				DR	3A	
2P	SU37954495	ARA	SE	01		1	1	84	17	89	3	3A				DR	3A	PIT 85CM
3	SU38104560	ARA	Ε	03		۱	2	84	18	89	14	3 A				DR	3A	
3P	SU37904470	ARA	SE	01	025 02	53	3B	92	13	97	0	3A				WE	3B	PIT IMP 80
4	SU38204560	ARA	N			1	1	86	19	91	6	3A				DR	3A	
4P	SU38354483	ARA				1	1	66	39	68	29	38				DR	3B	POSSDIST
5	SU37904550	ARA	N	05	003	1	3A	67	38	67	30	38				DR	3B	IMPX2QWET
9	SU38304550	ARA	Ε	02		1	1	74	31	74	23	3B				DR	зa	IMP QDR
12	SU37904540	ARA	Ε			1	3A	46	59	46	51	4				ÐR	3B	IMPX2QWET
13	SU38004540	ARA	Е	04	025	1	3A	63	42	63	34	3B				DR	3A	IMPX2QWET
15	SU38204540	ARA	Е		025	2	3B	95	10	92	5	3A				DR	3B	CHECKWET
19	SU37704530	ARA	N	03		1	1	83	22	87	10	3B				DR	3A	
21	SU37904530	ARA	E		028 02	84	3B	79	26	85	12	3B				WE	3B	SPL
23	SU38104530	ARA	E		035 03	54	3B	82	23	88	9	3B				WE	ЗB	SPL
25	SU38304530	ARA	Ε			1	1	85	20	90	7	3A				DR	3A	
26	SU38404530	ARA	Ε	01		1	1	91	14	96	1	3A				DR	3A	ICH40R65
27	SU37804520	ARA				1	2	81	24	86	11	3B				DR	34	
29	SU38004520	ARA	E	05		1	1	84	21	88	9	3B				DR	ЗА	
34	SU37504510	ARA	W	01		1	1	88	17	94	3	3A				DR	3A	BDR 3B
35	SU37604510	ARA	S	03		1	1	85	20	90	7	3A				DR	3A	ICH35R60
36	SU37704510	ARA	W	01		1	1	81	24	85	12	3B				DR	3A	ICH 40
37	SU37904510	ARA				1	3A	64	41	64	33	3B				DR	3A	IMP QDR
39	SU38154505	ARA	SW	02		1	1	84	21	89	8	38				DR	38	BDR 3A
41	SU38304510	ARA	SE	02		1	1	87	18	92	5	3A				DR	3A	
43	SU38504510	ARA	SW	02		1	1	90	15	96	1	3A				DR	3A	
44	SU37504500	ARA	W	03	000	1	1	83	22	88	9	38				DR	3A	
45	SU37604500	ARA	WW	02		1	1	74	26	77	13	3B				DR	3B	ICH 32
47	SU37804500	ARA				1	34	81	24	86	11	38				DR	3A	
49	SU38054495	ARA	Ε			1	1	85	20	89	8	3A				ÐR	3A	
51	SU38204500	ARA	Ε			1	1	121	16	114	17	2				ÐR	2	
53	SU38404500	ARA	Ε			1	1	85	21	90	8	3B				DR	38	
56	SU37504490	ARA	N	01		1	1	84	21	89	-8	38				DR	3A	130
58	SU37704490	PL0	ε	02		1	2	100	5	99	2	за				DR	3A	ICH 55
60	SU37904490	ARA				1	2	83	22	88	9	38				DR	3A	
62	SU38104490	ARA	Ε	02		۱	1	83	20	87	7	3A				DR	3B	IMPCH 35 BDR 3
64	SU38304490	ARA	Е	03		1	1	80	25	83	14	3B				DR	3B	
65	SU38404490	ARA	W		000	1	1	101	4	100	3	3A				DR	3A	
66	SU37404480	ARA	NH	03	000 03	01	2	85	20	90	7	3A				DR	3A	QCHRTS
68	SU37604480	ARA	SE	03		1	2	97	8	104	7	3A				DR	3A	165QCH
69	SU37704480	ARA	NE		000	1	3A	85	20	91	6	3A				DR	3A	

