A1
Maidstone Borough Local Plan
Site 45 Land south west of
Linton Crossroads, Linton
Agricultural Land Classification
ALC Map and Report
August 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

MAIDSTONE BOROUGH LOCAL PLAN SITE 45 LAND SOUTH WEST OF LINTON CROSSROADS, LINTON

1 Summary

- ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for 47 sites within the borough of Maidstone in Kent The work forms part of MAFF's statutory input to the preparation of the Maidstone Borough Local Plan
- Site 45 comprises 1.1 hectares of land south west of the Linton crossroads in the village of Linton. An Agricultural Land Classification (ALC) survey was carried out during August 1994. The survey was undertaken at a detailed level of approximately two borings per hectare. A total of 2 borings and one soil inspection pit were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988). These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture.
- 1 3 At the time of survey the land use on the site was bramley orchards
- The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading.

Table 1 Distribution of Grades and Subgrades

Grade	Area (ha)	% of Agricultural Land
2	<u>1 1</u>	100 0 (1 1 ha)
Total area of site	1 1	

- Appendix I gives a general description of the grades subgrades and land use categories identified in the survey. The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- All of the agricultural land surveyed has been classified as Grade 2 very good quality because of a slight soil droughtiness limitation. Topsoils typically comprise slightly stony non calcareous medium silty clay loams. These overlie well drained similarly stony medium silty clay loam and slightly stonier heavy silty clay loam upper subsoils passing to moderately stony heavy clay loam lower subsoils. The interaction between these soil textures and profile stone contents at this site with the prevailing local climate may act to slightly restrict profile available water and thus plant growth and yield

2 Climate

- The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature (degree days Jan-June) as a measure of the relative warmth of a locality
- A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989). The details are given in the table below and these show that there is no overall climatic limitation affecting the site. The crop adjusted soil moisture deficits at this locality are relatively high in a regional context. High soil moisture deficits increase the likelihood of soil droughtiness limitations.
- 2.4 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolation

Grid Reference	TQ755508
Altitude (m)	116
Accumulated Temperature	1377
(degree days Jan June)	
Average Annual Rainfall (mm)	707
Field Capacity (days)	142
Moisture Deficit Wheat (mm)	111
Moisture Deficit Potatoes (mm)	103
Overall Climatic Grade	1

3 Relief

The site occupies a very gentle hillside falling from about 120m AOD along the southern site boundary to about 116m AOD along the northern site boundary Nowhere on the site do relief or gradient impose any restriction on the agricultural land quality

4 Geology and Soil

- 4 1 British Geological Survey (1976) Sheet 288 shows the entire site to be underlain by head deposits
- 4 2 Soil Survey of England and Wales (1983) Sheet 6 shows the entire site to comprise soils of the Marlow Association These soils are described as well drained fine loamy over clayey and clayey soils. Some coarse and fine loamy over

clayey with slowly permeable subsoils and slight seasonal waterlogging (SSEW 1983)

- 4 3 Detailed field examination found well drained loamy soils which become stonier with depth
- 5 Agricultural Land Classification
- Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- The location of the soil observation points are shown on the attached sample point map

Grade 2

53 All of the agricultural land surveyed has been classified as Grade 2 very good quality This land is restricted by a minor soil droughtiness limitation Topsoils typically comprise non calcareous medium silty clay loams which are slightly stony (c 1-2 % hard sandstone >2cm and 10 12 % total hard sandstone by volume) These overlie similarly textured and stony upper subsoils to a depth of approximately 50 60cm depth. At this depth due to the very dry subsoil conditions at the time of survey profiles proved impenetrable to a soil auger Consequently a soil inspection pit Pit 1 was dug to assess lower subsoil conditions These were found to comprise moderately stony (c 15 % total hard sandstone by volume) heavy silty clay loams which become stonier (c 30 % total hard sandstone by volume) and less silty typically heavy clay loams at about 60 cm depth The interaction between these soil textures profile stone contents and moderate substructural conditions with the relatively dry climate which prevails at this locality results in slightly restricted soil available water for uptake by crops This minor soil droughtiness limitation will tend to reduce the level and consistency of crop yields and give rise to a minor risk of drought stress for those crops which are grown

