A1

U

East Sussex Structure Plan Land at Uckfield Agricultural Land Classification Reconnaissance Survey ALC Map and Report August 1995

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 4107/157/95 MAFF Reference EL 41/00458 LUPU Commission 02116

AGRICULTURAL LAND CLASSIFICATION REPORT RECONNAISSANCE SURVEY

EAST SUSSEX STRUCTURE PLAN LAND AT UCKFIELD

Introduction

1 This report presents the findings of a reconnaissance Agricultural Land Classification (ALC) survey of 308 6 ha of land around Uckfield East Sussex The survey was carried out during September and October 1995

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) Land Use Planning Unit Reading in connection with the East Sussex Structure Plan The results of this survey supersede any previous ALC information for this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I The survey was completed at a reconnaissance level of detail on a free survey basis as it was undertaken primarily to update the 1 63 360 scale provisional ALC maps for this area Consequently the results are designed for strategic planning purposes only For site specific proposals further more detailed surveys may be required

4 At the time of survey most of the land was in permanent grass Some of the land had recently been harvested for maize and cereal and other areas had recently been ploughed Urban land in the area of search includes roads a sewage treatment works and residential buildings Horse stables are shown as Agricultural Buildings the Woodland mapped comprises mature and deciduous trees

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 50 000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf

7 The fieldwork was conducted at an average density of approximately 1 boring per 5 hectares of agricultural land A total of 53 borings and eight soil pits were described

8 Most of the agricultural land around Uckfield has been classified as Subgrade 3b (moderate quality) Land to the south-west of Uckfield also includes smaller areas of better quality land Grade 2 (very good quality) and Subgrade 3a (good quality) A small area to the north of Uckfield has been classified as Grade 4 (poor quality)

Grade/Other land	Area (hectares)	% surveyed area	% agricultural area
2	5.6	18	21
2 3a	19.8	64	74
3b	240 7	78 0	89 5
4	27	09	10
Urban	10 2	33	
Woodland	28 4	92	
Agricultural Buildings	12	04	
Total survey area	268 8		100 0
Total site area	308 6	100 0	

Table 1 Area of grades and other land

9 Land classified as Grade 2 is restricted by a slight soil droughtiness limitation Deep medium textured soils which are slightly stony (sandstone) interact with the prevailing climate to slightly limit the amount of moisture available for crops Land classified as Subgrade 3a is limited either by moderate soil droughtiness or soil wetness. Where the former occurs comparatively shallow depth over dense sandstone layers results in a moderate limitation. To the east of Owlsbury Farm the land is limited by soil wetness. This limitation arises from medium textured topsoils which overlie slowly permeable heavier textured lower subsoils. The climatic conditions which prevail at Uckfield means that this land will be subject to some restrictions on the flexibility of cropping and stocking.

10 Land classified as Subgrade 3b is restricted by either significant soil wetness or soil droughtiness limitations To the east of Uckfield these limitations occur extensively in conjunction with slope restrictions Gradients within the range of 7-11° act to restrict the range of agricultural machinery that may be safely and efficiently used

11 Where soil wetness is limiting, medium textured topsoils overlie slowly permeable subsoils The subsoils are slowly permeable either directly below the topsoil or at shallow depths within the soil profile Such soil wetness will act to significantly restrict the flexibility of cropping and stocking

12 Where soil droughtiness is limiting soil profiles typically comprise medium sandy loams and medium clay loams These profiles contain significant amounts of sandstone in the upper subsoil and then pass into sandstone at shallow to moderate depths The sandstone acts to restrict crop roots thus lowering the amount of soil available water Some of the land to the south of Bird-in-Eye Farm is limited by soil droughtiness again because of restricted rooting These profiles pass into lower subsoils which are very compact and massively structured Land restricted by soil droughtiness will be subject to lower and inconsistent yield potential 13 A small area of land has been classified as Grade 4 This land is subject to high groundwater and seepage as indicated by the predominance of hydrophilic vegetation. This land is likely to be permanently waterlogged for much of the year restricting agricultural use to seasonal grazing, because of severe soil wetness problems.

