**A1** 

Cliffe Chalk Quarry Extension Manor Farm, West Street, Cliffe, Kent

Agricultural Land Classification ALC Map and Report

May 1997

Resource Planning Team Eastern Region FRCA Reading

.

 RPT Job Number:
 2008/075/97

 FRCA Reference:
 EL 20/01668

### AGRICULTURAL LAND CLASSIFICATION REPORT

# CLIFFE CHALK QUARRY EXTENSION, MANOR FARM, CLIFFE, KENT

# INTRODUCTION

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 27.0 hectares of land to the west of Manor Farm, west of Cliffe near Rochester in Kent. The survey was carried out during May 1997.

2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA) on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with a review of the conditions relating to an old planning permission to extend the existing chalk quarry which lies to the south of this site. The site comprises an area slightly larger than the planning application area, as the latter excludes 3.7 ha to the immediate west of Allens Hill Farm. This survey supersedes any previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey, the agricultural land on this site was under winter wheat to the north, salad onions to the south and set aside to the south west. Significant areas of the site have been mapped as 'Other Land'. Land uses in these areas include the disused chalk pit to the north west of the site, adjacent to this is a small area of game cover and larger expanses of scrub and woodland. The remaining areas of 'Other Land' mapped on the site include dwellings to the north east, current chalk workings to the south and an area to the south west where soil is currently being stored from the adjacent chalk workings. This area is covered in scrubby vegetation.

#### SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf. Table 2 refers to the area under the current application for chalk extraction.

7. The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. A total of 18 borings and 2 soil pits were described.

| Grade/Other land    | Area (hectares) | % surveyed area | % site area |
|---------------------|-----------------|-----------------|-------------|
| 3a                  | 16.5            | 100             | 61.1        |
| Other land          | 10.5            | N/A             | 38.9        |
| Total surveyed area | 16.5            | 100             | 61.1        |
| Total site area     | 27.0            | -               | 100         |

#### Table 1: Area of grades and other land - Total Site Area

#### Table 2: Area of grades and other land - Application Area

| Grade/Other land    | Area (hectares) | % surveyed area | % site area |  |  |
|---------------------|-----------------|-----------------|-------------|--|--|
| 3a                  | 13.1            | 100             | 56.2        |  |  |
| Other land          | 10.2            | N/A             | 43.8        |  |  |
| Total surveyed area | 13.1            | 100             | 56.2        |  |  |
| Total site area     | 23.3            | -               | 100         |  |  |

8. The agricultural land at this site has been classified as Subgrade 3a (good quality). The principal limitation is soil droughtiness.

9. The soils comprise well drained calcareous medium loams and medium silts overlying weathered chalk at moderate depths. The local climate is very dry in both national and regional terms, this, in combination with these soil properties means that this land is limited by soil droughtiness. This can lead to a reduction in plant growth and potential yield, especially in drier years.

10. Irrigation water is available on this site. It is currently of sufficient quantity to enhance agricultural production beyond that which may be expected given the classification of the land.

# FACTORS INFLUENCING ALC GRADE

#### Climate

11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

12. The key climatic variables used for grading this site are given in Table 3 overleaf obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

#### Table 3: Climatic and altitude data

| Factor                     | Units                         | Values      |            |  |  |  |
|----------------------------|-------------------------------|-------------|------------|--|--|--|
| Grid reference             | N/A                           | TQ 729 761  | TQ 728 763 |  |  |  |
| Altitude                   | m, AOD                        | 20          | 25         |  |  |  |
| Accumulated Temperature    | day <sup>o</sup> C (Jan-June) | 1476        | 1470       |  |  |  |
| Average Annual Rainfall    | mm                            | <b>57</b> 3 | 575        |  |  |  |
| Field Capacity Days        | days                          | 107         | 107        |  |  |  |
| Moisture Deficit, Wheat    | mm                            | 126         | 126        |  |  |  |
| Moisture Deficit, Potatoes | mm                            | 124         | 123        |  |  |  |
| Overall climatic grade     | N/A                           | Grade 1     | Grade 1    |  |  |  |

13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are also believed not to affect the site. The site is climatically Grade 1. It should be noted that this area has a particularly dry climate, in a national context. Consequently land is more likely to suffer from a droughtiness limitation.

# Site

1

16. The undisturbed areas of the site lie at an altitude between approximately 20 and 25m AOD. The highest land is towards the centre of the site with gentle slopes to the south and north. Towards the west of the site there is a disused chalk pit at a considerably lower level (approximately 5m AOD), The majority of the slopes between the two separate levels comprise sheer chalk cliffs. Towards the south, where the site adjoins a petrol storage depot, the slopes are at approximately 45° and are covered in scrubby woodland. To the south west of the site soil material considered to be from the recent chalk workings immediately to the south have been dumped at ground level to create a domed area. These areas are not in agricultural use and are shown as 'Other Land' on the accompanying map. In addition, land in agricultural use on this site is not adversely affected by either microrelief or flood risk.