-

	SAMP	LE		A	SPECT				WET	NESS-	WH	EAT	PC	DTS	м	REL	EROSN	FROST	CHEM	ALC	
	NO	GRID R	REF	USE		GRDNT	GLE	r spl	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Đ	P DIST	LIMIT		COMMENTS
	70	SU37804	1480	ARA					1	3A	73	32	76	21	38				DR	38	
	72	SU38004	1480	BEA	SE	01			1	2	89	16	95	2	3A				DR	3A	
-	74	SU38204	1480	ARA	Е	02			1	1	81	24	85	12	3B				DR	38	IMPCH 35
_	76	SU37504	470	ARA	SE	02	045	045	3	3B	104	1	106	9	3A				WE	38	185STNS
	78	SU37704	470	ARA	SE	03	030	030	4	3B	104	1	9 7	0	3A				WE	38	QSP3AI70
	80	SU37904	470	ARA			025		2	3B	60	-45	60	37	38				WE	3B	IMPX2QWE
	82	SU37604	1460	ARA	NE	04	055	055	3	3B	105	0	111	14	3A				WE	3B	I STN 80

prog am ALCO11

				-+	OTTLES	;	PED			ST	ONES		STRUCT	/ s	UBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 1	LITH	тот	CONSIS	T S	TR POR	IMP	SPL	CALC
1	028	hzc]	10YR43 00						1	01	HR	4						
	28-32	hzcl	10YR53 00						0	0 0	СН	10			м			
•	32 67	ch	10YR81 00						0	0		0			M			
1P	0 22	hzc1	10YR54 00						2	0 0	СН	10						Y
	22 30	hzcl	25 Y54 00						0	0 0	СН	25			M			Y
_	30 65	ch	10YR81 00						0	0		0			м			
2	0 20	hzc1	10YR54 00						2	0	HR	5						Y
	20 35	с	10YR53 00						0	0 (СН	10			M			Y
	35-70	ch	10YR81 00						0	0		0			М			Y
2P	0 28	mzcl	10YR43 00						1	0 (СН	10						Y
	28 66	ch	10YR81 00						0	0		0			M			
3	0 25	h cl	10YR54 00						2	0 1	HR	4						Y
	25 30	hzc1	10YR54 00						0	0 (СН	10			м			Y
	30 65	ch	10YR81 00						0	0		0			M			
3P	0 25	с	10YR43 00						2	0 8	HR	5						
•	25 52	С	75YR54 00	OOMNOO	00 C	7	75YR53	00 S	0	0	HR	2	MDCPR	FM	ΡY		Y	
	52 80	c	75YR54 00	OOMNOO	0 00 M	-	75YR53	00 S	0	0 1	HR	5	MDCPR	FM	ΡY		Y	
_ 4	0 22	mzc1	10YR43 00						2	0 1	HR	5						
	22 32	h cl	10YR43 00						0	0 (СН	10			м			Y
	32 67	ch	10YR81 00						0	0		0			м			
4P	0 25	mzc]	10YR53 00						4	0 1	HR	8						Y
	25-37	ch	10YR81 00						0	0		0			M			Y
-	37 48	cs	10YR81 00						0	0 1	HR	65			M			Y
	48 58	ch	10YR81 00						0	0		0			M			Y
5	0 30	с	10YR53 00						2	0 1	HR	5						Y
	30 42	c	10YR54 00	000000	00 C	(00MN00	00 S	0	01	HR	5			M			Y
9	0 25	mz 1	10YR53 00						2	0 1	HR	4						Y
	25-42	hzc1	10YR54 00						0	01	HR	2			M			Y
12	030	с	10YR53 00						5	0	HR	10						Y
13	0 25	с	10YR53 00						5	21	HR	10						Y
	25 45	c	75YR54 00	000000	00 C	C	001100	00 S	0	01	HR	5			ΡY			
- 15	0 25	с	10YR53 00						2	01	HR	4						Y
	25 48	с	10YR53 00	000000	00 C	C	DOMINOO	00 Y	0	01	HR	2			ΡY			Y
	48 83	ch	10YR81 00					Y	0	0		0			M			
19	0 25	mzcl	10YR43 00						4	0 1	HR	8						Y
	25-30	mzcl	10YR53 00						0	0 0	СН	10			м			Y
-	30 65	ch	10YR81 00						0	0		0		1	M			