ADAS Ref 2007/196/94 MAFF Ref EL 20/328 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 Maidstone 1 50 000 Series (solid and drift edition)

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports. Also active mineral workings and refuse tips where restoration conditions to 'soft after-uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits, the cover types may be shown separately. Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Definition of Soil Wetness Classes

Wetness Class	Duration of Waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²
п	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
m	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
V	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics—site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note

Soil Pit Descriptions

Database Printout - Boring Level Information

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	ELEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	HTO	Other
HRT	Horticultural Crop	S			

- 3 GRDNT Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

\mathbf{OC}	Overall Climate	ΑE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			_

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	\mathbf{CL}	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described
 - F few <2% C common 2 20% M many 20 40% VM very many 40% +
- 4 **MOTTLE CONT** Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
CH	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamo	orphic ro	ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

degree of development WK weakly developed MD moderately developed ST strongly developed

ped_size F fine M medium

> C coarse VC very coarse

ped shape single grain massive M

> GR granular AB angular blocky

SAB sub angular blocky PR prismatic

PL platy

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropiate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat

APP available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat MBP

moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name MAIDSTONE LP SITE 45 (2) Pit Number 1P

Grid Reference TQ75435078 Average Annual Rainfall 707 mm

Accumulated Temperature 1377 degree days

Field Capacity Level 142 days

Land Use

Slope and Aspect 01 degrees N

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 28	MZCL	10YR43 00	1	7	HR					
28- 52	MZCL	10YR54 00	0	8	HR		MDCSAB	FR	M	
52- 60	HZCL	10YR53 00	0	15	HR	С		FM	M	
60 70	HCL	10YR53 00	0	30	HR	С		FM	M	

Wetness Grade 1 Wetness Class I Gleying 052 cm $$\rm SPL$$ No SPL

Drought Grade 3A APW 100mm MBW 11 mm

APP 111mm MBP 8 mm

FINAL ALC GRADE 2

MAIN LIMITATION Droughtiness

program ALC012 LIST OF BORINGS HEADERS 14/11/94 MAIDSTONE LP SITE 45 (2)

SA	MPI	LE		ASPECT				WETN	NESS	-WH	EAT-	-P0	TS	мя	REL	EROSN	FROST	CHEM	ALC	
NO)	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL00D	EX	P DIST	LIMIT		COMMENTS
	1	TQ75435078	3 ORC	: N	01			1	1	80	-31	80	-23	38				DR	2	Imp50 dry/stny
	1P	TQ75435078	3 ORC	N	01	052		1	1	100	-11	111	8	3A				DR	2	Pit700r 2to120
_	2	TQ75515084	ORC	N	01			1	1	89	-22	95	-8	38				DR	2	Imp60 dry/stny

page 1

program ALCO11

COMPLETE LIST OF PROFILES 14/11/94 MAIDSTONE LP SITE 45 (2)

page 1

·----

						MOTTLE:	S	PED			S	TONES		STRUCT/	SUBS			
SA	MPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	TOT	CONSIST	STR POR	IMP SPI	CALC	
	1	0 30	mzcl	10YR43 00						2	0	HR	12					
		30 50	mzcl	10YR54 56						0	0	HR	15		M			Imp 50 dry/stony
_	1P	0-28	mzcl	10YR43 00						1	0	HR	7					
		28-52	mzcl	10YR54 00						0	0	HR	8	MDCSAB F	RM			
		52-60	hzc1	10YR53 00	10YR5	8 00 C			Y	0	0	HR	15	F	M M			Dr 2 to 120*
_		60-70	hcl	10YR53 00	10YR5	8 00 C			Y	0	0	HR	30	F	M M			*MBW=25 MBP=2
	2	0-30	mzcl	10YR43 00						2	0	HR	10					
		30 60	mzcl	10YR54 56						0	0	HR	15		М			Imp 60 dry/stony
_																		