A1 Winchester District Local Plan Site 137 Lovedon Lane Kings Worthy Agricultural Land Classification ALC Map and Report July 1994

Ē

l

AGRICULTURAL LAND CLASSIFICATION, REPORT

WINCHESTER DISTRICT LOCAL PLAN SITE 137 LOVEDON LANE KINGS WORTHY

1 Summary

- 11 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in the Winchester district of Hampshire The work forms part of MAFF's statutory input to the Winchester District Local Plan
- 1 2 Site 137 comprises approximately 15 hectares of land to the east of the village of Kings Worthy in Hampshire An Agricultural Land Classification (ALC) survey was carried out in July 1994 The survey was undertaken at a detailed level of approximately one boring per hectare A total of 17 borings and three soil inspection pits were assessed in accordance with MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which it s physical or chemical characteristics impose long term limitations on it s use for agriculture
- 1 3 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 1 4 At the time of the survey the land was in stubble
- 15 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading. This map supersedes any previous ALC survey information for this site.

Table 1 Distribution of Grades and Subgrades

Grade	Aren (hn)	% of Site
2	19	12 9
3a	10 7	72 8
3b	<u>21</u>	<u>14 3</u>
Total area of Site	14 7ha	100%

16 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield

17 The agricultural land at this site has been classified as very good quality (Grade 2) to moderate quality (Subgrade 3b) including a substantial proportion of good quality (Subgrade 3a) Principal limitations include soil workability and soil droughtiness Soil workability restrictions (Grade 2) occur here because of local climatic parameters which cause the moderately textured topsoils found at this site to be prone to structural damage during wetter periods Soil droughtiness which occurs over the majority of the site is either due to moderate proportions of weathered chalk and flints in the soil matrix overlying solid chalk at moderate depths (Subgrade 3a) or solid chalk underlying the soil at shallow depths (Subgrade 3b) The effect of these is to restrict plant rooting depths and thereby reduce the effective available water capacity of the soil such that there is a moderate to severe risk of drought stress to plants in most years

2 Climate

- 2 1 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 2 2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality
- 2 3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site
- 2.4 According to unpublished Met Office data (1971) part of the site towards the south is shown as being frost prone However climatic and soil factors interact to influence soil wetness workability and droughtiness limitations which are of greater significance to land quality than frost such that this does not affect the final classification

Table 2 Climatic Interpolation

Grid Reference	SU495328
Altitude (m AOD)	52
Accumulated Temperature	1487
days Jan June)	
Average Annual Rainfall (mm)	807
Field Capacity Days	176
Moisture deficit wheat (mm)	105
Moisture deficit potatoes (mm)	98
Overall Climatic Grade	1

3 Relief

3 1 The site lies at an altitude of 55 70 m AOD falling gently from north to south in the form of a dry valley Nowhere on the site does relief or gradient affect agricultural land quality

4 Geology and Soils

- 4 1 The published geological information (BGS 1975) shows the entire site to be underlain by Cretaceous Upper Chalk comprising soft white chalk with many flint nodules
- 4 2 The published soils information (SSEW 1983) shows the site to be underlain by soils of the Andover 1 Association The legend accompanying the map describes these as Shallow well drained calcareous silty soils over chalk on slopes and crests Deep calcareous and non calcareous fine silty soils in valley bottoms. Soils of this broad nature were found at the site following the pattern described 1 e shallow and silty over chalk on the slopes to the east of the site and deeper silty flinty and chalky towards the valley bottom. However some deeper silty soils with chalky drift were encountered on slopes towards the west of the site.

5 Agricultural Land Classification

- 5 1 Paragraph 1 5 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

Grade 2

5 3 Land of very good quality has been mapped towards the south west of the site on the land of lowest altitude The principal limitation is soil workability Profiles typically comprise a very slightly stony (c 3% v/v flints) medium silty clay loam topsoil over a similarly stony medium silty clay loam upper subsoil passing to a similarly textured horizon containing c 3% flints and c 3% weathered chalk This overlies between 70 and 85cm a slightly stony (c 5 15% v/v flints and up to c 5% v/v weathered chalk) heavy silty clay loam lower subsoil which extends to depth Due to the prevailing relatively wet nature of the local climate and the medium workability status of the topsoils this area is very slightly restricted by soil workability as during wetter periods the topsoil could be prone to structural damage were trafficking of stock or machinery to take place