page 1

prog am ALCO11

				_	MOTTLES	5	PED			ST	TONES	-	STRUCT/	SUB	S			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	тот	CONSIST	STR	POR	IMP	SPL	CALC
21	0 28	с	10YR43 00						4	2	HR	8						Y
	28-60	с	75YR53 00	00000	0 00 C	(00mn00	00 Y	0	0	HR	1		Ρ	Y		Y	
23	0 20	с	10YR44 00						2	0	HR	4						Y
	20 35	c	10YR43 00						0	0	HR	4		Μ				Y
	35-60	с	10YR53 00	00000	0 00 C	l	0 0min0 0	00 Y	0	0		0		P	Y		Y	Y
25	0 30	mzcl	10YR54 00						2	0	HR	4						Y
j	30 65	ch	10YR81 00	I					0	0		0		M				
26	0 28	mzcl	10YR43 53	L .					1	0	HR	3						Y
	28 35	mzcl	10YR44 54						0	0	СН	30		M				Y
•	35-70	ch	10YR81 00	Ì					0	0	HR	2		Ρ				Y
27	0 20	hz ì	10YR53 00	1					4	2	HR	8						Y
ŀ	20 30	hzcl	10YR53 00)					0	0	СН	20		м				Y
	30 65	ch	10YR81 00)					0	0		0		M				
29	0 25	mzc]	10YR54 00	•					2	0	HR	5						Y
	25 30	hzcl	10YR53 00)					0	0	СН	10		Μ				Y
	30 65	ch	10YR81 00)					0	0		0		М				
34	0 25	mzcl	10YR53 00	•					2	0	HR	6						Y
	25 35	mzcl	10YR53 63	•					0	0	СН	30		M				Ŷ
	35 70	ch	10YR81 00						0	0	HR	2		Ρ				Ŷ
35	0 30	mzc1	10YR43 53	5					1	0	HR	3						Y
	30 65	h	10YR81 00	1					0	0	HR	2		Ρ				Y
36	028	mzcl	10YR43 53	1					2	0	HR	6						Y
	28-63	ch	10YR81 00	Ì					0	0	HR	2		Ρ				Y
37	0 25	с	10YR53 00)					4	2	HR	8						Y
	25-30	с	10YR44 00)					0	0	СН	5		М				Y
	30 42	c	10YR54 00)					Q	0	Сн	30		M				Y
39	0 25	mzcl	10YR53 00	1					2	0	HR	4						Y
	25 30	mzcl	10YR54 00)					0	0	СН	20		M				Ŷ
	30 65	ch	10YR81 00)					Q	0		0		M				
41	0 28	mzc1	10YR43 00)					0	0	HR	5						Y
	28 32	mzcl	10YR43 00)					0	0	CH	25		M				Y
-	32 67	ch	10YR81 00)					0	0		0		М				Y
43	0 28	mzcl	10YR43 00)					0	0	HR	5						Y
•	28 35	mz 1	10YR43 00)					0	0	СН	25		M				Y
	35 70	ch	10YR81 00)					0	0		0		M				

