A1

WYCOMBE DISTRICT LOCAL PLAN Site 3, High Wycombe, Buckinghamshire

Agricultural Land Classification ALC Map and Report

January 1998

Resource Planning Team Eastern Region FRCA Reading **RPT Job Number: FRCA Reference:** 0305/150/97 EL 03/01404

.

AGRICULTURAL LAND CLASSIFICATION REPORT

WYCOMBE DISTRICT LOCAL PLAN SITE 3, HIGH WYCOMBE, BUCKINGHAMSHIRE

INTRODUCTION

1. This summary report presents the findings of a detailed Agricultural Land Classification (ALC) survey on 47 hectares of land to the south of High Wycombe (south of the M40 motorway). The survey was carried out during January 1998.

2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹, on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with the Wycombe District Local Plan. This survey supersedes any previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.

4. At the time of survey most of the agricultural land on this site was either under permanent grassland or winter cereal production with a small area under field beans. The areas shown as 'Other land' comprise woodland, roads, farm buildings and a college.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in the Table 1 overleaf.

7. The fieldwork was conducted at an average density of 1 boring per hectare. In total, 41 borings and 4 soil pits were described.

8. The small area of Grade 2 (very good quality) land occurs in the far west of the site. The soils tend to comprise slightly stony, fine loamy or fine silty topsoils overlying similar or sometimes heavier textured upper subsoils which vary in stone content. These soils usually overlie chalk at variable depths and are very slightly limited by soil droughtiness.

¹ FRCA is an executive agency of MAFF and the Welsh Office.

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	1.9	5.3	4.0
3a	21.4	59,3	45.5
3Ъ	6.7	18.5	14.3
4	6.1	16.9	13.0
Other Land	10.9	N/A	23.2
Total Surveyed Area	36.1	100	76.8
Total site area	47.0	-	100

Table 1: Area of grades and other land

9. The majority of the site is Subgrade 3a (good quality). These areas are predominantly limited by soil wetness or soil droughtiness, with topsoil stones being equally or more limiting in places. Soils are of two main types. The first, and most common, have variably stony, fine loamy or fine silty topsoils, which overlie poorly drained, clayey subsoils at moderate depths. These soils have a slight wetness limitation which may adversely affect crop growth or impose restrictions on cultivations or grazing by livestock. The second group of soils have similar or sometimes lighter topsoil textures to the first, but have much higher stone contents and coarser subsoil textures throughout the profile. These soils are usually impenetrable to the soil auger at shallow to moderate depths and suffer from a slight droughtiness restriction.

10. Two smaller areas of Subgrade 3b (moderate quality) land occur on the site. The soils within these units are very variable and are restricted to Subgrade 3b due to a combination of topsoil stone or wetness limitations, with some profiles being downgraded because they have been disturbed.

11. A discrete unit of Grade 4 (poor quality) land is mapped to the north east of Heath End Farm. This area of land has been disturbed. Here, the main limitation is severe droughtiness, but the land also suffers from poor drainage, compaction and restricted soil depth.

FACTORS INFLUENCING ALC GRADE

CLIMATE

12. Climate affects the grading of the land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

13. The key climatic variables used for grading this site are given in Table 2 overleaf and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

14. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2: Climatic and altitude data

Factor	Units	Values						
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m, AOD day°C (Jan-June) mm days mm mm	SU 887 905 115 1380 707 151 95 84	SU 881 908 130 1363 721 153 94 82	SU 874 910 140 1352 733 156 93 81				
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1				

15. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality. The figures above suggest that, overall, the site is comparatively cool (in regional terms) as a result of being located at a relatively high altitude. At this locality, moisture deficit figures are slightly lower than the national average, reflecting the elevated altitude. The likelihood of restrictions associated with soil droughtiness may therefore be reduced.

16. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have a significant adverse effect on the site. The site is climatically Grade 1.

