8FC58180

Thornbury, North and East

Agricultural Land Classification

July 1997

Resource Planning Team Bristol FRCA Western Region Job Number 2/97

MAFF Reference EL 34/1208

THORNBURY, NORTH AND EAST

AGRICULTURAL LAND CLASSIFICATION SURVEY

-

CONTENTS

		rage
INTRODUCTIO	N.	1
SUMMARY		1
CLIMATE		2
RELIEF		3
GEOLOGY ANI	O SOILS	3
AGRICULTURA	L LAND CLASSIFICATION AND MAP	4
REFERENCES		6
APPENDIX I	Description of the Grades and Subgrades	7
APPENDIX II	Definition of Soil Wetness Classes	8
APPENDIX III	Survey Data:	. 9
	Sample Point Location Map	
	Pit Descriptions	
	Boring Profile Data	
	Boring Horizon Data	

Abbreviations and Terms used in Survey Data

THORNBURY, NORTH AND EAST

AGRICULTURAL LAND CLASSIFICATION SURVEY

INTRODUCTION

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 462 ha of land on the northern and eastern edges of Thornbury, South Gloucestershire. Field survey was based on 198 auger borings and 11 soil profile pits, and was completed in March 1997. During the survey six soils samples were analysed for particle size distribution (PSD).

2. The survey was conducted by the Resource Planning Team of FRCA Western Region (formally of ADAS Taunton Statutory Group) on behalf of MAFF in its statutory role in the preparation of South Gloucestershire District Local Plan.

3. Information on climate, geology and soils, and from previous ALC surveys was considered and is presented in the relevant section. The published regional ALC map (MAFF, 1977) shows the site at a reconnaissance scale as being mostly Grade 2, with areas of Grade 3 land on the edge of the site at Grovesend, Milbury Heath, Longman's Grove, Duckhole and near Thorn Hall. The site previously had a detailed survey carried out in 1975 at a scale of 1:25 000 (ADAS, 1975). However, the current survey uses the Revised Guidelines and Criteria for grading the quality of agricultural land (MAFF, 1988) and supersedes any previous ALC survey. Grade descriptions are summarised in Appendix I.

4. At the time of survey land cover was mainly permanent and ley grassland. There were small areas of horticulture at Lower Morton and cereals around Buckover. An area of 21.1 ha of agricultural land within the survey area was not surveyed because of access restrictions. Other land which was not surveyed included woodland, school sports fields, agricultural buildings and residential areas.

SUMMARY

5. The distribution of ALC grades is shown on the accompanying 1:20 000 scale ALC map. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas. Areas are summarised in the Table 1.

Grade	Area (ha)	% Surveyed Area (393.2 ha)
2	112.3	28.6
3a	107.9	27.4
2 3a 3b	151.9	38.6
Agricultural land not surveyed	21.1	5.4
Other land	68.8	-
Total site area	462.0	100.0

Table 1:	Distribution of ALC grades:	Thornbury, North and East
----------	-----------------------------	---------------------------

6. Of the agricultural land surveyed 56 % was mapped as "best and most versatile", with half of this being Grade 2 (very good quality land) and half being Subgrade 3a (good quality land). The Grade 2 land is well drained and has a minor workability limitation and is mainly found in the western part of the site around Lower Morton and Pound Farm. There are also three smaller areas near Grovesend, Buckover and Crossways.

7. The Subgrade 3a land is mapped throughout the site. Mainly it has a moderate wetness limitation due to restricted drainage in the subsoils but there are also better drained areas where the overall limitation is due to workability, and drought or soil depth limitations where the soil is shallower over bedrock.

8. The remainder of the site is mapped as Subgrade 3b (moderate quality land). There are two distinct limitations within these mapping units. Around Upper Morton the soil is very shallow and there is a moderate depth limitation. The rest of the mapping units have restricted drainage in the subsoil leading to a moderate wetness limitation.

CLIMATE

9. Estimates of climatic variables for this site were derived from the published agricultural climate dataset "Climatological Data for Agricultural Land Classification" (Meteorological Office, 1989) using standard interpolation procedures. Data for key points around the site are given in Table 2 below.

10. Since the ALC grade of land is determined by the most limiting factor present, overall climate is considered first because it can have an overriding influence by restricting land to a lower grade despite more favourable site and soil conditions. Parameters used for assessing overall climate are accumulated temperature, a measure of relative warmth and average annual rainfall, a measure of overall wetness. The results shown in Table 2 indicate that there is no overall climatic limitation.

11. Climatic variables also affect ALC grade through interactions with soil conditions. The most important interactive variables are Field Capacity Days (FCD) which are used in assessing soil wetness and potential Moisture Deficits calculated for wheat and potatoes, which are compared with the moisture available in each profile in assessing soil droughtiness limitations. These are described in later sections

Grid Reference	ST 641 916	ST 651 913	ST 654 897
Altitude (m)	16	43	69
Accumulated Temperature (day °C)	1521	1491	1461
Average Annual Rainfall (mm)	837	837	841
Overall Climatic Grade	1	1	1
Field Capacity Days	183	183	183
Moisture deficit (mm): Wheat	101	98	96
Potatoes	93	89	85

Table 2: Climatic Interpolations: Thornbury, North and East

Table 2:... continued

Grid Reference	ST 664 904	ST 650 921	ST 654 907
Altitude (m)	75	35	43
Accumulated Temperature (day °C)	1454	1499	1491
Average Annual Rainfall (mm)	841	833	839
Overall Climatic Grade	· 1	1	1
Field Capacity Days	184	183	183
Moisture deficit (mm): Wheat	95	99	98
Potatoes	84	90	89

RELIEF

12. Altitude ranges from 13 metres Above Ordnance Datum (AOD) at Lower Morton to 100 metres AOD at Milbury Heath with mainly level $(0-1^{\circ})$, gently sloping $(2-3^{\circ})$ and moderately sloping $(4-7^{\circ})$ gradients. There are two small areas of land, below Milbury Heath and Longman's Grove, which are strongly sloping $(8-11^{\circ})$. These gradients will have a moderate limitation on the agricultural use of the land.