## Geology and soils

17. The published geological information for the site (BGS, 1977) shows the majority of the site to be underlain by head drift deposits overlying Cretaceous Upper Chalk. To the north west and south west of the site the Upper Chalk is exposed.

18. The most recent published soils information for the site (SSEW, 1983 and 1984) shows the site to comprise soils from the Coombe 1 association. These are described as,

'Well drained calcareous fine silty soils, deep in valley bottoms, shallow to chalk on valley sides in places. Slight risk of water erosion.' (SSEW, 1983). Soils of this overall type were encountered throughout the site. The slightly older survey, Soils of Kent (SSEW, 1980) published at a similar level of detail shows this area as comprising rendzina type soils from the Andover, Upton and Coombe soil series' over the majority of the site. These are described as, 'chalky, silty soils predominantly shallow over chalk or chalky head; free drainage.' (SSEW, 1980). Soils of this type were principally encountered towards the north of the site. To the south west of Manor Farm, brown calcareous earth soils are mapped from the Coombe, Andover, Gore and Bilting series'. These are described as, 'variably flinty and chalky soils in head associated with shallow chalky silty soils over chalk; free drainage.' (SSEW, 1980). Again soils similar to this description were extensively encountered throughout the survey.

# **AGRICULTURAL LAND CLASSIFICATION**

19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.

20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

# Subgrade 3a

21. Land of good quality has been mapped over all the agricultural land at this site. The principal limitation is soil droughtiness. The soils are characterised by the soil pit observations, 1P and 2P (see Appendix II).

Overall the soils were found to be of a single type comprising a very slightly stony (up 22. to 4% total flints by volume, including up to 3%>2cm diameter) medium silty clay loam and medium clay loam topsoils. This passes to a slightly stony (up to 5% total flints) and slightly chalky (up to 10% weathered chalk fragments) medium silty clay loam, medium or heavy clay loam upper subsoil. Commonly this passes to a medium silty clay loam lower subsoil horizon containing up to 50% weathered chalk fragments by volume. Below this a weathered chalk substrate was encountered between 35 and 100cm (mean depth of 68cm); this was usually impenetrable to the soil auger. In the pit observations, the weathered chalk was discovered to be relatively soft and roots were observed to extend approximately 35cm into the substrate. In the pit observations (1P and 2P, see Appendix II) rooting was observed to 120 and 110cm respectively. The presence and depth of the root restricting chalk, the volume of stones and the combination of soil textures in these well drained (Wetness Class I) profiles restricts the water holding capability of the soil to the extent that Subgrade 3a is appropriate on the basis of soil droughtiness in the dry local climate. On this basis crop growth and potential yields are likely to be restricted, particularly in drier years.

> Matthew Larkin Resource Planning Team Eastern Region FRCA Reading

# SOURCES OF REFERENCE

1

T

British Geological Survey (1977) Sheet 272. Chatham. Drift Edition. 1:50 000 scale BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1980) Bulletin 9. Soils of Kent. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1983) Soils of South East England. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No. 15. SSEW: Harpenden.

# **APPENDIX I**

# DESCRIPTIONS OF THE GRADES AND SUBGRADES

# Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

# Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

# Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

## Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

# Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

## Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

## Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

# ΑΡΡΕΝDΙΧ Π

# SOIL DATA

**Contents:** 

÷

١

ļ

ł

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

#### SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

#### **Boring Header Information**

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 12. USE: Land use at the time of survey. The following abbreviations are used:

| ARA: | Arable                | WHT: | Wheat               | BAR: | Barley        |
|------|-----------------------|------|---------------------|------|---------------|
| CER: | Cereals               | OAT: | Oats                | MZE: | Maize         |
| OSR: | Oilseed rape          | BEN: | Field beans         | BRA: | Brassicae     |
| POT: | Potatoes              | SBT: | Sugar beet          | FCD: | Fodder crops  |
| LIN: | Linseed               | FRT: | Soft and top fruit  | FLW: | Fallow        |
| PGR: | Permanent<br>pasture  | LEY: | Ley grass           | RGR: | Rough grazing |
| SCR: | Scrub                 | CFW: | Coniferous woodland | ОТН  | Other         |
| DCW: | Deciduous<br>woodland | BOG: | Bog or marsh        | SAS: | Set-Aside     |
| HTH: | Heathland             | HRT: | Horticultural crops | PLO: | Ploughed      |

- 3. **GRDNT**: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.

!