Site

17. The agricultural land at this site lies at an altitude of 115-140 m AOD. The majority of the land at the site is flat or gently sloping with slight undulations and gradients measuring between $0-5^{\circ}$. A small area to the north of Heath End Farm (adjacent to the motorway) has gradients in excess of 7° .

Geology and soils

18. The published geological information for the site (Geological Survey of England and Wales, 1948) shows the majority of the site to be underlain by Upper Chalk, although a small area in the east of the site (where the land is highest) is underlain by Reading Beds. Superficial drift deposits of Clay-with-flints cover much of the site. However, in areas around Wye Valley Secondary School and Heath End Farm there are drift deposits of glacial gravel (with Bunter Pebbles). A small area in the extreme east of the site is shown as drift deposits of pebbly clay and sand.

19. The most recently published soil information for the site (SSEW, 1983) shows the Marlow association is most likely to cover the entire site with the possibility of the Newmarket 2 association occurring to the north-east of Winchbottom Lane. The former soils are described as 'well drained fine loamy over clayey soils. Some coarse and fine loamy over clayey soils with slowly permeable subsoils and slight seasonal waterlogging' (SSEW, 1983). The latter soils are described as 'shallow well drained calcareous coarse loamy and sandy soils

over chalk rubble associated with well drained deeper coarse loamy and sandy soils often in an intricate pattern. Slight risk of water erosion' (SSEW, 1983).

20. Upon detailed field examination, soils broadly consistent with the above descriptions were found to exist across the site.

AGRICULTURAL LAND CLASSIFICATION

21. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.

22. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Grade 2

A small area of land (1.9ha) in the west of the site has been mapped as Grade 2 (verv 23. good quality agricultural land). The soils in this area are moderately deep and are developed from Clay-with-flints deposits which cap the underlying chalk. The depth to the chalk is variable, as is the amount of stone in the horizons. Very occasional profiles are impenetrable to the soil auger. The soils have both calcareous and non-calcareous medium silty clay loam topsoils which are very slightly to slightly stony (up to 10% total flints, with 3% > 2cm). These overlie similar or slightly heavier textured upper subsoils which are slightly to moderately stony (containing 10-25% total flints). At moderate depths (50-55cm) solid chalk usually occurs. According to observations made at Pit 4, the chalk is rootable to a depth of 100cm, beyond which it becomes very hard and compacted. The soils are generally well drained (Wetness Class I) and suffer from a minor droughtiness limitation. These profiles have reserves of available water which can be insufficient for crop requirements in some years which, given the local climatic conditions, leads to Grade 2 being appropriate. Despite these slight limitations, this land is still capable of supporting a wide range of arable and horticultural crops whose yields are generally high but may be lower or more variable than Grade 1 land.

Subgrade 3a

24. Good quality agricultural land is mapped across the majority of the site. The land is limited by soil wetness, topsoil stoniness and/or soil droughtiness. Two main variants occur within this unit.

25. The majority of the Subgrade 3a land is affected by soil wetness and/or topsoil stoniness. Soil profiles mainly comprise non-calcareous, medium silty clay loam or medium clay loam topsoils which are slightly stony (containing up to 16% total flint, with 11% >2cm and 5% >6cm diameter). These sometimes overlie slightly stony (up to 10% total flint), non-calcareous heavy clay loam or heavy silty clay loam upper subsoils. These subsoils are gleyed but are porous and moderately structured. At variable depths of between 22cm and 52cm, poorly structured, dense, reddish brown clay occurs, which is developed from drift deposits of clay-with-flints. Chalk rubble deposits were found beneath the clay in many of the soil profiles at depths between 58cm and 90cm. Despite the chalk at depth, there is sufficient thickness of slowly permeable clay in these profiles to cause soil drainage to be impeded to the extent that Wetness Class III is appropriate which, when combined with local climatic conditions and the

topsoil textures, gives rise to a land classification of Subgrade 3a. Pit 3 (see Appendix II) is typical of these soils. Soil wetness such as this may adversely affect plant growth or impose restrictions on cultivations or grazing by livestock.