GEOLOGY AND SOILS

13. The underlying geology of the site is shown on the published geology map (IGS, 1981). This shows the southern part of the site, from The Knapp to the north of Crossways Farm, to be underlain by Thornbury Beds of the Upper Silurian Era. The rest of the site is mainly underlain by Dolomitic conglomerate, although there are areas of Keuper Marl to the north of Gravesend and around Longman's Grove. Some Estuarine alluvium is mapped near Park Farm.

14. The soils which were found during the current survey showed evidence of parent materials similar to those of the published geology map. However, differences in their distribution were noted. The area of Dolomitic Conglomerate appeared to be confined to Upper Morton and the Tintern Sandstone Group was not identified. Between Grovesend and Crossways there did not appear to be any distinction between the Thornbury Beds and the Dolomitic Conglomerate.

15. Soils were mapped by the Soil Survey of England and Wales at a reconnaissance scale of 1:250 000 (SSEW, 1983) and this shows that they belong to four main soil associations. The Brockhurst 2 Association is mapped around Newton, Lower Morton and Park Farm. To the south of Newton, as far as Knapp Farm, the Crwbin Association is mapped. Around Crossways soils from the Hodnet Association are mapped and to the south, near Buckover and Grovesend the Bromsgrove Association is mapped. Small areas of soils from the Fladbury 1 and Worcester Associations are mapped near Park Farm and around Longman's Grove respectively. 16. The Brockhurst 2, Bromsgrove and Hodnet Associations are described as being reddish loamy and clayey soils with slowly permeable subsoils developed over Permo-Triassic mudstones. Soils from the Bromsgrove Association are well drained reddish loamy soils over soft sandstone but may be associated with loamy soils with slowly permeable subsoils. The Fladbury 1 soils are stoneless clayey soils variably affected by groundwater while the Crwbin soils are very shallow and well drained over limestone.

17. The soils found during the recent survey were very similar to those mapped by the Soil Survey of England and Wales. The area of Crwbin soils was slightly more extensive than shown on the reconnaissance level map and the soils from the Bromsgrove Association were found throughout the site.

AGRICULTURAL LAND CLASSIFICATION

18. The distribution of ALC grades found by the current survey is shown on the accompanying 1:20 000 scale map and areas are summarised in Table 1. The detail of information shown at this scale is appropriate to the intensity of field survey but could be misleading if enlarged or applied to small areas.

Grade 2

19. The Grade 2 mapping units are subject to a minor workability limitation which may affect cultivations and harvesting. The profiles are well drained and were assessed as Wetness Class I (see Appendix 2). Typically there are medium clay loam topsoils over porous medium clay loam, sandy clay loam and clay subsoils, as shown by soil profile Pits 2, 4 and 11. The topsoil texture reduces the amount of time that the land is in a workable condition. The mapping units tend to be quite uniform although there are a few small areas which are less well drained where there may be a moderate wetness limitation. They were relatively stone free and have no drought limitation.

Subgrade 3a

20. The land mapped as Subgrade 3a tends to have a moderate wetness limitation. This will restrict moderate or high yields to a narrow band of crops as well as limiting cultivation windows. There are three types of profile within the mapping unit. Two of them have gleyed horizons above a slowly permeable subsoil and the other has deep reddish slowly permeable subsoils but no actual gleyed horizon.

21. Pits 8 and 9 are representative of profiles which are not gleyed but have a reddish clayey slowly permeable subsoil. The slowly permeable layers do not however extend to below 100 cm so the profiles were assessed as Wetness Class III. They have medium clay loam topsoils, which in conjunction with the local climate, leads to a moderate wetness limitation.

22. Pit 7 and other borings have similar profiles to those mentioned in Paragraph 21 but the reddish clayey slowly permeable layer extends to below 100 cm. With the slowly permeable layers starting below 48 cm these profiles were also assessed as Wetness Class III, giving a moderate wetness limitation.

23. A few borings within these mapping units have a gleyed horizon present but the slowly permeable layer starts lower down the profile, below 48 cm, so they were still assessed as Wetness Class III.

Subgrade 3b

24. The land mapped as Subgrade 3b around Upper Morton has a moderate depth limitation. These profiles have a medium clay loam topsoil overlying slightly fractured bedrock. The Dolomitic conglomerate occurs within 20-30 cm. This will not only dramatically reduce the amount of easily available water in the soil but it will also restrict the range and type of cultivations which can be satisfactorily carried out.

25. Most of the remaining land which is mapped as Subgrade 3b has a moderate wetness limitation. This will reduce yields to moderate or low levels depending on the crop as well as affecting the timing and type of cultivation and harvesting. These profiles can have gleying present above 40 cm but even where there is no gleyed horizon with the reddish clayey slowly permeable layers starting above 48 cm and continuing to below 100 cm they were assessed as Wetness Class IV.

26. Land mapped as Subgrade 3b below Longman's Grove and Milbury Heath has a moderate limitation to its agricultural use due to its gradient. The gradients found during the survey of 8-11° will restrict the safe and accurate use of some agricultural machinery, thus restricting cropping practises.

H C Lloyd Jones Resource Planning Team FRCA Bristol June 1997

REFERENCES

ADAS RESOURCE PLANNING TEAM, (1975) Agricultural Land Classification Survey of Thornbury Scale 1: 25 000, Reference 45, ADAS Bristol.

INSTITUTE OF GEOLOGICAL SCIENCES (1981) Sheet 250, Chepstow, 1:50 000 series Solid and Drift edition. IGS, London.

HODGSON, J M (Ed) (1974) Soil Survey Field Handbook, Technical Monograph No 5. Soil Survey of England and Wales, Harpenden.

HODGSON, J M (In preparation) Soil Survey Field Handbook, Revised edition.

MAFF (1977) 1:250 000 series Agricultural Land Classification, South West Region. MAFF Publications, Alnwick.

MAFF (1988) Agricultural Land Classification of England and Wales. Revised Guidelines and Criteria for grading the quality of agricultural land. MAFF Publications, Alnwick.