Factors Influencing ALC Grade

Climate

14 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

15 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values	Values	Values
Grid reference	N/A	TQ 470 197	TQ 465 219	TQ 489 212
Altitude	m, AOD	35	40	65
Accumulated Temperature	day⁰C	1490	1483	1454
Average Annual Rainfall	mm	784	799	815
Field Capacity Days	days	169	171	174
Moisture Deficit Wheat	mm	109	108	106
Moisture Deficit Potatoes	mm	104	102	99

16 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

17 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

18 The climatic data was adjusted for each of the survey areas around Uckfield by using the highest soil moisture deficits and the highest field capacity days (FCD) within each individual survey area Across all survey areas the FCD fall within the 151-175 FCD range

19 The combination of rainfall and accumulated temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk are not believed to adversely affect most of the site though land proximate to the sewage works may be rather frost prone (Met Office 1980) All of the land around Uckfield is climatically Grade 1

Site

To the north-west of Uckfield the land occupies a hillside falling from 55 m AOD to 25 m AOD The land typically falls through slopes of $2-5^{\circ}$ The land to the south-west of Uckfield occupies the broad valley of the Ridgewood Stream This land falls from 50 m AOD along the eastern site boundary to 15 m AOD along Ridgewood Stream The land then rises again to 35 m AOD along the western site boundary The land in this area mostly occupies slopes of 1-4° though slightly steeper slopes of 4-5° sometimes occur proximate to the stream

21 Land to the east of Uckfield is comparatively more undulating To the north-east of Bird-in-eye Farm the land is virtually flat lying at approximately 55 m AOD From the farm, the land falls in both a north-westerly and south-westerly direction to lie at 25m AOD along the River Uck and the tributary streams to the west and south Next to the River Uck the land is flat However much of the land in this area occupies slopes of 2-6° though in parts slopes of 7-11° occur The latter give rise to gradient limitations arising from restrictions on the safe and efficient use of farm machinery The more southern block of land to the east of Uckfield (and south-west of Framfield) typically occupies slopes of 2-3° However the highest lying land which occurs at 50 m AOD is virtually flat The northern boundary of this most southerly block of land also includes gradients of 7-11° where the land falls to a stream valley This land can thus be classified as no higher than Subgrade 3b

Geology and soils

The published geological information (BGS 1971 and 1979) maps a number of deposits around Uckfield For the survey area to the north-west of Uckfield the northern half is mapped as Ardingly Sandstone the southern half as Grinstead Clay The survey area to the south-west of Uckfield the land is mostly shown as Wadhurst Clay Upper Tunbridge Wells Sand is mapped in the north-east of this area and also around Ridgewood Farm Ashdown Beds and head deposits are also shown as less extensive deposits in the north of this area For the survey area to the east of Uckfield most of the land is mapped as the Ashdown Beds (the southern half) and Lower Tunbridge Wells Sand Along the northern boundary of this area, the land is mapped as Wadhurst Clay overlain by alluvium along the River Uck A very narrow strip of head occurs between the latter two

The published soils information (SSEW 1983) maps two soil types around Uckfield Soils of the Curtisden Association generally occur in conjunction with the Upper Tunbridge Wells Sand the Ardingly Sandstone and the Ashdown Beds All of the survey area to the north-west of Uckfield is shown as Curtisden soils even though the southern half of the site is mapped as Grinstead Clay These soils are described as silty soils over siltstone with slowly permeable subsoils and slight seasonal waterlogging Some similar well drained soils Some well drained coarse loamy soils over sandstone Slumping locally (SSEW 1983) Soils of the Wickham 1 Association are generally mapped over the Wadhurst Clay These soils are described as slowly permeable seasonally waterlogged fine silty over clayey fine loamy over clayey and clayey soils (SSEW 1983)

Agricultural Land Classification

The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2

The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Grade 2

A very small area of land to the south-west of Uckfield has been classified as Grade 2 This land is limited by minor soil droughtiness arising from deep well drained soils believed to be derived from the head deposits Profiles typically comprise non-calcareous medium silty clay loam topsoils which overlie medium clay loam subsoils Topsoils and upper subsoils are virtually stoneless lower subsoils are slightly stonier containing 5 15% total sandstone by volume Some of the profiles are slightly gleyed but all of the profiles within this mapping unit are well drained Wetness Class I (see Appendix II) These profiles are typified by Pit 6 The interaction between these soil characteristics and the prevailing climate results in the amount of soil available water being slightly inadequate to meet crop requirements in some years The resultant soil droughtiness limitation means that this land will suffer from a slightly lower yield potential and less consistent crop yields