26. In addition to the soil wetness limitation described above, the amount of topsoil stone in some profiles is equally restricting or even solely restricting in places. This limitation has the effect of impeding cultivation, harvesting and crop growth, and increasing the cost of cropping (in terms of the wear and tear to machinery, and reducing yields).

27. The second group of soils within this unit occurs in the east of the site and is affected by soil droughtiness alone or in conjunction with topsoil stoniness. Many of the soils are impenetrable to the auger at moderate depths (40–70cm). Typical soil observations comprise non-calcareous, slightly to moderately stony (up to 25% total flints, with 13% > 2cm and 8% > 6cm in size) medium clay loam and medium sandy loam topsoils. Upper subsoils comprise similar or slightly lighter textures and are slightly to moderately stony (containing up to 40% flint). Soil inspection Pit 2 (Appendix II) is representative of this soil type (despite being limited to Subgrade 3b on topsoil stones). The profiles are permeable and well drained (Wetness Class I). The combination of soil texture and hard stone restricts the water available to crops such that there is a risk of drought stress to the plants in most years. The amount of topsoil stone in some profiles is also limiting in places (the effect of this is described in paragraph 26 above). Overall, land of Subgrade 3a quality could be expected to produce moderate yields of a wide range of crops and moderate to high yields of a narrow range of crops, principally cereals and grass.

Subgrade 3b

28. A total of 6.7 hectares of moderate quality agricultural land has been mapped. This occurs in two discrete units. The first, either side of Winchbotton Lane, the second, lying in the area close to Heath End Farm. The principal limitations are topsoil stoniness, soil wetness, and, very occasionally, disturbance.

29. The soils are very variable in nature but the majority of both areas are restricted to Subgrade 3b on the basis of topsoil stoniness. Soil profiles tend to comprise moderately stony, medium clay loam topsoils (30% total flint, with 20% >2cm and 8% > 6cm diameter). In some profiles, shallow upper subsoils are encountered, which vary in texture from clay loams to medium sandy silt loams and contain up to 48% total flints. The profiles are impenetrable to the soil auger at depths between 30cm and 45cm. The presence of more than 15% flints larger than 2 cm diameter restricts the land quality to Subgrade 3b.

30. Some discrete areas within the Subgrade 3b unit are less stony but are limited by soil wetness. Soils with a wetness limitation in the Subgrade 3b unit are similar to those soils already described in paragraph 25 above, except that the degree of waterlogging within the profile is greater because they are slowly permeable higher up the profile and have more prominent mottling. In addition to this, to the South of Heath End Farm, discrete areas of land appear to have been disturbed (as evidenced by the uneven topography).

Grade 4

Just over six hectares of poor quality agricultural land (Grade 4) has been mapped to 31. the north of Heath End Farm (adjoining a small stretch of the M40 motorway). This area is believed to have been disturbed in the past and is now in a state whereby most mechanised operations are not feasible and, as such, is only suited to permanent grazing. The soils become impenetrable to the auger between 20 cm and 25cm depth. Soil Pit 1 (Appendix II) is representative of these soils. A shallow topsoil of medium clay loam texture, which is slightly stony (10% total flints), lies over a very firm, compacted, intermixed upper subsoil which impedes drainage. The upper subsoil is very stony containing 40% total hard rock, (which includes a mixture of flint, concrete and other foreign material) and textures as a heavy clay loam overall. Between 40cm and 60 cm depth, a very stony, very compacted clay is observed (with similar stone contents to those described in the upper subsoil). Roots are observed down to a depth of 40cm (the top of the very compacted clay) and are unlikely to be able to penetrate further. Consequently, a depth of 40cm was used as the maximum limit of rooting and droughtiness calculations were stopped at this depth. Moisture balance calculations indicate a severe soil droughtiness restriction to the extent that Grade 4 is considered appropriate for this area of disturbed land.

> Sharron Cauldwell Resource Planning Team, Eastern Region FRCA Reading.