METEOROLOGICAL OFFICE (1989) Climatological Data for Agricultural Land Classification. Meteorological Office, Bracknell.

SOIL SURVEY OF ENGLAND AND WALES (1983) Sheet 5, Soils of South West England, 1:250 000 scale. SSEW, Harpenden.

SOIL SURVEY OF ENGLAND AND WALES (1984) Soils and Their Use in South West England, Bulletin No 14. SSEW, Harpenden.

APPENDIX I

DESCRIPTION OF GRADES AND SUBGRADES

Grade 1 - excellent quality agricultural land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly include top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 - very good quality agricultural land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.

Grade 3 - good to moderate quality agricultural land

Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a - good quality agricultural land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b - moderate quality agricultural land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4 - poor quality agricultural land

Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In most climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 - very poor quality agricultural land

Land with very severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Source: MAFF (1988) Agricultural Land Classification of England and Wales Revised Guidelines and Criteria for Grading the Quality of Agricultural Land, MAFF Publications, Alnwick.

APPENDIX II

DEFINITION OF SOIL WETNESS CLASSES

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile.

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years.

Wetness Class II

The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but not wet within 40 cm depth for more than 30 days in most years.

Wetness Class III

The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31 and 90 days in most years.

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.

Wetness Class V

The soil profile is wet within 40 cm depth for 211-335 days in most years.

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years.

Notes: The number of days specified is not necessarily a continuous period.

'In most years' is defined as more than 10 out of 20 years.

Source: Hodgson, J M (In preparation) Soil Survey Field Handbook, Revised Edition.

APPENDIX III

ABBREVIATIONS AND TERMS USED IN SURVEY DATA

Soil pit and auger boring information collected during ALC survey is held on a computer database and is reproduced in this report. Terms used and abbreviations are set out below. These conform to definitions contained in the Soil Survey Field Handbook (Hodgson, 1974).

1. Terms used on computer database, in order of occurrence.

GRID REF: National 100 km grid square and 8 figure grid reference.

USE: Land Use at the time of survey

WHT:	Wheat	SBT:	Sugar Beet	HTH:	Heathland
BAR:	Barley	BRA:	Brassicas	BOG:	Bog or Marsh
OAT:	Oats	FCD:	Fodder Crops	DCW:	Deciduous Wood
CER:	Cereals	FRT:	Soft and Top Fruit	CFW:	Coniferous Woodland
MZE:	Maize	HRT:	Horticultural Crops	PLO:	Ploughed
OSR:	Oilseed Rape	LEY:	Ley Grass	FLW:	Fallow (inc. Set aside)
POT:	Potatoes	PGR:	Permanent Pasture	SAS:	Set Aside (where known)
LIN;	Linseed	RGR:	Rough Grazing	OTH:	Other
BEN:	Field Beans	SCR:	Scrub		

ASPECT: The aspect of the land.

GRDNT: Gradient as estimated or measured by hand-held optical clinometer.

GLEY, SPL: Depth in centimetres to gleying or slowly permeable layer.

AP (WHEAT/POTS): Crop-adjusted available water capacity.

MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP - crop potential MD)

DRT: Best grade according to soil droughtiness.

If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

M.REL:	Microrelief limitation	FLOOD:	Flood risk	EROSN:	Soil erosion risk
EXP;	Exposure limitation	FROST:	Frost prone	DIST:	Disturbed land
CHEM:	Chemical limitation				

LIMIT: The main limitation to land quality: The following abbreviations are used.

OC:	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
ST:	Topsoil Stoniness				

TEXTURE: Soil texture classes are denoted by the following abbreviations:-

S: SZL:	Sand Sandy Silt Loam	LS: CL:	Loamy Sand Clay Loam	SL: ZCL	Sandy Loam Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C:	Clay
SC:	Sandy clay	ZC:	Silty clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:-

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: heavy (27 - 35% clay)

MOTTLE COL: Mottle colour using Munsell notation.

MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2 - 20% M: many 20 - 40% VM: very many 40%+

MOTTLE CONT: Mottle contrast

- F: faint indistinct mottles, evident only on close inspection
- D: distinct mottles are readily seen
- **P:** Prominent mottling is conspicuous and one of the outstanding features of the horizon.
- **PED. COL:** Ped face colour using Munsell notation.
- GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, and S' will appear.

STONE LITH: Stone Lithology - One of the following is used.

HR:	All hard rocks and stones	SLST:	Soft oolitic or dolimitic limestone
CH:	Chalk	FSST:	Soft, fine grained sandstone
ZR:	Soft, argillaceous, or silty rocks	GH:	Gravel with non-porous (hard) stones
MSST:	Soft, medium grained sandstone	GS:	Gravel with porous (soft) stones
SI:	Soft weathered igneous or metamorph	hic rock	_ 、 ,

Stone contents are given in % by volume for sizes >2cm, >6cm and total stone >2mm.

STRUCT: The degree of development, size and shape of soil peds are described using the following notation

Degree of development		WK:	Weakly developed	MD:	Moderately developed
	•	ST:	Strongly developed		

Ped size	F:	Fine	M:	Medium
	C:	Coarse	VC:	Very coarse
Ped Shape	S:	Single grain	M:	Massive
	GR:	Granular	AB:	Angular blocky
	SAB:	Sub-angular blocky	PR:	Prismatic
	PL:	Platy		

CONSIST: Soil consistence is described using the following notation:

L:	Loose	VF:	Very Friable	FR:	Friable	FM:	Firm
VM:	Very firm	EM:	Extremely firm	EH:	Extremely Ha	rd	

SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness:

G: Good M: Moderate P: Poor

POR: Soil porosity. If a soil horizon has poor porosity with less than 0.5% biopores >0.5mm, a 'Y' will appear in this column.

- IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in SPL: this column.
- CALC: If the soil horizon is calcareous with naturally occurring calcium carbonate exceeding 1% a 'Y' will appear this column. .

.

.