program ALCO11

				-	MOTTLES)	PED			ST	IONES		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6	LITH	TOT	CONSIST	STR POR	IMP	SPL	CALC	
44	0 22	mzcl	10YR43 00						2	0	HR	10					Y	
	22 32	mzc1	10YR43 00						0	0	СН	25		M			Y	
	32 67	ch	10YR81 00						0	0		0		M			Y	
45	0 25	mzc]	10YR43 53						2	0	сн	20					Y	
•	25-60	ch	10YR81 00						0	0	HR	2		Ρ			Y	
47	0 28	c	10YR43 00						0	0	HR	5					Y	
I	28-32	с	10YR54 00						0	0	СН	25		м			Y	
	32 67	ch	10YR81 00						0	0		0		м				
49	0 30	mzcl	10YR53 00						0	0	сн	10					Y	
•	30 65	ch	10YR81 00						0	0		0		м				
51	0 28	mzcl	10YR43 00						2	0	HR	4					Y	
	28 58	mzc]	10YR54 00						0	0	СН	2		м			Y	
	58 93	ch	10YR81 00						0	0		0		м				
53	0 30	mzcl	10YR54 00						2	0	HR	4					Y	
_	30 65	h	10YR81 00						0	0		0		м				
56	0 30	mzcl	10YR43 00						1	0	HR	5					Y	
	30 65	ch	10YR81 00						0	0	HR	2		Р			Y	
58	0 30	hzc]	10YR44 00						1	0	HR	5						
	30 45	hzc]	10YR66 81						0	0	СН	50		м			Y	
	45 80	ch	10YR81 74						0	0	HR	2		Ρ			Y	
60	0 25	hzc]	10YR43 00						0	0	HR	5					Y	
-	25 30	h c1	10YR53 00						0	0	СН	25		M			Y	
	30 65	ch	10YR81 00						0	0		0		м				
62	028	mzcl	10YR43 53						0	0	HR	2					Y	
	28 63	ch	10YR81 00						0	0	HR	2		Ρ			Y	
64	0 20	mzcl	10YR53 00						O	0	СН	10					Y	
	20 28	mzcl	10YR53 00						0	0	СН	25		M			Y	
	28 63	ch	10YR81 00						0	0		0		м				
65	0 25	mzcl	10YR43 00						1	0	HR	5					Y	
	25 44	mzcl	10YR54 00						0	0	СН	25		м			Y	
	44 80	h	10YR81 00						0	0		0		м				
66	0 30	hzc]	10YR43 00						0	0	HR	3					Y	
	30 65	ch	10YR81 00						0	0	HR	2		Ρ		Y	Y	
68	0 30	hzcl	10YR43 00						1	0	HR	5					Y	
ł	30 55	hzc1	10YR54 00						0	0	СН	20		м			Y	
	55 65	mzcl	10YR66 81						0	0	СН	50		Р			Y	

page 3

program ALCO11

1

				-1	OTTLES	5	PED				STONES-		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLE	EY 2		6 LITH	тот	CONSIST	STR PO	OR IMP	SPL	CALC
69	0 25	с	10YR43 00						1	:	0 HR	5					Y
	25-35	с	10YR54 00						0		O HR	5		M			Y
	35-70	ch	10YR81 00						0		0	0		M			
70	0 25	c	10YR43 00						0	1	0 HR	5					Y
1	25-60	ch	10YR81 00						0		0	0		M			
72	0 25	hzcl	10YR43 00						0) :	0 HR	5					Y
	25-30	hzcl	10YR54 00						0	•	D CH	25		M			Y
	30 35	hzcl	10YR54 00						0		0 CH	50		м			Y
	35-70	ch	10YR81 00						0)	0	0		M			
74	0 28	mzcl	10YR43 53						1	I	0 HR	5					Y
2	28 63	h	10YR81 00						0)	0 HR	2		Р			Y
76	0 30	hzc1	10YR43 00						1	1	0 HR	5					
	30 45	с	10YR54 00	10YR56	00 F	C	00000	00	0)	O HR	8		м			
	45 75	c	10YR54 53	10YR66	68 C	C	omnoo	00 N	r 0)	O HR	10		Р		Y	
ļ	75 85	с	10YR53 00	75YR56	00 M	C	OMNOO	00 N	r o	•	0 HR	20		Ρ		Y	
78	0 30	hc]	10YR43 00						1	I	O HR	5					Y
	30 45	c	10YR54 53	10YR68	00 M	C)0MN00	00 \	<u>ر</u> 0		O HR	5		Р		Y	Y
•	45-55	с	10YR54 53	10YR68	00 M			١	′ 0		0 HR	5		Р		Y	Y
	55 90	ch	10YR81 00					١	′ 0		0 HR	2		Ρ		Y	Y
80	0 25	c	10YR53 00						0		0 HR	5					Y
1	25-40	с	75YR54 00	000000	00 C	C	IOMNOO	00 5	6 0		0 HR	2		ΡÌ	/		Y
82	0 30	h cì	10YR43 00						1	I	0 HR	5					
	30 40	hcl	10YR44 00						0		O HR	5		Μ			
ł	40 55	c	75YR46 00	00MN00	00 C				0		O HR	5		M			
1	55 -8 0	с	10YR62 00	10YR68	00 C	C	001100	00 N	′ 0		0 HR	5		Ρ		Y	

page 4