SOURCES OF REFERENCE

Geological Survey of England and Wales (1948) Sheet No. 255, Beaconsfield 1:63,360 scale (Drift Edition). GSEW: Southampton.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land.

MAFF: London.

Met. Office (1989) *Climatological Data for Agricultural Land Classification*. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils of South East England 1:250,000 scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden.

M.S. Temple (1929) The Soils of Buckinghamshire. Bulletin XXXVIII, University Of Reading.

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Laud

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass that can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations that restricts use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX Π

SOIL DATA

Contents:

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent pasture	LEY:	Ley grass	RGR:	Rough grazing
SCR:	Scrub	CFW:	Coniferous woodland	ОТН	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL:	Microrelief limitation	FLOOD:	Flood risk	EROSN:	Soil erosion risk
EXP:	Exposure limitation	FROST:	Frost prone	DIST:	Disturbed land
CHEM:	Chemical limitation				

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC :	Overall Climate	AE:	Aspect	ST:	Topsoil Stoniness
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure				C

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations:

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. PED. COL: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology one of the following is used:

HR:	all hard rocks and stones	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	CH:	chalk .
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered	GH:	gravel with non-porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8 STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development	WK: ST:	weakly developed strongly developed	MD:	moderately developed			
Ped size	F: C:	fine coarse	M :	medium			
Ped shape	S: GR: SAB: PL:	single grain granular sub-angular blocky platy	M: AB: PR:	massive angular blocky prismatic			

9. CONSIST: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extrem	nely firm	EH: extremely	hard	

- SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11 POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12 IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.
- 15. Other notations:
 - APW: available water capacity (in mm) adjusted for wheat
 - APP: available water capacity (in mm) adjusted for potatoes
 - MBW: moisture balance, wheat
 - MBP: moisture balance, potatoes