I

8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

| MREL: | Microrelief limitation | FLOOD: | Flood risk  | EROSN: | Soil erosion risk |
|-------|------------------------|--------|-------------|--------|-------------------|
| EXP:  | Exposure limitation    | FROST: | Frost prone | DIST:  | Disturbed land    |
| CHEM: | Chemical limitation    |        |             |        |                   |

# 9. LIMIT: The main limitation to land quality. The following abbreviations are used:

| <b>OC</b> : | <b>Overall Climate</b> | AE: | Aspect          | ST: | Topsoil Stoniness         |
|-------------|------------------------|-----|-----------------|-----|---------------------------|
| FR:         | Frost Risk             | GR: | Gradient        | MR: | Microrelief               |
| FL:         | Flood Risk             | TX: | Topsoil Texture | DP: | Soil Depth                |
| CH:         | Chemical               | WE: | Wetness         | WK: | Workability               |
| DR:         | Drought                | ER: | Erosion Risk    | WD: | Soil Wetness/Droughtiness |
| EX:         | Exposure               |     |                 |     | -                         |

#### Soil Pits and Auger Borings

ł

1

i

ł

1

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations:

| <b>S</b> : | Sand            | LS:  | Loamy Sand      | SL:        | Sandy Loam         |
|------------|-----------------|------|-----------------|------------|--------------------|
| SZL:       | Sandy Silt Loam | CL:  | Clay Loam       | ZCL:       | Silty Clay Loam    |
| ZL:        | Silt Loam       | SCL: | Sandy Clay Loam | <b>C</b> : | Clay               |
| SC:        | Sandy Clay      | ZC:  | Silty Clay      | OL:        | Organic Loam       |
| <b>P</b> : | Peat            | SP:  | Sandy Peat      | LP:        | Loamy Peat         |
| PL:        | Peaty Loam      | PS:  | Peaty Sand      | MZ:        | Marine Light Silts |

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: Fine (more than 66% of the sand less than 0.2mm)

M: Medium (less than 66% fine sand and less than 33% coarse sand)

C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
  - F: faint indistinct mottles, evident only on close inspection
  - D: distinct mottles are readily seen
  - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. PED. COL: Ped face colour using Munsell notation.

6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.

7. STONE LITH: Stone Lithology - one of the following is used:

| HR:   | all hard rocks and stones          | FSST: | soft, fine grained sandstone     |
|-------|------------------------------------|-------|----------------------------------|
| ZR:   | soft, argillaceous, or silty rocks | CH:   | chalk                            |
| MSST: | soft, medium grained sandstone     | GS:   | gravel with porous (soft) stones |
| SI:   | soft weathered                     | GH:   | gravel with non-porous (hard)    |
|       | igneous/metamorphic rock           |       | stones                           |

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

|   | Degree of development | WK:<br>ST:               | weakly developed strongly developed                     | MD:              | moderately developed                   |
|---|-----------------------|--------------------------|---------------------------------------------------------|------------------|----------------------------------------|
|   | Ped size              | F:<br>C:                 | fine<br>coarse                                          | <b>M</b> :       | medium                                 |
| ĺ | Ped shape             | S:<br>GR:<br>SAB:<br>PL: | single grain<br>granular<br>sub-angular blocky<br>platy | M:<br>AB:<br>PR: | massive<br>angular blocky<br>prismatic |

9. CONSIST: Soil consistence is described using the following notation:

| L: loose         | FM: firm           | EH: extremely hard |
|------------------|--------------------|--------------------|
| VF: very friable | VM: very firm      |                    |
| FR: friable      | EM: extremely firm |                    |

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.
- 15. Other notations:

Ì

1

ł

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

# SOIL PIT DESCRIPTION

ł

| r1d Rèfe                                                                                        | arence: IQ/                                                                               | 2/9/642 /                                                                                                               | Average Anni                                                                                                                                                                                               | ual Kathiai                                                                                                           | 1: 5/                                                                                                    | 2 100                                          |           |         |              |                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|---------|--------------|-------------------|
|                                                                                                 |                                                                                           | 1                                                                                                                       | <b>Coumulated</b>                                                                                                                                                                                          | Temperature                                                                                                           | e : 147                                                                                                  | 6 degree                                       | days      |         |              |                   |
| :                                                                                               |                                                                                           | F                                                                                                                       | leld Capac                                                                                                                                                                                                 | ity Level                                                                                                             | : 107                                                                                                    | days                                           |           |         |              |                   |
| i                                                                                               |                                                                                           | l                                                                                                                       | and Use                                                                                                                                                                                                    | :                                                                                                                     | : Plo                                                                                                    | ughed                                          |           |         |              |                   |
| •                                                                                               |                                                                                           | 9                                                                                                                       | Slope and A                                                                                                                                                                                                | spect                                                                                                                 | : .                                                                                                      | degrees                                        |           |         |              |                   |
|                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                       |                                                                                                          |                                                |           |         |              |                   |
| RIZON                                                                                           | TEXTURE                                                                                   | COLOUR                                                                                                                  | STONES >2                                                                                                                                                                                                  | TOT. STONE                                                                                                            | LITH                                                                                                     | MOTTLES                                        | STRUCTURE | CONSIST | SUBSTRUCTURE | CAL               |
| 0- 31                                                                                           | MCL                                                                                       | 10YR43 42                                                                                                               | 3                                                                                                                                                                                                          | 4                                                                                                                     | HR                                                                                                       |                                                |           |         |              | Y                 |
| 31- 55 (                                                                                        | HCL                                                                                       | 75YR45 00                                                                                                               | 0                                                                                                                                                                                                          | 5                                                                                                                     | HR                                                                                                       |                                                | WKCSAB    | FR      | м            | Y                 |
| 55- 85                                                                                          | MZCL                                                                                      | 10YR64 74                                                                                                               | 0                                                                                                                                                                                                          | 5                                                                                                                     | HR                                                                                                       |                                                | WKCSAB    | FR      | м            | Y                 |
| 85-120 ¦                                                                                        | СН                                                                                        | 10YR81 74                                                                                                               | 0                                                                                                                                                                                                          | 5                                                                                                                     | HR                                                                                                       |                                                |           | FM      | Р            | Y                 |
|                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                       |                                                                                                          |                                                |           |         |              |                   |
| 1                                                                                               |                                                                                           |                                                                                                                         |                                                                                                                                                                                                            | _                                                                                                                     |                                                                                                          |                                                |           |         |              |                   |
| etness G                                                                                        | rade : 1                                                                                  |                                                                                                                         | letness Clas                                                                                                                                                                                               | · · ·                                                                                                                 |                                                                                                          |                                                |           |         |              |                   |
|                                                                                                 | 1                                                                                         |                                                                                                                         | ileying                                                                                                                                                                                                    | :                                                                                                                     | CM                                                                                                       |                                                |           |         |              |                   |
|                                                                                                 |                                                                                           | S                                                                                                                       | PL                                                                                                                                                                                                         | :                                                                                                                     | Cm                                                                                                       |                                                |           |         |              |                   |
| ∽uaht G                                                                                         | rade : 3A                                                                                 | Α                                                                                                                       | PW : 138mm                                                                                                                                                                                                 | MBH : 1                                                                                                               | 2 mm                                                                                                     |                                                |           |         |              |                   |