2. Additional terms and abbreviations used mainly in soil pit descriptions.

STONE ASSESSMENT:

VIS:	Visual	S:	Sieve	D:	Displacement	
MOT	TLE SIZE:					
EF: VF: F:	•			M: C:	_	
MOT	MOTTLE SIZE: EF: Extremely fine <1mm					
ROOT	CHANNELS:	In top	osoil the presence	e of 'rus	ty root channels'	should also be noted.
MANO	GANESE CON	CRETIC	ONS: Assesse	d by vol	ume	
N:	None			M:	Many	20-40%
F:	Few	<2%		VM:	Very Many	>40%
C :	Common	2-20%				

STRUCTURE: Ped Development *

WA:	Weakly adherent	M :	Moderately developed
W :	Weakly developed	S:	Strongly developed

POROSITY:

P:	Poor	- less than 0.5% biopores at least 0.5mm in diameter
^ .	Cont	41 0 60/ him and he at 0 forms in diameter

G: Good - more than 0.5% biopores at least 0.5mm in diameter

ROOT ABUNDANCE:

The number of roots pe	r 100cm ² :	Very Fine and Fine	Medium and Coarse
F:	Few	1-10	1 or 2
C :	Common	10.25	2 - 5
M:	Many	25-200	>5
A:	Abundant	>200	

ROOT SIZE

VF:	Very fine	<1mm	M :	Medium	2 - 5mm
F:	Fine	1-2mm	C :	Coarse	>5mm

HORIZON BOUNDARY DISTINCTNESS:

Sharp:	<0.5cm	Gradual:	6 - 13cr	n
Abrupt: Clear:	0.5 - 2.5cm 2.5 - 6cm	Diffuse	:	>13cm

HORIZON BOUNDARY FORM: Smooth, wavy, irregular or broken.*

* See Soil Survey Field Handbook (Hodgson, 1974) for details.

SITE NAI	MÊ	P	ROFI	LE NO.	SLOPE	AND ASPE	CT	LAND USE			Av Rainfall:		837 mm		PARENT MATERIAL		
Thornbury	у	P	Pit 1 (A	ASP 129)	3° East			Реп	manent Grass	5	ATC	D:	1491 day °	с	Dolomitic Con	glomerate	
JOB NO.			DATE		GRID F	REFERENCI	E	DESCRIBED BY		Y	FC	Days:	183		PSD SAMPLES TAKEN		
2/97		2	2/1/97	7	ST 654	40 9110		HLJ				natic Grade:	1		None		
Horizon No.	No. Av. Te: Depth (cm)			Matrix (Ped Face) Colours		Mottling Abundan Type, and Contrast, Method Size and Colour		ze,	e, Mangan Developm Concs Size and Shape		Ped ent	osure Grade: Consistence	1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form
1 23 MCL 75		75YR43	<1% H	R (vis)	None		None	-		-	-	-	MF + VF	-	Clear smooth		
2	2 27 N		L	75YR44	90% HI	R (vis)	None		None	-		-	M * ¹	Good * ²	MF + VF	-	-
Profile Gl	leyed From	n: No	ot gley	ved		Available	Water W	/heat:	: 53 mr	n			Final ALC	Grade:	3b		4
Depth to S Permeable Wetness (e Horizon	: No I	o SPL			Moisture D	Deficit W	otatoe Vheat:	: 98 mr	n			Main Limiti	ing Factor(s	s): Depth and	drought	
Wetness (Grade:	2				Moisture E		otatoe /heat:									
							Po	otatoe	es: -36 m	m			Remarks:	$*^2$ as	sumed sumed	provo aver :f	aalaulatad
						Droughtine	ess Grade: 3	Ь	(Calco	ulated to 80	cm)				MDP will not im w 80 cm	prove even if	calculated

.

SITE NA	ME	PRO	FILE NO.	SLOPE	AND ASPE	CT	LAND USE			Av Rainfall:		837 mm		PARENT MATERIAL		
Thornbur	у	Pit 2		Flat			Plou	ighed		ATO:		1491 day °	с	Dolomitic Con	glomerate	
JOB NO.	······	DAT	ĨE.	GRID	REFERENC	E	DESCRIBED BY		Y	FC Days:		183		PSD SAMPLES TAKEN		
2/97		22/1	/97	ST 637	73 9152		нл			Climatic Gr		1		None		
Horizon No.	Lowest Av. Depth (cm)	Texture	Matrix (Ped Face) Colours	Stoniness: Size,Type, and Field Method		Mottling Abundance, Contrast, Size and Colour		Mangan Concs	Structure: Developme Size and Shape			1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form
1	1 28 MCL 05		05YR43	<1% H	1% HR (vis) N			None	-	-		-	-	CF + VF	-	Clear smooth
2 90		SCL	05YR44	<1% H	R (vis)	None		Few	MMSAB	* Frial	ble	Good	Good	FF + VF	-	-
Profile G	leyed Fron	n: Notgl	leyed	•	Available	Water W	/heat:	190 m	1m			Final ALC	Grade:	2	L	L
Depth to Permeabl	e Horizon	: No SF I	ኒ		Moisture D		otatoe: Vheat:					Main Limit	ing Factor(s): Workabili	y	
Wetness		2			Moisture B		otatoe: /heat:									
							otatoes					Remarks:	* son	ne coarse		
					Droughtine	ess Grade: 1		(Calco	ulated to 120) cm)						