Subgrade 3a

To the east of Owlsbury Farm the land classified as Subgrade 3a, good quality is generally limited by soil wetness and workability The higher flatter land around Ridgewood Farm is also classified as Subgrade 3a due to soil droughtiness limitations Where soil wetness and workability are limiting profiles comprise non-calcareous medium clay loam and medium silty clay loam topsoils These overlie permeable similarly textured upper subsoils which pass into heavy clay loam and clay lower subsoils at approximately 50 cm depth. These heavier textured subsoils are slowly permeable and act to cause imperfect soil drainage conditions such that Wetness Class III is appropriate. The interaction between the medium textured topsoils and soil drainage status with the prevailing climate acts to impose some restrictions on the flexibility of cropping stocking and cultivations

Land limited by soil droughtiness mainly occurs on the Upper Tunbridge Wells Sand 28 around Ridgewood Farm Non calcareous medium clay loam topsoils over medium clay loam upper subsoils Topsoils are very slightly stony containing 2% total hard rock by volume Subsoils are slightly to moderately stony containing 5-20% total sandstone by volume These profiles proved impenetrable to an auger at 50 cm, occasionally 70 cm, depth Using information from Pits 2 and 7 dug elsewhere for shallower and stonier soil profiles derived from Upper Tunbridge Wells Sand assumptions have been made regarding the profile available water of these soils Based upon observations at Pit 2 these profiles may be impenetrable at 50 cm due to a shallow very stony (approximately 45% sandstone by volume) horizon over dense sandstone Alternatively if similar but deeper soils to those described at Pit 7 occur the impenetrable nature may be due to a relatively compact but rootable fine sandstone horizon over dense sandstone Assuming either scenario the interaction of the soil characteristics (texture stone contents restricted rooting) with the local climatic regime acts to impart a moderate soil droughtiness limitation. This may result in the soil available water

being insufficient to fully meet crop needs in some years Consequently this land may suffer from reduced and less consistent crop yields

Subgrade 3b

29 The majority of land around Uckfield has been classified as Subgrade 3b moderate quality Most of this land is limited by significant soil wetness and workability However to the east of Uckfield much of the land is limited by soil droughtiness sometimes in conjunction with soil wetness and workability In addition, some of this land is subject to gradient limitations Slopes within the range of 7-11° act to limit the safe and efficient use of agricultural machinery

30 Where the land is limited by soil wetness and workability the soil profiles tend to vary in accordance with the underlying geology Profiles derived from the Wadhurst Clay typically comprise medium clay loam, occasionally medium silty clay loam topsoils Topsoils tend to directly overlie clay or silty clay subsoils but occasionally a shallow and permeable medium textured upper subsoil occurs Over the Grinstead Clay medium clay loam topsoils overlie heavy clay loam upper subsoils and clay lower subsoils To the east of the sewage works where the Upper Tunbridge Wells Sand is mapped medium silty clay loam topsoils are underlain by similarly textured or heavier heavy silty clay loam, heavy clay loam and clay Some of the subsoils contain approximately 10% sandstone by volume To the subsoils north-west of Uckfield profiles derived from the Ardingly Sandstone comprise medium clay loam topsoils over similarly textured occasionally heavy clay loam, subsoils Lighter profiles also occur over the Ashdown Beds Silt loam and fine sandy silt loam topsoils overlie similarly textured upper subsoils and silt loam lower subsoils Topsoils contain approximately 5% siltstone by volume subsoils tend to be somewhat stonier containing 20-35% but are dense and massively structured All of the topsoils across this Subgrade 3b mapping unit were found to be non-calcareous

31 As shown by Pits 1 3 4 5 and 8 all of the subsoils are slowly permeable with the exception of the medium textured upper subsoils over the Wadhurst Clay However all of the profiles within this mapping unit are slowly permeable within 45 cm depth some as the result of dense massive silt loam subsoils which occur over the Ashdown Beds This causes poor soil drainage as indicated by gleying within the subsoils and often within the topsoils These profiles are thus assigned to Wetness Class IV The interaction between the topsoil textures and drainage characteristics with the prevailing climate means that this land is most appropriately classified as Subgrade 3b This land will be subject to significant restrictions on the flexibility of cropping stocking and cultivations

32 Land within the floodplain zone of the River Uck, to the east of Uckfield is likely to be prone to flooding due to its flat and low-lying nature At certain times of the year flooding can have a detrimental effect on yield and may give rise to wetness and associated soil management problems Consequently flood risk may restrict the range of crops which can be grown Although the duration, frequency and timing of flooding for this area is unknown it is considered that Subgrade 3b is the most appropriate classification