|                                                                                                 | 1                                                                                         |                                                                                                                         | PP : 114mm                                                                                                                                                                                                 |                                                                                                                       | 0 mm                                                                                                     |                                                |           |         |              |                   |
|                                                                                                 | 1                                                                                         |                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                       |                                                                                                          |                                                |           |         |              |                   |
|                                                                                                 | •                                                                                         | roughtiness<br>SOIL                                                                                                     | PIT DESCRIP                                                                                                                                                                                                | TION                                                                                                                  |                                                                                                          |                                                |           |         |              |                   |
| AIN LIMI                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann                                                                                                                                                                      | Pit Numbe<br>wal Rainfal                                                                                              | 1: 57                                                                                                    | ip<br>13 mm                                    |           |         |              |                   |
| ite Nama                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated                                                                                                                                                       | Pit Numbe<br>Nual Rainfal<br>Temperatur                                                                               | 1:57<br>e:147                                                                                            | /3 mm<br>/6 degree                             | days      |         |              |                   |
| AIN LIMI                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac                                                                                                                                        | Pit Numbe<br>Nual Rainfal<br>Temperatur                                                                               | 1 : 57<br>e : 147<br>: 107                                                                               | 13 mm<br>16 degree<br>1 days                   | days      |         |              |                   |
| AIN LIMI                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use                                                                                                                            | Pit Numbe<br>wal Rainfal<br>I Temperatur<br>Sity Level                                                                | 1 : 57<br>e : 147<br>: 107<br>: Whe                                                                      | /3 mm<br>/6 degree<br>/ days<br>eat            | days      |         |              |                   |
| AIN LIMI                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac                                                                                                                                        | Pit Numbe<br>wal Rainfal<br>I Temperatur<br>Sity Level                                                                | 1 : 57<br>e : 147<br>: 107<br>: Whe                                                                      | 13 mm<br>16 degree<br>1 days                   | days      |         |              |                   |
| lite Name                                                                                       | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A                                                                                                             | Pit Numbe<br>wal Rainfal<br>I Temperatur<br>Sity Level                                                                | 1 : 57<br>e : 147<br>: 107<br>: Whe                                                                      | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees |           | CONSIST | SUBSTRUCTURE | CA                |
| ite Name                                                                                        | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610                                                                                          | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2                                                                                                | Pit Numbe<br>nual Rainfal<br>I Temperatur<br>Sity Level                                                               | 1 : 57<br>e : 147<br>: 107<br>: Whe                                                                      | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees |           | CONSIST | SUBSTRUCTURE |                   |
| VIN LIMI<br>The Name<br>Frid Refe<br>ORIZON<br>0- 25                                            | TATION : D                                                                                | SOIL<br>CHALK QUAR<br>72807610<br>COLOUR                                                                                | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2                                                                                           | Pit Numbe<br>Mual Rainfal<br>Temperatur<br>Sity Level<br>Aspect                                                       | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH                                                         | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees |           | CONSIST | SUBSTRUCTURE | Y                 |
| VIN LIMI<br>Fite Name<br>Fid Refe<br>ORIZON<br>0- 25<br>25- 52                                  | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL                                  | SOIL<br>CHALK QUAR<br>72807610<br>COLOUR<br>10YR42 00                                                                   | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0                                                                                      | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sty Level<br>Spect<br>TOT.STONE<br>3                                       | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR                                                   | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE |         |              | Y<br>Y            |
| ORIZON<br>0- 25<br>25- 52<br>52- 75                                                             | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL                           | SOIL<br>CHALK QUAR<br>72807610<br>COLOUR<br>10YR42 00<br>10YR42 00                                                      | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0                                                                            | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>spect<br>TOT.STONE<br>3<br>3                                 | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR                                             | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | м            | Y<br>Y<br>Y       |
| ORIZON<br>0- 25<br>25- 52<br>52- 75                                                             | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL                   | SOIL<br>CHALK QUAR<br>72807610<br>COLOUR<br>10YR42 00<br>10YR44 00<br>10YR64 66                                         | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0                                                                            | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>Spect<br>TOT.STONE<br>3<br>3<br>20                           | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH                                       | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| AIN LIMI<br>arid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110                          | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL<br>CH             | SOIL<br>CHALK QUAR<br>72807610<br>72807610<br>72807610<br>109842 00<br>109844 00<br>109864 66<br>109881 72              | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0                                                                            | Pit Numbe<br>nual Rainfal<br>Temperatur<br>sity Level<br>spect<br>TOT.STONE<br>3<br>3<br>20<br>5                      | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH                                       | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| AIN LIMI<br>arid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110                          | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL                   | SOIL<br>CHALK QUAR<br>72807610<br>72807610<br>72807610<br>72807610<br>109842 00<br>109844 00<br>109844 66<br>109881 72  | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>0<br>0<br>0<br>0<br>0                                                                       | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>sspect<br>TOT.STONE<br>3<br>3<br>20<br>5<br>5                | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH<br>HR                                 | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| AIN LIMI<br>arid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110                          | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL<br>CH             | SOIL<br>CHALK QUAR<br>72807610<br>10YR42 00<br>10YR44 00<br>10YR64 66<br>10YR81 72                                      | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>Spect<br>TOT.STONE<br>3<br>3<br>20<br>5<br>sss : I           | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH<br>HR                                 | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| AIN LIMI<br>arid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110                          | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL<br>CH             | SOIL<br>CHALK QUAR<br>72807610<br>10YR42 00<br>10YR44 00<br>10YR64 66<br>10YR81 72                                      | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>0<br>0<br>0<br>0<br>0                                                                       | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>sspect<br>TOT.STONE<br>3<br>3<br>20<br>5<br>5                | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH<br>HR                                 | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| VIN LIMI<br>ite Name<br>irid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110<br>ietness ( | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MCL<br>CH<br>Grade : 1 | SOIL<br>CHALK QUAR<br>72807610<br>72807610<br>72807610<br>109842 00<br>109844 00<br>109844 66<br>109881 72              | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Pit Numbe<br>nual Rainfal<br>Temperatur<br>Sity Level<br>Spect<br>TOT.STONE<br>3<br>3<br>20<br>5<br>sss : I<br>:<br>: | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH<br>HR                                 | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | Y<br>Y<br>Y       |
| VIN LIMI<br>ite Name<br>irid Refe<br>ORIZON<br>0- 25<br>25- 52<br>52- 75<br>75-110<br>ietness ( | TATION : D<br>e : CLIFFE<br>erence: TQ<br>TEXTURE<br>MCL<br>MCL<br>MZCL<br>CH             | SOIL<br>CHALK QUAR<br>72807610<br>72807610<br>72807610<br>10YR42 00<br>10YR42 00<br>10YR44 00<br>10YR64 66<br>10YR81 72 | PIT DESCRIP<br>RY KENT<br>Average Ann<br>Accumulated<br>Field Capac<br>Land Use<br>Slope and A<br>STONES >2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Pit Numbe<br>nual Rainfal<br>Temperatur<br>ity Level<br>spect<br>TOT.STONE<br>3<br>20<br>5<br>sss : I<br>:<br>:       | 1 : 57<br>e : 147<br>: 107<br>: Whe<br>:<br>LITH<br>HR<br>HR<br>CH<br>HR<br>CH<br>HR<br>CH<br>HR<br>2 mm | 73 mm<br>76 degree<br>7 days<br>9at<br>degrees | STRUCTURE | FR      | M<br>M       | CA<br>Y<br>Y<br>Y |