SITE NA	ME		PROI	FILE NO.	SLOPE	AND ASPE	ECT	LAN	D USE		Av Rainfall:		837 mm		PARENT MATERIAL			
Thornbur	у		Pit 3	(ASP 33)	Flat			Ley			ATO:		1491 day %	с	Dolomitic Con	glomerate		
JOB NO.			DAT	E	GRID I	REFERENC	E	DESC	CRIBED B	Y	FC Days:		183		PSD SAMPLE	S TAKEN		
2/97			29/1/	97	ST 637	3 9194		PRW/HLJ			Climatic Grad		1			S:66; Z: 18; (S:71; Z:14; C		
Horizon No.	Lowest Av. Depth (cm)	Te	xture	Matrix (Ped Face) Colours	Stonine Size,Ty Field M	pe, and	Mottling Abundanc Contrast, Size and Colour	-	Mangan Concs	Structure: F Developme Size and Shape	ed	s	Structural Condition	Pores (Fissures)	Roots:	Calcium Carbonate Content	Horizon Boundary: Distinctnes and form	
1	25	N	ASL	10YR32	<1% H	R (vis) '	None		None	-	-		*	Good	MF+VF	-	Clear smooth	
2	56	s	CL*⁴	10Y61 10YR62	<1% H	R (vis)	CDFO (10YR56		Few	MCPr* ¹	Friabl	le I	Moderate	Poor	CF+VF* ²	-	Clear smooth	
3	90	L	.MS	05YR46	<1% H	R (vis)	FFFO (75YR5)		None	WCSAB	Very fria	iable I	Moderate	Poor* ³	CF+VF	-	-	
Profile G	leyed Fror	n:	25 cm			Available	Water W	Vheat:	119 п	າກາ		F	Final ALC (Grade:	3b			
Depth to Permeabl	Slowly le Horizon	:	25 cm	(to 56 cm)		Moisture I		otatoes: Vheat:	:: 102 m 98 mr			N	Main Limiti	ing Factor(s	s): Wetness			
Wetness	Class:		IV				Po	otatoes	: 89 mr	n								
Wetness	Grade:		3b			Moisture E	Balance W	Vheat:	21 mr	n			Remarks:	Wate	r coming in at 7			
							Pe	otatoes	:: 13 mr	n			A A A A A A A A A A A A A A A A A A A	$*^1$ clo	ose to weak	5 011		
						Droughtine	ess Grade: 2	2	(Calci	ulated to 120	cm)			* ³ bo * ⁴ ve	ainly ex-ped rderline ry variable textu an SPL and to h			

SITE NAI	MÈ		PROI	FILE NO.	SLOPE	AND ASPE	LAND U	JSE		Av Rainfall:	837 mm		PARENT MA	TERIAL		
Thornbury	у		Pit 4	(ASP 10)	1° Nort	h		Permaner	nt Grass	s	ATO:	1491 day °	C	Dolomitic Cor	glomerate	
JOB NO.			DAT	E	GRID I	REFERENCI	ε	DESCRI	BED B	Y	FC Days:	183		PSD SAMPLE	S TAKEN	
2/97			29/1/	97	ST 638	8 9224		PRW/HLJ			Climatic Grade:	1		None		
Horizon No.	Lowest Av. Depth (cm)	Tex	ture	Matrix (Ped Face) Colours	Stonine Size,Ty Field M	Type, and Contrast,			Mangan Structure: Developm Concs Size and Shape			1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctnes and form
1	24 MCL 10YR32 None (vis) None				No	one	-	-	Moderate	e Good	CF + CVF	-	Clear wav			
2	42	42 SCL 7.5YR43 <1% HR (vis) None (7.5YR42)				'ew dium	WCSAB	Friable	Moderate	te Good	CF + CVF	-	Clear smooth			
3	55		с	7.5YR42		layer of R on top of None n 4		Few medium		MCSAB	Friable	Moderate	Good	FF + FVF	-	Abrupt smooth
4	80		с	5GY61	None (vis)	None	N	one	Massive to WCSAB	Firm	Poor (moderate)	Poor	FF	-	-
Profile Gl	leyed Fron	n: I	Not gl	eyed		 Available '	Water W	heat:	131 m	m		Final ALC	Grade:	2		
Depth to S Permeable Wetness (Wetness (e Horizon: Class:		No SP I 2	Ľ		Moisture I	Deficit W	otatoes: /heat: otatoes:	109 m 98 mr 89 mr	n		Main Limit	ing Factor(s): Workabili	ÿ	
in ethicsis (onde.		-			Moisture E		heat:	33 mr 20 mr			Remarks:	mang	con 4 is not an S ganese seen in H one layer. No si	2 and H3 are	caused by
						Droughtine	ess Grade: 1		(Calc	ulated to 120 o	cm)			fore no depth lin		

SITE NA	ME		PROF	FILE NO.	SLOPE	E AND ASPI	ECT	LA	LAND USE			Rainfall:	837 mm		PARENT MATERIAL		
Thornbury	у		Pit 5	(ASP 54)	1º Nori	h		Per	manent Gras	s	АТ	°O:	1491 day °	С	Dolomitic Con	glomerate	
JOB NO.			DATI	£	GRID	REFERENC	E	DESCRIBED BY			FC	Days:	183		PSD SAMPLES TAKEN		
2/97			29/1/	97	ST 648	5 9180		PRW/HLJ				matic Grade:	1		None		
Depth (cm)			cture	Matrix (Ped Face) Colours	Stoniness: Size,Type, and Field Method		Mottling Abundance, Contrast, Size and Colour		Mangan Concs	Structure: I Developme Size and Shape	Ped	posure Grade: Consistence	1 Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctnes and form
1 20		N	1CL	7.5YR43	1% HR	(VIS)	None		None	-		-	-	-	MF + VF	-	Clear smooth
2 25* ² 1		N	ICL	7.5YR44	80% H	R (VIS)	None		None	-		-	M* ¹	Good* ¹	MF + VF	-	-
Profile Gl	leyed From	n:	Not gle	eyed	L	Available	Water W	/heat:	: 49 mr	n		<u>I</u>	Final ALC	Grade:	3b	J	L
Depth to S Permeable	e Horizon		No SPI	L		Moisture I		otatoo Vheat					Main Limit	ing Factor(s): Drought an	nd depth	
Wetness (I 2				Po	otato	es: 89 mi	n							
						Moisture E	Balance W	Vheat	:: -49 m	ım			Remarks:	* ¹ as:	sumed		
							Ро	otato	es: -39 m	ım				* ² 24	-28 cm in pit MBP will not im	prove even if	calculated
						Droughtine	ess Grade: 3	Ь	(Calc	ulated to 80 c	cm)				v 80 cm	•	

.

