
 

Managing for ecosystem services 

MANAGING ECOSYSTEM SERVICES 

FRESHWATER 

RE-WET PEATLANDS 

Raise the water table on previously 

drained peat soils using dams. 
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KEY These pages represent a review of the 

available evidence linking manage-

ment of habitats with the ecosystem 

services they provide. It is a review of 

the published peer-reviewed literature 

and does not include grey literature or 

expert opinion. There may be signifi-

cant gaps in the data if no published 

work within the selection criteria or 

geographical range exists. These pages 

do not provide advice, only review the 

outcome of what has been studied. 

Full data iare available in electronic 

form from the Evidence Spreadsheet. 

Data are correct to March 2015. 

http://publications.naturalengland.org.uk/publication/5890643062685696


 

Managing for ecosystem services 

Provisioning Services—providing 

goods that people can use. 

Cultural Services—contributing to 

health, wellbeing and happiness. 

Regulating Services—maintaining a 

healthy, diverse and functioning 

environment. 

MANAGING ECOSYSTEM SERVICES 

FRESHWATER 

RE-WET PEATLANDS 

Fibre: Strong Evidence:-At a bog in Germany, a raised water table created by a hydrological pro-

tection zone demonstrated a significant reduction in tree cover1. This has implications for for-

estry associated with peatland areas. 
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Biodiversity: Strong Evidence:-— At Tadham Moor on the Somerset levels, re-wetting of organ-

ic rich soils created an initially poorer diversity of plants as the drier species were replaced by a 

low diversity swamp flora2.  A similar result in the Netherlands was seen with aquatic inverte-

brates, where re-wetted areas had lower diversity and increased homogeneity with species as-

semblages being more similar between patches3.  However, another UK study showed that 

drained sites had a lower invertebrate diversity than drain-blocked sites and that streams in 

drain-blocked catchments had a similar invertebrate richness, species composition and commu-

nity structure to intact sites4. 

Environmental Settings: Strong Evidence:- A lowering of water table depth can affect archaeo-

logical remains by allowing them to dry out, oxidise and decay5. Weak Evidence:- The effect of 

managing landscapes by manipulating the water table, can have a number of implications for 

archaeology, including preservation through re-wetting through to damage caused by mitiga-

tion works6. Of particular concern are archaeological remains lost or damaged through drying 

of peat or through the cultivation of former peatlands7. 
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Climate Regulation: Strong Evidence:- Recreating wetlands from areas with high soil organic 

carbon such as former peat workings has benefits and costs. A study tracking restoration of 

a peatland showed that pre-restoration it acted as a carbon dioxide (CO2) source, while two 

years post-restoration it had returned to being a carbon sink8. Methane (CH4) emissions 

however are shown to increase when former drained peat agro-ecosystems are returned to 

natural conditions with a high water table9. Peatland restoration through flooding can lead 

to the release of high levels of CO2 and CH4 from the initial flooding due to the decomposi-

tion of organic matter on the surface10.  The balance of greenhouse gas emissions/sinks is 

highly dependent on the water table level and management, with a study from Germany 

showing that minerotrophic fen systems released nitrous oxide (N2O) and CH4 when water 

tables were high11. Lowering or raising the water table level by 5cm can affect the CH4 emis-

sion levels by as much as 30-50% for wet grasslands on peat soils12. The aboveground bio-

mass of sedges appears to influence the release of methane by stimulating the transport of 

CH4 to the surface13. Moderate Evidence:- A laboratory study confirmed the potential for 

newly inundated high carbon soils to produce CO2 and CH4. It found that flooded peat pro-

duced relatively little greenhouse gas, but that production can be significantly increased 

where plant material in the form of roots is present. This has implications for the flooding of 

vegetated areas14. However, there is some evidence that the restoration of forestry-drained 

peat-lands results in less methane than expected due to the poor establishment of meth-

anogens (methane producing micro-organisms) even 10-12 years following restoration15. 

Flood Control: Moderate Evidence:- A review of the benefits of peatlands for water manage-

ment in Scotland has shown that undrained mires are most beneficial for delaying storm run

-off16. The study does not establish what happens when previously drained mires are re-

turned to their natural state. Data on water tables at restored peat sites in Northern England 

suggest that after six years restored sites are intermediate between drained and intact sites 

but that water table dynamics (and hence flood alleviation) are unpredictable17. 

Water Quality: Strong Evidence:- Drains through peatlands in Northern England carry signifi-

cant amounts of fine sediment. Drains that had been blocked either naturally or artificially 

were significantly reduced sources of suspended sediment compared with unblocked 

drains18. Blocked drains on UK peatlands (both upland and lowland) also had 28% less dis-

solved organic carbon and hence less water discolouration than unblocked drains, though 

the effect was highly site dependent, with some sites showing no difference between 

blocked and unblocked drains19. A number of studies show water quality issues following re-

wetting of peat through mobilisation of pollutants from the upper degraded peat layers. 

Phosphorus can be mobilised through re-wetting, though the extent depends on the level of 

peat degradation and the amount of iron (Fe), the more iron, the less phosphorus is mobi-

lised20.  In Germany, a re-wetted peatland showed seasonal variations in nitrogen and phos-

phorus balances, but overall, the peatland retained inorganic nitrogen but exported organic 

nitrogen and phosphate21. Re-wetting degraded peat can also mobilise other pollutants such 

as arsenic, deposited during the UK industrial revolution22, and bromide23. 
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Water Quality:- Moderate Evidence :- A modelling approach to phosphorus leaching from re-

wet peat in Germany established that there was little danger of water quality deterioration from 

phosphorus mobilisation24. The actual link between re-wetting of degraded peat and phospho-

rus loss into run-off may be due to the higher levels of microbial cycling in degraded peat, the 

higher the levels of degradation, the greater the phosphorus loss25. 
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