program: ALCO12

# LIST OF BORINGS HEADERS 16/06/97 CLIFFE CHALK QUARRY KENT

| SAMP | LE         | A    | SPECT |     |          | WETI  | NESS  | -WI-      | IEAT- | -PC | DTS- | м.       | REL   | EROSN | FROST  | CHEM  | ALC |                |
|------|------------|------|-------|-----|----------|-------|-------|-----------|-------|-----|------|----------|-------|-------|--------|-------|-----|----------------|
| NO.  | GRID REF   | USE  | GR    | DNT | GLEY SPL | CLASS | GRADE | AP        | MB    | AP  | MB   | DRT      | FLOOD | EX    | P DIST | LIMIT |     | COMMENTS       |
| •.   |            |      |       |     |          |       |       |           |       | _   |      |          |       |       |        |       |     |                |
| 1    | TQ72907658 |      | N     | 2   |          | 1     | 1     | 103       |       |     | -11  | 38       |       |       |        | DR    | 3A  | IMP 70 3A-103  |
| 1P   | TQ72797642 | PLO  |       |     |          | 1     | 1     | 138       | 12    | 114 | -10  | 3A       |       |       |        | DR    | 3A  | P105A120 BDR2  |
| 2    | TQ73007658 | WHT  | N     | ۱   |          | 1     | 1     | 68        | -58   | 68  | -56  | 4        |       |       |        | DR    | 38  | IMP 40 38-70   |
| 2P   | TQ72807610 | WHT  |       |     |          | 1     | 1     | 128       | 2     | 112 | -12  | 3A       |       |       |        | DR    | 3A  | PIT100 RTS110_ |
| 3    | TQ72907649 | WHT  | N     | 2   |          | 1     | 1     | 93        | -33   | 99  | -25  | 38       |       |       |        | DR    | 3A  | IMP 60 3A-95   |
| 4    | TQ73007649 | WHT  | N     | I   |          | 1     | 1     | 77        | -49   | 77  | -47  | 3B       |       |       |        | DR    | 3A  | IMP 50 3B-70   |
| 5    | TQ72807640 | ₩НТ  |       |     |          | 1     | 1     | 103       | -23   | 113 | -11  | 3B       |       |       |        | DR    | 3A  | IMP 70 3A-100  |
| 6    | TQ72907640 | ынт  |       |     |          | 1     | 1     | 123       | -3    | 119 | -5   | 3A       |       |       |        | DR    | 2   | IMP 90 2-120   |
| 7    | TQ73007640 | WHT  |       |     |          | 1     | 1     | 118       | -8    | 114 | -10  | 3A       |       |       |        | DR    | 3A  | IMP 90 BDR G2  |
| 9    | TQ72907630 | whit |       |     |          | 1     | 1     | 67        | -59   | 67  | -57  | 4        |       |       |        | DR    | 3A  | IMP 40 3A-120  |
| 10   | TQ73007630 | ынт  |       |     |          | 1     | 1     | 95        | -31   | 99  | -25  | 3B       |       |       |        | DR    | 3A  | IMP 60 3A-90   |
| 11   | TQ72907620 | HRT  | S a   | ?   |          | t     | 1     | 114       | -12   | 111 | -13  | 3A       |       |       |        | DR    | 3A  | IMP 85 3A-115  |
| 12   | TQ73007620 | HRT  | S ·   |     |          | 1     | 1     | 109       | -17   | 110 | -14  | 3A       |       |       |        | DR    | 3A  | IMP 80 3A-120  |
| 13   | TQ73107620 | HRT  | S ·   |     |          | 1     | 1     | 111       | -15   | 108 | -16  | 3A       |       |       |        | DR    | 3A  | IMP 85 3A-120  |
| 16   | TQ72617610 | PLO  | S ·   |     |          | 1     | 1     | 130       | 4     | 113 | -11  | 3A       |       |       |        | DR    | 3A  | IMP 100 3A-120 |
| 17   | TQ72707610 | ~ ~  | c .   |     |          |       | 1     | 100       | 10    |     | 14   | 24       |       |       |        | 00    | 7.  | NO 77 34 110   |
| 17   |            |      |       |     |          | 1     |       |           | -18   |     |      | 3A<br>20 |       |       |        | DR    |     | IMP 77 3A-112  |
| 18   | TQ72807610 |      | -     |     |          | 1     | •     | 97<br>100 |       | 105 |      | 36       |       |       |        |       |     | IMP 70 3A-105  |
| 19   | TQ72907610 |      | S 2   |     |          | 1     |       | 109       | -17   |     | -13  | 3A       |       |       | •      |       |     | IMP 80 3A-115  |
| 20   | TQ73007610 |      |       |     |          | 1     |       | 146       |       | _   | -11  | 34       |       |       |        |       |     | NO CH HORIZON  |
| 21   | TQ73107610 | HRT  |       |     |          | 1     | 1     | 101       | -25   | 106 | -18  | 38       |       |       |        | DR    | 3A  | IMP 75 3A-95 💻 |

.

page 1

program: ALCO11

.

.