SITE NA	ME	PF	OFILE NO.	SLOPE	AND ASPE	ECT	LĂ	ND USE		Av	v Rainfall:	837 mm		PARENT MA	TERIAL	
Thornbury		Pi	Pit 6 (ASP 42)		1°			rmanent Grass	S	A1	ГО:	1491 day °	с	Dolomitic Con	glomerate	
JOB NO.	<u> </u>	D	DATE		GRID REFERENCE		DESCRIBED BY			FC	C Days:	183		PSD SAMPLE	S TAKEN	
2/97		29	/1/97	ST 650	0 9195		PRW/HLJ			Cl	imatic Grade:	1		None		
											posure Grade:	1				
Horizon No.			xture (Ped Face) Size,Ty Colours Field M		ype, and Contrast,		e, Mangan Concs		Structure: Developme Size and Shape		Consistence	Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form
1				None			None	-		-	Moderate	Good	MF + MVF	-	Clear smooth	
2	35 HCL 75YR44 2%>2cm 35% > 2 37% HR				mm None sieved			None	WCSAI	3	Friable	Moderate	Good	CF + CVF	-	Abrupt wavy
3	45+	с	-	90% Fra (vis)	ctured HR	None		None	-		-	Moderate* ¹	-	FF	-	-
Profile G	leyed Fror	n: Not	gleyed		Available '	Water W	/heat	t: 53 mr	n			Final ALC	Grade:	3b		
Depth to Slowly Permeable Horizon: No SPL Moisture Defic							otato Vheat					Main Limiting Factor(s): Drought				
Wetness	Wetness Class: I						otato	es: 89 mr	n							
Wetness	Wetness Grade: 2															
					Moisture E	Balance W	/heat	t: -45 m	m			Remarks:	Za da	vert h		
	Potatoe							es: -35 m	m			Remarks:	3a de * ¹ as	sumed		
Droughtiness Grade: 3b (Calculated to 180 cm))								

•

SITE NA	ME	PRO	OFILE NO.	SLOPE	AND ASPI	ECT	LAND USE	2	A	v Rainfall:	893 mm		PARENT MATERIAL				
Thornbur	у	Pit '	7	2° Wes	t		Permanent	grass	A	TO:	1491 day °	с	Thornbury Bec Sandstone	ls - Lower Ol	d Red		
JOB NO.		DA	TÉ	GRID F	REFERENC	E	DESCRIBED BY			C Days:	183		PSD SAMPLES TAKEN				
2/97		6/2/	97	ST 656	8 9085		PRW/HLJ			imatic Grade: posure Grade:	1		SCL S:51; Z:30; C:19				
Horizon No.			Matrix (Ped Face) Colours	Stonine Size,Ty Field M	pe, and	Mottling Abundance Contrast, Size and Colour	e, Manga Concs	1 Dev	icture: Ped velopment e and	1	Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form		
1 26 SCL 75YR43				<1% H	HR (VIS) Nor		Non	e	-	-	-	-	MF + VF	-	Clear smooth		
2	2 48 C 25 05			0% (VI	S)	None	Comm	on M	ICSAB* ¹	Firm	Moderate	Poor	CF + VF* ²	-	Gradual smooth		
3	70 C 25YR44 0% (V 05Y63				IS) None		Man	y V	WCSAB	Firm	Poor	Poor	FF + VF	-	Clear smooth		
4	83	С	25YR44 059Y71	0% (VI	/IS) Nor		Man	y 1	WCSAB	Firm	Poor	Poor	FF + VF	-	Clear wavy		
5	120+	с	05YR74	0% (VI	S)	None	Few WI		Massive	Firm	Poor	Poor	VFVF	-	-		
Profile G	leyed From	n: Not g	gleyed		Available	Water W	heat: 1	31 mm			Final ALC	Grade:	3a/3b	<u> </u>	<u> </u>		
Depth to Permeabl Wetness	e Horizon Class:	: 48 cr 111/1 3a/3t	1	Moisture I	Deficit W	/heat: 9	08 mm 8 mm 9 mm			Main Limit	ing Factor(s	r(s): Wetness					
					Moisture E Droughtine		otatoes: 1	3 mm 9 mm Calculated	i to 120 cm)	Remarks:	* ¹ an * ² ma	nty of sphagumm on the surface ingular and prismatic tendencies najority of roots are ex-ped or in one or two worm channels				

SITE NA	ME	PRO	FILE NO.	SLOPE	AND ASPE	ECT	LAND	O USE		Av	Rainfall:	893 mm		PARENT MA	FERIAL	
Thornbur	у	Pit 8	8 (ASP 57)	0°			Perma	inent grass		AT	0:	1491 day °	с	Keuper Marl		
JOB NO.		DA'	ГЕ	GRID	GRID REFERENCE			DESCRIBED BY			Days:	183		PSD SAMPLES TAKEN		
2/97		6/2/	97	ST 652	7 9177		PRW/HLJ				matic Grade:	1		None		
Horizon No.	1 1		Matrix (Ped Face) Colours	Stonine Size,Ty Field M	ype, and Contrast,		e, Mangan Concs		Structure: P Developme Size and Shape	Ped	Consistence	Structural Pores Condition (Fissu		Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form
1				None ((vis) None			None	•		Friable	Moderate	Good	MF + MVF	-	Clear smooth
2				<1% (S MSST	Sandstone) None (vis)			Few	MCSAB (weakly prismatic)		Friable	Moderate	Good	MF + MVF	-	Clear wavy
3	75	с	2.5YR43	None (vis)	is) None		Common	MCAB		Firm	Moderate	Poor	FF + FVF	-	Clear smooth
4	90	с	5GY61	3% MS	SST (vis)	None	С	Common MMSAE			Firm	Good	Poor	FF + FVF	-	-
Profile G	leyed Fron	n: Notg	leyed		Available Water Wheat: 170 mm							Final ALC	Grade:	3a		
Permeabl	Depth to Slowly Permeable Horizon: 35 (to 75) cm Wetness Class: III Wetness Grade: 3a					Potatoes: 116 mm Moisture Deficit Wheat: 98 mm Potatoes: 89mm						Main Limit	ing Factor(s): Wetness		
wetness	Moisture Balance Wheat: 72 mm Potatoes: 27 mm										Remarks:	Weat horize	hering soft sand	stone fragme	nts in	
Droughtiness Grade: 1 (Calculated to								ilated to 120	cm)							