LIST OF BORINGS HEADERS 20/03/98 WYCOMBE DLP - SITE 3 HW

page	1
------	---

B SA/	IPLE	ļ	SPECT				WET	NESS	-MH	IEAT-	-PC	TS-		M. REL	EROSN	FROST	CHEM	ALC	
NO.				GRDNT	GLEY	SPL		GRADE					DF	RT FLOOD					COMMENTS
	SU87009120	CER	S	2	S32	32	3	3A	120	26	98	15	2				WE	3A	SEE PIT 3
2	SU87109120	CER	S	1	S28	28	3	ЗА	81	-13	89	6	ЗA				WE	3A	SEE PIT 3
- 3	SU87109110	CER					1	1	88	-6	93	10	ЗA				DR	2	160 SEE 4P
- 4	SU87209110	CER	E	1	S27		1	1	90	-4	92	9	3A				DR	2	ROOTS100 SEE4P
	SU87309110	CER	Е	1	S28	28	3	ЗA	92	-2	99	16	3A				WE	3A	SEE PIT 3
-																			
6	SU87309100		-	2			1	1	96		95	12	3A				DR	2	ROOTS 100, 4P
7			S	2		52	3	3A	99		103	20	2				WE	3A	SEE PIT 3
8					S30	30	3	3B		0		0	_				WE	3B	SEE PIT 3
9					0		2	2	44	-50		-39	38			Ŷ	ST	3B	IMP 30
	SU87629090	PGR					1	1	50	-44	50	-33	38				ST	38	IMP 40
							_	<u>.</u> .					•••						
- 11					S25	25	3	3A	83	-11			34				WE	34	SEE PIT 3
12					50	50	3	3A	96		106	23	3A				WE	3A	SEE PIT 3
13				•	S32	32	3	3A	120		98	15	3A				WE	3A	SEE PIT 3
14			NE	2	S50	50	3	3A	101		103	20	2				WE	3A	SEE PIT 3
- 15	SU88609090	PGR	N	4			1	1	28	-66	28	-55	4			Ŷ	DS	4	IMP20 SEE 1P
1 .	SU88709090	DC n		-					~~	~		50	٨			v	50		
16				5	500		1	1	33	-61		-50				Y		4	IMP20 SEE 1P
17			N	4	S90		1	1	121	27	88 50	5	2 3B					2	ALSO STONES
			NE E	4	6.95	ЭE	1	1		-20 2	59	-24 16	36 38				DR	3A 24	IMP70 SEE 2P
20			_	1 1	S25 S22	22	3 3	3A 3A	96 99	5		14					WE WE	3A 3A	SEE PIT 3 SEE PIT 3
20	3087909080	DLN	Ľ	1	322	22	3	AC	33	5	97	14	2				MC	AC	SEE PIT 5
21	SU88109080	BEN	F	1	S52	52	3	3A	109	15	108	25	2				WE	3A	SEE PIT 3
22	•			1	S35	35	3	3A	111		102	19					WE	3A	SEE PIT 3
23				1	S26	26	3	3A	79	-15		2					WE	3A	ALSO TS SEE 3P
m 24				1	S26	26	3	ЗА	83	-11		9	34				WE	3A	SEE PIT 3
25				2	28	40	4	3B	88	-6	99	16	34				WE	38	SEE PIT 3
•																			
_ 26	SU88509080	CER	W	2			1	1	55	-39	55	-28	3B				DR	3A	IMP 38 SEE 2P
27	SU88609080	PGR	N	3			1	1	30	-64	30	-53	4			Y	DS	4	I20 SEE 1P
28	SU88709080	PGR	N	2			1	1	71	-62	74	-51	4			Y	DS	4	I20 SEE 1P
29	SU88809080	PGR	NW	2			1	1	49			-34	38				ST	38	I40 SEE 2P
30	SU88909080	RGR	NE	5	S30		1	1	71	-23	71	-12	38						I50 SEE 2P
31	SU88109070	CER	s	1	S24	24	3	3A	79	-15	85	2	3A				WE	3A	ALSO ST SEE 3P
3 2	SU88209070	CER	S	1			1	1	90	-4	99	16	3A				SŤ	3A	
35	SU88509070	CER	W	2			1	1	89	-5	94	11	ЗA				ST	3A	175 SEE 2P
36	SU88609070	PGR					1	1	64	+30	64	-19	3B				ST	3A	I45 SEE 2P
37	SU88709070	PGR	SE	1			1	1	47	-47	47	-36	4			Y	DS	4	I25 SEE 1P
- 38	SU88789072	RGR					1	1	64	-30	64	-19	ЗB				DR	3A	I50 SEE 2P
Ĵ	000000002	1 MK	11/1	2			1	1	87	-7		9	3A				DR	3A	I60 SEE 2P
40	SU88209064	CER	SE	1			1		119	25		21						3A	
_	SU88579060			5			1	1	109	15		22							Q DISTURBED
45	SU88689060	PGR	SE	3			1	1	52	-42	52	-31	3B				ST	3B	I42 SEE 2P
			_	_							<i>.</i> .	_						_	
47	SU88709050			5	• • =		1	1				-21							I42 SEE 2P
— 1P	SU88609080	PGR	N	3	S15	15	4	38	40	-54	40	-43	4			Ŷ	DS	4	COMPACT SEE 1P

•

•

•

.

program: ALCO12 LIST OF BORINGS HEADERS 20/03/98 WYCOMBE DLP - SITE 3 HW

.

SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS- M. REL EROSN FROST CHEM ALC NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS 2P SU88689060 PGR SE 3 1 1 79 -15 67 -16 3A ST 3B 3A DROUGHT 3P SU87809080 BEN S23 23 3 3A 113 19 91 8 2 4P SU87209110 CER E 1 1 110 16 97 14 2 WE 3A SL GLEYED 23 DR 2 ROOTS 1000M

.

.