COMPLETE LIST OF PROFILES 16/06/97 CLIFFE CHALK QUARRY KENT

page 1

-----

|            |            |                |            |                        |    | MOTTLES |      | PED |         | _ C | TONES    |         | STRUCT/   | SUBS    |              |                                   |
|------------|------------|----------------|------------|------------------------|----|---------|------|-----|---------|-----|----------|---------|-----------|---------|--------------|-----------------------------------|
|            | AMPLE      | DEPTH          | TEXTURE    | COLOUR                 |    | ABUN    | CONT |     |         |     |          |         |           |         | IMP SPL CALC |                                   |
| U.         | M-11" L.L. | DEFIN          | ILAIORE    |                        | ŵĽ | 10011   | 0011 | ως. | 0227 22 | ~   | C1 10    | 101     | 000101    | JIK FOR | THE SEL CALC |                                   |
|            | 1          | 0-30           | mzcl       | 10YR42 00              |    |         |      |     | 2       | 0   | HR       | 3       |           |         | Y            | +3% CHALK                         |
|            |            | 30-68          | hc1        | 10YR45 00              |    |         | •    |     |         |     | СН       | 10      |           | м       | Y            | +37 FLINTS                        |
|            |            | 68-70          | ch         | 10YR81 74              |    |         |      |     |         |     | HR       | 5       |           | Р       | Y            | IMP CHALK 70                      |
|            |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 1P         | 0-31           | ຫວ່        | 10YR43 42              |    |         |      |     | 3       | 0   | HR       | 4       |           |         | Y            |                                   |
| -          |            | 31-55          | hc]        | 75YR45 00              |    |         |      |     | 0       | 0   | HR       | 5       | WKCSAB FR | R M     | Y            | TENDING MDCSAB                    |
| _          |            | 55-85          | mzcl       | 10YR64 74              |    |         |      |     | 0       | 0   | HR       | 5       | WKCSAB FR | м       | Ŷ            | +10% CHALK                        |
|            |            | 85~120         | ch         | 10YR81 74              |    |         |      |     | 0       | 0   | HR       | 5       | FM        | 1 P     | Y            | ROOTS TO 120                      |
|            |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 2          | 0-35           | mzcl       | 10YR41 51              |    |         |      |     | 1       | 0   | HR       | 3       |           |         | Y            | +5% CHALK                         |
|            |            | 35-40          | ch         | 10YR81 00              |    |         |      |     | 0       | 0   | HR       | 5       |           | P       | Y            | IMP HARD CHALK 40                 |
|            |            | ,              |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 2P         | 0-25           | wc)        | 10YR42 00              |    |         |      |     | 2       | 0   | HR       | 3       |           |         | Y            |                                   |
|            |            | 25-52          | mcl        | 10YR44 00              |    |         |      |     | 0       | 0   | HR       | 3       | MDCSAB FR | E M     | Y            | +5% CHALK                         |
|            |            | 52-75          | mzcl       | 10YR64 66              |    |         |      |     | 0       | 0   | СН       | 20      | WKCSAB FR | E M     | Y            | +5% FLINTS                        |
| -          |            | 75-110         | ch         | 10YR81 72              |    |         |      |     | 0       | 0   | HR       | 5       |           | Р       | Ŷ            | ROOTS CUTOFF 110                  |
| -          |            |                | ,          |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 3          | 0-30           | mzcl       | 10YR42 00              |    |         |      |     | 2       | 0   | HR       | 4       |           |         | Y            | +4% CHALK                         |
|            |            | 30-60          | mzc l      | 10YR54 00              |    |         |      |     | 0       | 0   | СН       | 15      |           | М       | Y            | +5% FLS IMP CH 60                 |
| _          |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 4          | 0-35           | (DZm       | 10YR42 00              |    |         |      |     | 1       |     | HR       | 3       |           | _       | Ŷ            | +5% CHALK                         |
|            |            | 35-50          | ch         | 10YR81 52              |    |         |      |     | 0       | 0   | HR       | 5       |           | Р       | Ŷ            | IMPCH 50 20% SOIL                 |
|            | -          |                |            |                        |    |         |      |     |         |     |          | _       |           |         |              | 0.55 0.0                          |
|            | 5          | 0-30           | mzcl       | 10YR42 00              |    |         |      |     |         |     | HR       | 3       |           |         | Ŷ            | SEE 2P                            |
|            |            | 30-60          | mc1        | 75YR56 00              |    |         |      |     | 0       |     | CH<br>CH | 5<br>30 |           | M       | Ŷ            | +37 FLINTS                        |
|            |            | 60-65<br>65-70 | mzcl<br>ch | 10YR64 81<br>10YR81 64 |    |         |      |     | 0       |     | HR       | 30<br>5 |           | M<br>P  | Y<br>Y       | +37 FLINTS<br>IHR IN CH70 107SOIL |
|            |            | 03-70          | Ċu         | 101801-04              |    |         |      |     | v       | U   | nk.      | 5       |           | r       | ,            | THE IN CHIE TOASULE               |
|            | 6          | 0-33           | mzcl       | 10YR42 43              |    |         |      |     | 1       | n   | HR       | 3       |           |         | Y            |                                   |
| -          | v          | 33-65          | mzcl       | 10YR44 54              |    |         |      |     | ,<br>n  |     | HR       | 5       |           | м       | ,<br>Y       | +5% CHALK                         |
| -          |            | 65-80          | mzci       | 10YR64 00              |    |         |      |     | •<br>0  |     | СН       | 15      |           | M       | Ŷ            | +3% FLINTS                        |
|            |            | 80-85          | mzcl       | 10YR64 81              |    |         |      |     | 0       |     | СН       | 50      |           | M       | Ŷ            | +37 FLINTS                        |
|            |            | 85-90          | ch         | 10YR81 74              |    |         |      |     | 0       |     | HR       | 5       |           | P       | Ŷ            | IMP CH 90 15% SOIL                |
| _          |            |                | •          |                        |    |         |      |     | •       | •   |          | •       |           | ·       |              |                                   |
|            | 7          | 0-30           | mzcl       | 10YR42 00              |    |         |      |     | 1       | 0   | HR       | 3       |           |         | Y            |                                   |
|            |            | 30-65          | mcl        | 10YR54 00              |    |         |      |     | 0       |     | HR       | 5       |           | м       |              | +5% CHALK                         |
|            |            | 65-80          | mzcl       | 10YR76 81              |    |         |      |     | 0       | 0   | СН       | 50      |           | м       | Ŷ            | +5% FLINTS                        |
|            |            | 80-90          | ch         | 10YR81 74              |    |         |      |     | 0       | 0   | HR       | 5       |           | Р       | Y            | IHR IN CH90 20% SOIL              |
|            |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 9          | 0-28           | നറി        | 10YR42 00              |    |         |      |     | 1       | 0   | HR       | 3       |           |         | Y            |                                   |
|            |            | 28-40          | hc]        | 75YR56 00              |    |         |      |     | 0       | 0   | HR       | 5       |           | M       | Y            | IMP FLINT 40 x 3                  |
|            |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
| -          | 10         | 0-30           | mzcl       | 10YR42 00              |    |         |      |     | 2       | 0   | HR       | 3       |           |         | Y            |                                   |
| _          |            | 30-45          | mzcl       | 10YR44 00              |    |         |      |     | 0       | 0   | HR       | 3       |           | М       | Y            | +37 CHALK                         |
|            |            | 4555           | mzcl       | 10YR44 54              |    |         |      |     | 0       | 0   | СН       | 30      |           | М       | Y            | +37 FLINTS                        |
|            |            | 55-60          | ch         | 10YR81 64              |    |         |      |     | 0       | 0   | HR       | 5       |           | Р       | Ŷ            | IMP CH 60 10% SOIL                |
| _          |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |
|            | 11         | 0-30           | mcl        | 10YR33 00              |    |         |      |     |         |     | HR       | 4       |           |         | Y            |                                   |
|            |            | 30-53          | hc1        | 10YR45 00              |    |         |      |     | 0       |     | HR       | 4       |           | M       |              | +27 CHALK                         |
|            |            | 53-85          | hc1        | 10YR65 74              |    |         |      |     | 0       | U   | СН       | 20      |           | M       | Ŷ            | +47 FLINTS                        |
| <b>111</b> |            |                |            |                        |    |         |      |     |         |     |          |         |           |         |              |                                   |