Subgrade 3a

54 Land of good quality has been mapped for the majority of this site The principal limitation is soil droughtiness. Soil profiles fall into two units The first covers the west of the site and is found on shallow slopes Typically profiles comprise a very slightly stony (c 3 5% v/v flints) occasionally very slightly chalky (up to c 5% v/v weathered chalk) medium silty clay loam topsoil This passes to a similar upper subsoil which commonly overlies a shallow moderately chalky (c 15 30% weathered chalk) medium silty clay loam horizon This passes to chalky drift (a pale very chalky (c 50 60% weathered chalk) solid chalk derived periglacial deposit) which overlies hard solid chalk between c 40 and 70cm into which roots were visible for about 7cm in the pit observation 3p (see Appendix III) The restriction of rooting depth due to the chalk causes a reduction in available water such that there is a moderate risk of drought stress occurring to plants in most years

The second soil unit occurs towards the north east of the site and is typically shown by the pit observation 2p (see Appendix III) The profiles comprise a very slightly stony (c 3 5% v/v flints) medium silty clay loam topsoil passing to a slightly stony (c 5 12% v/v flints) medium or heavy clay loam upper subsoil which was commonly impenetrable to the soil auger between c 40 and 50cm In the pit observation this was found to pass to a moderately stony (20% v/v flints 15%>2cm and c 15% weathered chalk) medium silty clay loam horizon This passes at 57cm to chalky drift into which roots were visible for approximately 13cm However there was no physical reason why roots could not extend to the solid chalk encountered in the pit at 82cm As above the restriction of rooting caused by the chalk means that there is a reduction in water available to plants such that within the local climatic parameters Subgrade 3a is appropriate for these areas

Subgrade 3b

5 5 Land of moderate quality (Subgrade 3b) has been mapped on the slopes towards the east of the site The principal limitation is soil droughtiness Typically soils in this area comprise a slightly stony and chalky (c 3% v/v flints and 10% v/v weathered chalk) medium silty clay loam topsoil commonly passing to a shallow very chalky (c 50% v/v weathered chalk) medium silty clay loam subsoil This directly overlies blocky chalk between 25 and 28cm into which in the pit observation 1p (see Appendix III) roots were visible for 35cm The reduction in rooting depth that the chalk causes leads to a severe restriction in plant available water such that drought stress to plants is likely in most years

ADAS Ref 1513/119/94 MAFF Ref EL15/594 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1975) Sheet 299 Winchester 1 50 000 Drift Edition

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1971) Unpublished Climate data relating to 1 63 360 Sheet 168

Meteorological Office (1989) Climatic datasets for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet No 6 Soils of South East England 1 250 000 and Accompanying Legend

Soil Survey of England and Wales (1984) Soils and their use in South East England Bulletin No 15

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or hard uses with relatively little potential for a return to agriculture including housing industry commerce education transport religious buildings cemeteries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non agricultural

Soft uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to soft after uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (e.g. polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above e g buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

DEFINITION OF SOIL WETNESS CLASS

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for 31 90 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth fro more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years

Wetness Class V

The soil profile is wet within 40 cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Sample Point MapSoil Abbreviationsexplanatory noteDatabase Printoutsoil pit informationDatabase Printoutboring level informationDatabase Printouthorizon level information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a database This has commonly used notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA Arable	WHT Wheat	BAR Barley
CER Cereals	OAT Oats	MZE Maize
OSR Oilseed rape	BEN Field Beans	BRA Brassicae
POT Potatoes	SBT Sugar Beet	FCD Fodder Crops
LIN Linseed	FRT Soft and Top Fruit	FLW Fallow
PGR Permanent Pastu	re LEY Ley Grass	RGR Rough Grazing
SCR Scrub	CFW Coniferous Woodland	DCW Deciduous Wood
HTH Heathland	BOG Bog or Marsh	FLW Fallow
PLO Ploughed	SAS Set aside	OTH Other
HRT Horticultural Cro	ops	

- 3 **GRDNT** Gradient as measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in cm to gleying or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant an entry of Y will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrostDISTDisturbed landCHEMChemical limitation

9

LIMIT The main limitation to land quality The following abbreviations are used

0 C	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТΧ	Topsoil Texture	DP	Soil Depth ST Topsoil Stones
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

SL Sandy Loam LS Loamy Sand S Sand SZL Sandy Silt Loam CL Clay Loam ZCL Silty Clay Loam SCL Sandy Clay Loam ZC Silty Clay C Clay SC Sandy Clay OL Organic Loam P Peat Sandy Peat SP **LP** Loamy Peat PL Peaty Loam **PS** Peaty Sand MZ Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of prefixes

F Fine (more than 66% of the sand less than 0 2mm)