COMPLETE LIST OF PROFILES 20/02/98 WYCOMBE DLP - SITE 3 HW

s	AMPLE	DEPTH	TEXTURE	COLOUR		NOTTLES ABUN	CONT	PED COL.						STRUCT/ CONSIST			IMP	SPL	CALC	
	1P	0–15 15–40 40–60	MCL HCL C	10YR3242 10YR4658 10YR4658						0 0 0		łR	10 40 40	MASSVE	VM 8		4	١		+10% CH HARD, ROOTS 40 COMPACT, VSPL
	2P	0-30 30-52 52-120	MCL SCL SCL	10YR42 10YR54 10YR56						0	3 0 0	łR	28 48 65			1				W/T 750M
	3P	0-23 23-60 60-87 87-120	MCL C C CH	10YR42 75YR54 10YR68 10YR8165	75YR58 75YR58				\$ \$		•	{R {R	8 15 15 5	MDCAB MDCAB	FM (FM (,	4 (۱ ۲		DENSE FIRM ROOTS TO 120CM
	4P	0-25 25-55 55-100	MZCL HZCL CH	10YR42 10YR5354 10YR8152	75YR56	5 C			S	3 0 0	0 H 0 H 0 H	IR	8 25 5	MDCSAB	FR N				Y	LOOSE ROOTS TO 1000M

.

•

page 4

.

,

		MOTTLES		PED		\$	STON	ES	STRUCT/	SUBS					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	JN CONT	COL.						STR POR IMP	SPL C	ALC	
	0-32	MCL	10YR42					4	0		10				
	32-60	C	75YR54	75YR58	С		S	0	0		10	Р	Ŷ		FIRM
	60–90	С	10YR68	75YR58	M		S	0	0		5	P	Y		DENSE
	90-120	СН	10YR81					0	0	HR	5	Р		Y	CH RUBBLE
,								-							
2	0-28	MCL,	10YR42	20/050	•		~	3	0		10				C+40%CH V SPL
-	28-58 58-65	C	10YR54	75YR58	C		S	0	0		10	P	Ŷ		
	20-02	С	75YR5444	75YR58	м		S	0	0	пк	10	Р	Y		IMP FLINTS 65
3	0-30	MZCL	10YR42					3	0	HR	8				
_	30-60	HZCL	75YR44					_	0		10	м		·	IMP 60 FLINT
								•	-						
4	0-27	MCL,	10YR42					2	0	HR	6				
_	27-45	С	10YR54	75YR58	м		S	0	0	HR	5	Р			•
	45-75	СН	10YR8154					0	0	HR	5	Р.		Y	ROOTS TO 100CM
5	0-28	MCL.	10YR42					2	0		6				
	28-58	С	10YR54	75YR 58	C		S	0	0		5	Р	Y		DENSE, FIRM
	58-75	С	10YR56					0	0 (CH	50	м		Y	CHALK RUBBLE
<i>r</i>	0.00	M70	10/040					-			10				
6	0-28	MZCL	10YR42						01		10			Y	
	28-50	MZCL	10YR44					0	00		50	M		Y	000TO TO 1000
	50-80	сн	10YR81					0	01	nĸ	5	ρ		Y	ROOTS TO 1000M
7	0-30	MCL	10YR42					2	01	HR	8				
	30-52	HCL	10YR4344					0	01		10	м			LOOSE
_	52-80	С	75YR54	75YR58	с		s		01		10	P	Y		FIRM, DENSE
					-		-	-	-		-	·	Ţ		
8	0-30	HCL	25Y 42					4	0 1	HR	10				
	30-60	С	10YR54	75YR58	С		s	0	01	HR	10	P	Y		DENSE/FIRM
-															
9	0-30	MCL	10YR42	10YR46	С		Y	16	5 I	HR	25				DISTURBED?
10	0–26	MCL	10YR43					20	81	HR	30				
	26-40	HCL	10YR56					0	0 1	HR	30	м			IMP FLINTS
	• -										_				
11	0-25	MZCL	10YR42						0		15				
	25-50	C	10YR54	75YR66	С		S		0		20	P	Y		DENSE, FIRM
	50-65	С.	10YR54	75YR66	CF		S	0	01	HR	10	Р	Ŷ		DENSE
12	0-30	MCL	10YR42					વ	0 1	-R	8				
	30-50	HCL	10YR53						01		10	м			
	50-75	C	10YR6364	75YR56	с		Ŷ		01		15	P	Y		IMP FLINTS
		-		V	-		•	~	- 1				•		
13	0-32	MCL	10YR42					5	2	HR	12				
		С	10YR54	75YR58	С		s		01		5	Р	Y		DENSE, FIRM
	70-120		10YR81				-		01		5	P	•	Y	
			-												