SITE NA	ME		PRO	FILE NO.	SLOPE	AND ASPE	ECT	LAN	ND USE		Av Rai	infall:	893 mm		PARENT MA	TERIAL			
Thornbur	ry		Pit 9 (ASP	° 210-211)	4º Nort	4° North West			ighed		ATO:		1491 day °	с	Dolomitic Conglomerate				
JOB NO.	_ ,		DAT		GRID REFERENCE			DES	DESCRIBED BY		FC Da	ys:	183		PSD SAMPLES TAKEN				
2/97			6/2/9	7	ST 658	3 8992		HLJ.	/PRW			natic Grade: osure Grade:	1		MSL S:61; Z:23; C:16				
Horizon No.			Matrix (Ped Face) Colours		Stonine Size,Ty Field M	pe, and	Mottling Abundanc Contrast, Size and Colour		Mangan Concs	Structure: F Developme Size and Shape	Ped ent		Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form		
			MSL 7.5YR43 SCL 7.5YR44		1% HR				None	-		-	-	-	CF + VF	-	Clear smooth Clear smooth		
					2% HR				None	WCSAB	3	Friable	Moderate	Poor * ¹	CF + VF	-			
3	3 60 - 90		с	0.5YR44 * ⁵	2% HR	(VIS) None			None	WCSAB	3	Firm	Moderate	Poor	CF+VF (ex-ped)	-	Clear irregular		
4	90+		C 0.5YR44		85% H	R (VIS)* ²	(VIS)* ² None		None	-		-	Moderate Good* * ³		FF + VF	-	-		
Profile G	ileyed Fror	n:	Not gl	eyed		Available	Water W	Wheat: 107 mm				Final ALC Grade:			3a				
Depth to Slowly Permeable Horizon: 48 to 60-90 Wetness Class: III						Moisture I	Deficit W	Vheat:	otatoes: 112 mm Vheat: 98 mm otatoes: 89 mm				Main Limit	ing Factor(s	s): Wetness				
Wetness	Grade:		3a			Moisture E		/heat:					Remarks:		bordeline				
						Droughtine	Pc ess Grade: 2	otatoes		n ulated to 120	cm)			* ³ as: * ⁴ as: * ⁵ ex exter	nestone sumed sumed due to sto tensive, silky bla iors and in fissua ulate H3 to 75 cr	ack substance res of H3 - or	•		