- M Medium (less than 66% fine sand and less than 33% coarse sand)
- **C** Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40 VM very many 40%

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen

P prominent mottling is conspicuous and one of the outstanding features of the horizon

5 PED COL Ped face colour

6 **STONE LITH** One of the following is used

HR all hard rocks and stonesSLST soft colutic or dolumitic limestoneCH chalkFSST soft fine grained sandstoneZR soft argillaceous or silty rocksGH gravel with non porous (hard) stonesMSST soft medium grained sandstoneGH gravel with non porous (hard) stonesSI soft weathered igneous/metamorphic rockGH gravel with non porous (hard) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

7 **STRUCT** the degree of development size and shape of soil peds are described using the following notation

degree of developmentWK weakly developedMD moderately developedST strongly developedped sizeF fineM mediumC coarseVC very coarseped shapeS single grainM massiveGR granular AB angular blockySABsub angular blockyPR prismatic PL platy

8 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 9 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 10 **POR** Soil porosity If a soil horizon has less than 0 5% biopores >0 5 mm a Y will appear in this column
- 11 **IMP** If the profile is impenetrable a Y will appear in this column at the appropriate horizon
- 12 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 13 CALC If the soil horizon is calcareous a Y will appear in this column

14 Other notations

- APW available water capacity (in mm) adjusted for wheat
- APP available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name	WINCHEST	TER LP SI	TE 137			Pit	Number	r	1	Ρ				
G 1d Ref	G id Ref ce SU49703300 Average A al Ra fall 807mm A cum lated Temperature 1487 degre F eld Capac ty Le el 176 days La d Use Slope and Aspect 01 deg ees						7 degree days	gree days s						
HORIZON T 0 20 20 55	EXTURE MZCL CH	COLOUR 10YR43 5 10YR81 0		NES 1 0	2	тот	STONE 5 5	C	стн Ж IR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC Y Y
Wetness G a	ide 2		Wetne Gley SPL		las	5	I	cm cm						
Dro ght Gra	ide 38		APW APP	68 69		MBF MBF		37 п 29 п						
FINAL ALC G	RADE 31	B												

MAIN LIMITATION Dro ghti ess

SOIL PIT DESCRIPTION

Site	Nar	ne WIN	CHES	STER LP S	SITE	137		Pit N mber	. 2	P.				
Grid	Ret	ference	SU4	19703320	A F L	-	ed aci	-	9 148 176	17 mm 17 deg ee i days deg ees N	-			
HORI	zon	TEXTU	RE	COLOUR	2	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	24	MZC	L	10YR42	43	1		3	HR					
24	48	MZC	L	10YR44	54	7		12	HR		WKCSAB	FR	м	Y
48	57	MZC	L	10YR44	64	15		20	HR				M	Y
57	82	MZC	L	10YR74	81	0		40	СН				м	Y
Wetn	ess	Grade	2		н	letness C	las	s I						
						iley ng PL			cm cm					
Dro	ght	Grade	ЗА		A	. PW 10 4i	mm	MBW	1 mm					
					A	.PP 106	nm	MBP	8 mm					
FINA	LA	LC GRADE		3A										

MAIN LIMITATION Dro ghtiness

SOIL PIT DESCRIPTION

Grad								P t Number		}₽				
uru	Ref	ference	SU49	9503310		e age . ccum la		al Ra fal Temperat re)7 mm 37 deg ee	davs			
								ty Le el		id ys				
						and Use		-		·				
					S	lope a	d As	pect	04	deg ees S	Ε			
HORIZ	ZON	TEXTU	RE	COLOU	R	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0	16	MZC	L	10YR44	00	2		5	HR					Y
16	46	MZC	L	10YR54	00	3		10	HR		WKCSAB	VF	м	Ŷ
46	63	MZC	L	10YR64	74	0		60	СН				м	Ŷ
63	70	СН		10yr81	00	0		5	HR				м	Y
Wetne	ess	Grade	2		W	etness (Clas	s I						
						ley g			ണ					
						PL			Can					
Dro g	ght	Grade	3A		A	PW 90	നന	MBW	15 mm					
					۸	PP 98	mm	MBP	0 mm					