page 1

•

8				MOT	TLES	PED		8	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL AB	JN CONT	COL.	GLEY	>2 >6	5 LITH	TOT CONSIST	STR POR IM	P SPL CALC	
14	0-30	MCL	10/042					F	1.00	10			
14	30-50	HCL	10YR42 10YR46					5 0	1 HR		м		
	50-30 50-70	C	107R40	10YR58	с		S	0	O HR O HR		M P	Y	DENSE
	70-85	č	101R44	75YR58	c		S	0	0 HR		P	Ŷ	DENSE, FIRM
	/0-05	Ċ.	101804	731030	Ç		3	Ŭ	Ų nk	5	r	Ŧ	DENSE, FIRM
15	0-10	MZCL	10YR42					0	ОHR	5		Y	
	10-20	MZCL	25Y 52					0	0 CH		м	Ý	IMP. DIST.
								Ť	0 01			•	11. 01011
16	0-20	MZCL	10YR3242					5	1 HR	8		Y	IMP. DIST.
1 7	0-40	MSL	10YR32					8	3 HR	17			
	40-65	LMS	10YR5456					0	OHR		G		LOOSE
	65-90	MS	75YR56					0	0 HR		G		LOOSE
_	90-120	SCL	10YR66	75YR5658	с		s	0	0 HR		M		LOOSE
19													
18	0-30	MSL	10YR32					13	5 HR	25			
	30-65	MS	10YR5456					0	0 HR	10	G		FRIABLE
	65-70	MS	10YR5456					0	0 HR	15	G	Y	LOOSE, IMP.
19	0-25	MZCL	10YR42					3	0 HR	8			
	25-55	С	10YR54	75YR56	С		S	0	0 HR	5	Р	Y	DENSE
,	55-80	ZC	10YR68	75YR68	С		S	0	0 CH	45	м	Y	IMP 80 SEE 3P
_					•								
20	0-22	MZCL	10YR42		-		_	3	0 HR	8			
	22-50	C	10YR54	75YR56	C		S	0	0 HR	5	P	Y	DENSE
	50-90	С	10YR68	75YR5658	С		S	0	0 HR	10	Р	Y	FIRM
21	0-30	MZCL	10YR42					3	0 HR	8			
21	30-52	HZCL	10YR42					0	0 HR	10	м		
	52-90	C	10YR68	75YR68	с		S	0	0 HR	10	M P	Y	DENSE, FIRM
-	02 50	•	101100	751800	U		3	v	U HK	10	F	,	DENSE, FIRM
22	0-35	MZCL	10YR42					6	0 HR	10			
	35-85	С	10YR54	75YR68	С		S	0	0 HR	10	P	Ŷ	DENSE, FIRM
	85-100	ZC	75YR54	75YR58	с		s	0	0 CH	25	м	Y	CHALK RUBBLE
23	0-26	HCL	10YR43					11	5 HR	15			
	26-52	С	10YR5444	75YR5658	С		S	0	0 HR	2	Р	Y	DENSE
	5 2-6 2	ZC	10YR64	75YR5658	С		S	0	0 CH	15	P	Y	FIRM
24	0-26	HCL	10YR43					11					
	26-62	C	10YR5444	75YR5658			S	0	0 HR	10	P	Ŷ	DENSE
	62-72	ZC	10YR68	75YR58	М		S	0	0 HR	5	Р	Y	FIRM
25	0-28	MCI	100040					-	2 110	10			
25	0-28 28-40	MCL HCL	10YR42		<u> </u>		v		2 HR 0 HR	12	м		10005
	28-40 40-70	C	10YR53 10YR53	75YR58 75YR58	с С		Y Y	0 0		10 5	M	v	LOOSE
	40-70	<u> </u>	101833	751830	U U		Y	U	o nk	5	Р	Y	DENSE, FIRM
26	0-30	MCL	10YR42					12	5 HR	20			
	30-38	MSL	10YR56						0 HR	30	M		IMP. FLINTS
		=			٠	•		v			••		