ME	PRO	FILE NO.	SLOPE	E AND ASPI	ECT	LAND USE		Av	Rainfall:	893 mm		PARENT MATERIAL				
у	Pit 1	0 (ASP 156)	3° Sou	th East		Fallow		AT	°O:	1491 day '	°C	Thornbury Rec Sandstone	ls - Lower Ol	d Red		
	DAT	Ъ.	GRID	REFERENC	E	DESCRIBE) BY	FC	Days:	183	-	PSD SAMPLES TAKEN				
	3/39	7	ST 6596 9084			HLJ				1		MCL S:36; Z:41; C:23				
Lowest Av. Depth (cm)	Texture	Matrix (Ped Face) Colours		ess: Abundation Abunda		e, Mangan Concs		Ped		Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form		
1 24 MCL 7.5YR43 <1% I					None	None	-		-	-	-	FF + VF	-	Clear smooth		
2 * ² 32 C 7.5YR54 <1% H							n -		-	Moderate (assumed)	-	-	-	Gradual wavy		
57 C (05YR53, None					VIS) None				Firm * ²	Moderate	Poor	VFF + FVF* ³	-	Gradual smooth		
100+	С	2.5YR44, 46	None (VIS)	None	None	or massi breakin	ve g	Firm * ⁵	Moderate	Poor	VFVF	-	-		
leyed Fron	n: Not gl	leyed	_	Available	Water W	heat: 14	1 mm			Final ALC Grade: 3b						
Class:	IV	00+ cm		Moisture I	Deficit W	/heat: 98	mm			Main Limit	ing Factor(s)): Wetness				
M						Moisture Balance Wheat: 43 mm Potatoes: 28 mm Droughtiness Grade: 1 (Calculated to 120					* ² plastic * ³ larger ones are ex-peo 0 cm) * ⁴ breaking to WMAB					
	y Lowest Av. Depth (cm) 24 32 57 100+ leyed From Slowly e Horizon:	y Pit 1 DAT 3/39 Lowest Av. Depth (cm) Texture 24 MCL 32 C 57 C 100+ C 100+ C leyed From: Not gl Slowly e Horizon: 32 - 1 Class: IV	y Pit 10 (ASP 156) DATE 3/397 Lowest Av. Depth (cm) 24 MCL 7.5YR43 32 C 7.5YR43 32 C 7.5YR54 57 C 2.5YR44 (05YR53, 54) 100+ C 2.5YR44, 46 leyed From: Not gleyed Slowly e Horizon: $32 - 100+$ cm Class: IV	y Pit 10 (ASP 156) 3° Sou DATE GRID 3/397 ST 659 Lowest Av. Depth (cm) Texture Matrix (Ped Face) Colours Stoning Stoning (Ped Face) Colours (Ped Face) Colours (Ped Face) Colours (Ped Face) Colours (Ped Face) Colours (Ped Face) Stoning Ston	yPit 10 (ASP 156) 3° South EastDATEGRID REFERENCE $3/397$ ST 6596 9084Lowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoniness: Size,Type, and Field Method24MCL7.5YR43 $<1\%$ HR (VIS)32C7.5YR54 $<1\%$ HR (VIS)32C7.5YR54 $<1\%$ HR (VIS)32C2.5YR44 (05YR53, 54)None (VIS)100+C2.5YR44, 46None (VIS)100+Slowly e Horizon:Not gleyedAvailable T Moisture I Moisture I Moisture ISlowly e Horizon:100+ cmTMoisture I Moisture I	y Pii 10 (ASP 156) 3° South East DATE GRID REFERENCE 3/397 ST 6596 9084 Lowest Av. Depth (cm) Texture Matrix (Ped Face) Colours Size,Type, and Field Method Size,Type, and Field Method Size and Colour 24 MCL 7.5YR43 <1% HR (VIS) None 32 C 7.5YR54 <1% HR (VIS) CFFO (75YR56 57 C 2.5YR44 (05YR53, S4) None (VIS) None 100+ C 2.5YR44, None (VIS) None leyed From: Not gleyed Slowly e Horizon: $32 - 100 + \text{ cm}$ Class: IV Grade: $3b$ Available Water W Moisture Deficit W Po	yPit 10 (ASP 156) 3° South EastFallowDATEGRID REFERENCEDESCRIBED $3/397$ ST 6596 9084HLJLowest Av. Depth (cm)TextureMatrix (Ped Face) ColoursStoniness: Size,Type, and Field MethodMottling Abundance, Contrast, Size and ColoursMangan Concs24MCL7.5YR43<1% HR (VIS)	y Pit 10 (ASP 156) 3° South East Fallow DATE GRID REFERENCE DÉSCRIBED BY $3/397$ ST 6596 9084 HLJ Lowest Av. Depth (cm) Texture Matrix (Ped Face) Colours Stoniness: Size,Type, and Field Method Mottling Abundance, Colours Mangan Concs Structure: Developm Size and Colour 24 MCL 7.5YR43 <1% HR (VIS)	y Pit 10 (ASP 156) 3° South East Fallow Av DATE GRID REFERENCE DESCRIBED BY PC $3/39^7$ ST 6596 9084 HLJ Ex Lowest Texture Matrix Stoniness: Mottling Mangan Structure: Ped Development Δv_{cm} Texture Matrix Stoniness: Stoniness: Mottling Mangan Structure: Ped Development Δv_{cm} Texture Matrix Stoniness: Stoniness: Av Stontrast, Size and Stones Structure: Ped Development Store and Structure: Ped Development Store and Store and Stare and St	y Pit 10 (ASP 156) 3° South East Fallow Av Rainfall: ATO: DATE GRID REFERENCE DESCRIBED BY FC Days: Climatic Grade: Exposure Grade: 13/397 ST 6596 9084 HLJ Climatic Grade: Exposure Grade: Lowest Av. Depth (cm) Texture Matrix (Ped Face) Colours Stoniness: Size,Type, and Field Method Mangan Coltrast, Size and Colour Mangan Concs Structure: Ped Development Size and Shape Consistence 24 MCL 7.5YR43 <1% HR (VIS)	yPit 10 (ASP 156) 3° South EastFallowAV Rainfall:893 mm ATO:1491 day GDATEGRID REFERENCEDESCRIBED BY HLJFC Days:1833/397ST 6596 9084HLJFC Days:183Climatic Grade:1Lowest Av. PettineMatrix (Ped Face) ColoursStoniness: Size,Type, and Field MethodMottling Abundance, ColoursMangan Contrast, Size and ColoursStructure: Ped DevelopmentStructure: Ped DevelopmentStructure: ConsistenceStructural ConsistenceStructural Condition24MCL7.5YR43<1% HR (VIS)	y Pit 10 (ASP 156) 3° South East Fallow A7 Rainfall: 893 mm y DATE GRID REFERENCE DÉSCRIBED BY PC Days: 1491 day °C 3/397 St 6596 9084 HLJ Climatic Grade: 1 1 Lowest Av. Perture Matrix Stoniness: Motting Moundance, Mangan Structure: Ped Development Consistence Structural Pores Lowest Matrix Stoniness:: Stoniness:: Stoniness:: Concrast, Standance, Mangan Structure: Ped Development Consistence Structural Pores 24 MCL 7.5YR43 <1% HR (VIS)	y Pit 10 (ASP 156) 3° South East Fallow Av Rainfall: 893 mm ATO: 1491 day °C 1491 day °C Thombury Resultance Stadstone 3/397 GRID REFERENCE DESCRIBED BY PC Days: 183 MCL S.36 1000000000000000000000000000000000000	y Pit 10 (ASP 156) 3° South East Fallow A7 Rainfall: 893 mm A70 A7 A7 A7 A7 A70 A70<		

SITE NA	ME	PRO	FILE NO.	SLOPE	E AND ASPE	ECT	LAN	ID USE		A	v Rainfall:	837 mm		PARENT MA	TERIAL		
Thornbur	у	Pit 1	Pit 11 (ASP 230)		3° North West			nanent Gras	s	A	ro:	1491 day °	с	Keuper Marl			
JOB NO.		DA	TE	GRID	GRID REFERENCE			DESCRIBED BY			C Days:	183		PSD SAMPLES TAKEN			
2/97		3/39	97	ST 6527 8942			ны			ļ	imatic Grade: coosure Grade:	1		None			
Horizon No.			Matrix (Ped Face) Colours	Stonine Size,Ty Field N	ype, and Contrast,			Mangan Concs	Structure: 1 Developme Size and Shape	Ped		Structural Condition	Pores (Fissures)	Roots: Abundance and Size	Calcium Carbonate Content	Horizon Boundary: Distinctness and form	
1	29 MCL 10YR43 1% HI			1% HR	(VIS)	(VIS) None		None	-		-	-	Good	CF + VF	-	Clear smooth	
2	57 MCL 10YR44 1% HI			1% HR	(VIS)	None		None	MMSAI	B	Friable	Moderate	Good	CF + VF	-	Clear smooth	
3	90+	с	25YR44	0% (V)	(S)	None		Few	ММАВ	3	Firm	Moderate	Good	FF + VF	-	-	
Profile G	leyed Fron	n: Not g	leyed		Available Water Wheat: 142 mm							Final ALC	Grade:	2			
Permeabl	Depth to Slowly Permeable Horizon: No SPL Wetness Class: I					Potatoes: 117 mm Moisture Deficit Wheat: 98 mm						Main Limiting Factor(s): Workability					
Wetness	Wetness Grade: 2					Po	otatoes	s: 89 mi	m								
Wetheas	Moisture Balance						e Wheat: 44 mm Potatoes: 28 mm					Remarks:					
		Droughtine	ess Grade: 1	(Calculated to 120)			1)										