MAIN LIMITATION Dro ghtiness

program ALCO12

SAMP	LE	A	SPECT				WETN	NESS	WHE	AT	PO	тs	м	REL	EROSN	FRO	ST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	EXP.	DIST	LIMIT		COMMENTS
1	SU49603330	STB	SE	02			1	2	98	7	107	9	ЗA					DR	3A	IMPCHDRFT70 3P
1P	SU49703300	STB	NW	01			1	2	68	37	69	29	38					DR	3B	PIT 62 ROOTS55
2	SU49703330	STB	SE	02			1	2	92	13	97	1	3A					DR	3A	IMP CH 55 3P
2P	SU49703320	STB	NW	01			1	2	104	1	106	8	3A					DR	3A	PIT 82 ROOTS70
3	SU49803330	STB	N₩	01			1	2	128	23	118	20	2					WD	2	IMP HR 85 2P
3P	SU49503310	STB	SE	04			1	2	90	15	9 8	0	ЗА					DR	3A	PIT 75 ROOTS70
4	SU49603320	STB	SE	02			1	2	89	16	94	3	3A					DR	3A	IMP CH 60 3P
5	SU49703320	STB	NW	02			1	2	104	1	106	8	3A					DR	ЗA	IMP HR 48 2P
6	SU49803320	STB	W	02			1	2	76	29	78	20	3B					DR	3B	IMP CH 40 1P
7	SU49503310	STB	SE	05			1	2	90	15	98	0	ЗA					DR	3A	IMPCHDRFT58 3P
8	SU49703310	STB	NW	02			1	2	86	19	91	7	ЗА					DR	3A	IMP CH 45 1P
9	SU49503300	STB	SE	03			1	2	105	0	116	18	3A					DR	3A	IMP CH 75 3P
10	SU49603300	STB	NW	03			1	2	102	3	111	13	3A					DR	3A	IMP CH 70 3P
11	SU49703300	STB	NW	01			1	2	68	37	69	29	3B					DR	3B	IMP CH 60 1P
12	SU49403290	STB	Ε	05			1	2	102	3	111	13	3A					DR	ЗА	IMPCHDRFT65 3P
13	SU49503290	STB	s	01			1	2	156	51	121	23	1					WK	2	
14	SU49603290	STB	S₩	05			1	2	77	28	81	17	3B					DR	3B	IMP CH 40 1P
15	SU49503280	STB					1	2	151	46	122	24	1					WK	2	
16	SU49823325	STB	NW	02			1	2	107	2	109	11	ЗA					DR	3A	IMP HR 40 2P
17	SU49593283	STB	W	05			1	2	80	25	84	14	3B					DR	38	IMP CH 45 1P

program ALCO11

D	ae	1
-		•

					MOTTLES		PED			STO	NES		STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2			тот			IMP SPL CALC	
	02								-							
1	0 25	mzcl	10YR43 00						0	0}	IR	3			Y	
	25 35	mzcl	10YR44 54						0	0 }	IR	3		м	Y	
-	35 50	mzcl	10YR54 81						0	0 0	ЭН	30		м	Y	+2% FLINTS
	50 70	mzc1	10YR74 81						0	0 (СН	50		Р	Y	IMP CHALKY DRIFT 70
ПР	0 20	mzc1	10YR43 53						1	0 0	СН	5			Y	+3% FLINTS
_	20 55	ch	10YR81 00						0	0 1	١R	5		Р	Y	INC5%SOIL 35cmROOTS
2	028	mzcl	10YR43 00						0	0 1	ΗR	3			Y	+2% CHALK
	28 35	mzc1	10YR54 81						0	0 0	СН	25		м	Y	
	35 40	mzc]	10YR64 81						0	0 0	СН	50		Р	Ŷ	CHALKY DRIFT
	40 55	ch	10YR81 74						0	0	IR	5		Р	Y	INC5% SOIL IMPCH 55
2P	0 24	mzcl	10YR42 43						1	0 1	łR	3				
	24 48	mzcl	10YR44 54						7	0 H	łR	12	WKCSAB FR	8 M	Y	
	48 57	mzcl	10YR44 64						15	0 H	łR	20		М	Y	15% CHALK
_	57 82	mz 1	10YR74 81						0	0 0	СН	40		М	Y	CHALKY DRIFT 37 HR
3	0 25	mzcl	10YR43 00							0 1		3				
	25 55	h cì	10YR44 00							0 1		5		м		
	55 85	h c1	75YR44 00						0	0	HR	10		M		IMP FLINTS 85cm
- 3P	0 16	mzcl	10YR44 00							0 1		5			Y	
	16 46	mzcl	10YR54 00						3	01		10	WKCSAB VI	F M	Y	+12% CHALK 2% 2cm
	46 63	mzcl	10YR64 74						0	0 0		60		м	Y	CHALKY DRIFT
	63 70	ch	10YR81 00						0	01	⊀R	5		М	Y	BLOCKY CHALK
		_							_							
4	0 25	mzcl	10YR43 00							01		3				5% CHALK
	25 35	mzcl	10YR44 00							0 (15		M	Y	
	35 55	ch	10YR81 54						0	01		5		Р	Ŷ	INC 5% SOIL
	55 60	ch	10YR81 00						0	01	HR	5		Ρ	Y	IMP CHALK 65cm
		_							•	<u>.</u>		-				
5	0 30	c]	10YR43 00							01		5				
	30 48	hz l	10YR44 54						U	0	ιĸ	3		м		IMP FLINTS 48cm
	0.05	1	100042 52						•	01	л	2			v	+5% CHALK
6	0 25	mzcl	10YR43 53 10YR81 54							01		3		Ρ	Y Y	IMPCH 40 INC5% SOIL
	25 40	ch	101801 34						U	U r	אר	5		F	Ť	IMPCH 40 INCOM SUIL
7	0 28	mzcl	10YR43 53						n	01	HR	3			Y	
• •	28 35	m 1	10YR54 64							0 (30		м	Ŷ	
	35 58		10YR74 81							0 (50		P	Ŷ	IMP CHALKY DRIFT 58
	33 30	mzcl	1011/14 01						Ŭ	0	- 1	50		r	1	THE CHARKE DRIFT JO
8	0 28	mzcl	10YR43 53						n	0 1	48	3			Y	+5% CHALK
3	28 35	mzcl	10YR81 54							0 (60		Р	Ŷ	
	35 45	ch	10YR81 64							01		5		P	Y	IMPCH 45 INC5% SOIL
	00 70		·•··•						-	- 1		÷		-	·	The second se
9	0 30	mzcl	10YR43 00						0	0 1	HR	3				
	30 60	mzcl	10YR44 54							0 1		5		м		
	60 65	mzcl	10YR54 81							0 (30		м	Y	5% FLINTS
	65 75	ch	10YR81 64							0		0		P	Ŷ	IMP CHALK 75cm
									-			-				