ch

COMPLETE LIST OF PROFILES 16/06/97 CLIFFE CHALK QUARRY KENT 

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 12 0-30 mc1 10YR33 00 3 0 HR 4 Y 10YR45 00 • 30-50 hc1 0 0 HR 4 М Y 50-65 10YR55 00 0 0 CH Y +4% FLINTS hc1 20 Μ 65-80 hc1 10YR84 00 0 0 CH 50 М Y +3% HR IMP CH 80 10YR43 00 13 0-32 scl 2 0 HR 4 Y 10YR45 00 32-55 scl 0 0 HR 4 М Y 55-85 10YR74 00 0 0 HR Μ Y +5% CH IMP CH/HR 8 hc1 5 75YR43 00 16 0~33 2 0 HR mcl 3 ¥. 33-55 75YR45 00 0 0 HR 4 М Y scl 55-98 75YR46 00 O O HR hc1 3 М Y 98-100 hc1 10YR74 00 0 CH +3% HR IMP CH 100 D 60 P Y 0-30 75YR43 00 17 3 0 HR Y mcl 4 75YR45 00 0 0 HR 30-50 hc1 4 M Y 50-77 scl 10YR74 00 0 CH Μ +3% HR IMP CH 77 0 15 Y 75YR43 00 18 0-30 mc1 3 0 HR Y SEE 1P 4 75YR45 00 30-53 hc1 O O HR 4 M Y 53-70 hc1 10YR74 00 0 0 CH 60 Ρ Y +3% HR IMP CH 70 19 0-35 10YR33 00 mc l 3 0 HR 4 Y 35-67 75YR56 00 0 HR hc1 0 10 Μ Y 67-80 10YR64 74 0 CH 30 м Y +5% HR IMP CH 80 hc] 0 20 0-30 10YR41 42 O HR mc1 1 3 Y 30-65 10YR46 00 OHR Y hc] 0 5 М 65-90 10YR64 74 0 0 CH +37 FLINTS mc 1 30 м Y 90-120 sc1 10YR54 64 0 0 CH 20 м Y +5% FLINTS 21 0-30 10YR42 00 mcl 1 OHR 3 Y 30-45 mc] 10YR42 43 Û. 0 HR 5 М Y 45-60 mzcl 10YR54 81 0 0 CH 30 +5% FLINTS м Y 60-75 10YR81 76

0 0 HR

5

Ρ

Y

IMP CH 75 20% SOIL

page 2