page 2

.

page 3

	MOTTLES PED					PED		S	TONES-	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABU							STR POR IMP	SPL CALC			
	0 00		101/												
27	0-20	MCL	10YR42					U	0 HR	10		Ŷ	IMP. DIST.		
28	0-20	MZCL	10YR4252					0	о сн	5		Y	IMP. DIST.		
	0.00		10/010					10	0.110	20					
29	0-30 30-40	MCL. MCL	10YR42						0 HR 0 HR	30 40	м				
	30-40	I'NGL	10YR53					U	Опк	40	М		IMP 40, GRAVELLY		
30	0-30	MSL	10YR32					6	O HR	10					
	30-50	MSL	10YR43	75YR46	С		S	0	0 HR	20	М		IMP 50, GRAVELLY		
31	0-24	MCL	10YR43						4 HR	15					
	24-52	C	10YR54		C		S	0	0 HR	2	Р	Y	DENSE, FIRM		
	52-62	ZC	10YR68	75YR5658	м		S	0	0	0	Ρ	Ŷ	FIRM		
32	0-26	MCL	10YR42					12	5 HR	17					
	26-45	MCL	10YR44					0	0 HR	5	м		LOOSE, FRIABLE		
	45-65	HCL	10YR44					0	0 HR	5	м		IMP 65, FLINTS		
35	0-30	MCL	10YR43						6 HR	18					
	30-72	MSL	10YR54					0	0 HR	20	M		IMP, FLINTS		
36	0-30	MCL	10YR32					12	0 HR	18					
	30-40	MSZL	10YR32						0 HR	25	м				
	40-45	MSZL	10YR42						0 HR	35	M		IMP, FLINTS		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101114E					·	• III						
37	0-25	FSZL	10YR42					9	0 HR	15			IMP. DIST.		
38	0-35	MCL	10YR32						0 HR	20					
	35-50	SCL	10YR53					0	0 HR	35	M		IMP, GRAVELLY		
39	0-30	MCL	10YR42					6	0 HR	10					
	30-60	MCL	10YR54						0 HR	10	м		IMP, GRAVELLY		
40	0-27	MCL	10YR42					11	3 HR	15					
	27-70	MCL	10YR4454						0 HR	10	м		FRIABLE		
	70-98	SCL	75YR46					0	0 HR	10	м		LOOSE, IMP		
			_												
44	0-20	MCL	10YR32						0 HR	10					
	20-40	MSZL	10YR42							15	м		FRIABLE		
	40-60	MCL	10YR42					0	0 HR	5	M		LOOSE		
	60-85	SCL	10YR42					0	O HR	20	M		LOOSE		
	85-90	LMS	10YR58					0	0 HR	45	м		IMP. DIST.		
45	0-20	MCL.	10YR32					16	3 HR	28					
	20-38	MCL	10YR32					0	0 HR	40	м				
	38-42	MCL	10YR53					0	0 HR	50	м		IMP, GRAVELLY		
	0.05	-	10/0-0					~	0.00	r					
47	0-25 25-40	MCL	10YR42						0 HR	5 30	ы				
	25-40 40-42	MCL MCL	10YR43 10YR53						o hr o hr	30 30	M		IMP, GRAVELLY		
	-70-46		CCAIVI					v	O UK	JU	м		THE MARKELT		

.