prog am ALCO11

SAMPLE	DEPTH	I TEXTURE	COLOUR		MOTTLES	S CONT	PED COL		2	STONES		STRUCT/	SUBS STR POR IM	D SDL CALC	
JAMPLE	ULFIF	I TEATURE	COLOUR	UUL	ADON	CONT	COL	GLLI	۲	0 111	101	000131	STA FOR IN	F JFL GALU	
10	0 30	mzcl	10YR43 00)					0	0 HR	3			Y	
10	30 60		10YR54 00	1					0	0 CH	10		м	Ŷ	+5% FLINTS
-	60 70) ch	10YR81 64						0	0 HR	5		Ρ	Y	INC5% SOIL IMPCH 70
11	0 25	mzcl	10YR43 53	5					0	0 HR	3			Ŷ	
	25 55	i ch	10YR81 64	Ļ					0	0 HR	5		Р	Y	INC 5% SOIL
-	55 60) ch	10YR81 00)					0	0 HR	5		Р		IMP CHALK 60cm
12	0 30	mzcl	10YR43 00)					0	0 HR	3				
	30 55	mzcl	10YR44 54	ļ					0	0 CH	10		М		+3% FLINTS
	55 65	mzcl	10YR81 74	ŀ					0	0 CH	60		β		IMP CHALKY DRIFT 65
13	0 30) mzcl	10YR41 00)					0	0 HR	3				
_	30 60) mzcl	10YR44 00)					0	0 HR	3		М		
	60 85	5 zc1	10YR44 54	Ļ					0	0 HR	3		М		37 CHALK
	85 12	20 hzcl	75YR44 00)					0	0 HR	5		м		5% CHALK
14	0 25	i mzcl	10YR43 53	3					0	0 СН	10			Y	37 FLINTS
	25 28	3 mzcl	10YR53 81						0	0 CH	50		Р	Y	
_	28 40) ch	10YR81 00)					0	0	0		Ρ	Y	IMP CHALK 40cm
15	0 25	5 mzcl	10YR42 43	3					0	0 HR	2				
-	25 70) mzcl	10YR62 63	3 10YR	58 00 F				0	0 HR	2		М		
2	70 12	0 hzc1	10YR54 00)					0	0 HR	15		м		
16	0 30) mzcl	10YR43 44	Ļ					0	0 HR	5				
_	30 40		75YR44 00)					0	0 HR	10		Μ		IMP FLINTS 40cm
17	0 28	8 mzcl	10YR43 53	3					0	0 HR	5			Y	
-	28 45	5 ch	10YR81 64	ŀ					0	0	0		м		IMP CHALK 45cm

page 2