33 Land limited by soil droughtiness is derived from the Upper Tunbridge Wells Sand Such land prevails to the east of Uckfield around Bird-in-eye Farm This land also occurs though to a lesser extent to the south-west of Uckfield on the slightly higher land between the convent and Ridgewood Farm Topsoils comprise non-calcareous medium clay loams and medium sandy loams These overlie similarly textured and occasionally loamy medium sand upper subsoils Where the latter occur these typically pass into fine sandstone lower subsoils Topsoils are slightly stony generally containing 5-10% total sandstone by volume Subsoils are moderately or very stony typically containing 20-50% total sandstone by volume Most of these profiles proved impenetrable to an auger at approximately 40-50 cm depth Consequently Pit 2 was dug to investigate lower subsoil conditions (see para 33) Profiles which pass into sandstone lower subsoils proved impenetrable (to a spade) at greater depths typically 65 cm depth Pit 7 typifies such profiles (see para 34)

From Pit 2 it could be seen that the upper subsoil comprises a moderately stony approximately 30% total sandstone by volume medium sandy loam. The lower subsoil comprises a shallow and very stony approximately 45% total sandstone by volume medium clay loam over dense sandstone. Although not excessively stony both subsoils were found to be relatively compact and have thus been assumed to be poorly structured. The extremely compact nature of the underlying sandstone made it impossible to dig beyond a depth of 70 cm. Consequently it is considered unlikely that roots would be able to penetrate below this depth in order to extract water. The interaction of the soil properties (texture stone content structure restricted rooting) and the prevailing climate results in the amount of soil available water being inadequate to meet crop requirements in most years. The resultant soil droughtiness limitation means that this land will suffer from lower and less consistent yield potential.

The loamy medium sand upper subsoil of Pit 7 was assessed as moderately structured containing just 15% total sandstone by volume The lower subsoil comprising relatively compact but rootable fine sandstone was assessed as poorly structured. It was impossible to dig beyond 65 cm depth due to the underlying dense sandstone. It is thus likely that rooting would once again be restricted. As before this land is limited by soil droughtiness.

36 Some of the land to the east of Uckfield over the Ashdown Beds is also limited by soil droughtiness in combination with soil wetness (see para 30) Fine sandy silt loam topsoils overlie similarly textured upper subsoils which pass into a silt loam horizon at approximately 40 cm depth Topsoils are very slightly stony containing 5% total silt rock by volume upper subsoils moderately stony 20% total silt rock which then become stoneless at 40 cm depth Pit 4 which typifies such profiles found the subsoils to be compact massive and poorly structured At approximately 50 cm these profiles become extremely dense and compact and thus considered both impenetrable to crop roots and slowly permeable Although fine sandy silt loams and silt loams have a high available water capacity the restricted rooting and poor subsoil structures means that this land is also subject to soil droughtiness limitations

Grade 4

A small area of land to the north-west of Uckfield has been classified as Grade 4 poor quality This land is subject to severe soil wetness and workability limitations The predominance of hydrophilic vegetation, such as rushes across this land is indicative of long periods of waterlogging caused by the seepage of groundwater at the junction of two geological deposits Given the extreme saturation of the land for much of the year such profiles are assigned to Wetness Class V Such land is unlikely to benefit significantly from artificial drainage As such, it will present severe difficulties in terms of cropping and cultivations and will be best suited to seasonal grazing

Gillian Iles Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1971) Sheet No 303 Tunbridge Wells 1 50 000 (solid and drift edition) BGS London

British Geological Survey (1979) Sheet No 319 Lewes 1 50 000 (solid and drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

MAFF London

Met Office (1980) Unpublished climatic data relating to old series OS 1 63 360 scale Sheet 183 Met Office Bracknell

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England, 1 250 000 and accompanying legend SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation, harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hardsurfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active nuneral workings and refuse tips where restoration conditions to soft after-uses may apply

Woodland

Includes commercial and non-commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²
11	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
Ш	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31-90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988)

¹ The number of days is not necessarily a continuous period ² In most years is defined as more than 10 out of 20 years

ΑΡΡΕΝDΙΧ ΙΙΙ

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	ELEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
нтн	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set asıde	OTH	Other
HRT	Horticultural Cror	os			

- 3 **GRDNT** Gradient as estimated or measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 **LIMIT** The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			

Soil Pits and Auger Borings

s	Sand	1.5	Loamy Sand	ST	Sandy Loam
5 571	Sandy Silt Loam	CL	Clay Loam		Silty Clay Loam
32L 7L	Silt Loam	SCL.	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2-20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non-porous (hard) stones
MSST SI	soft medium grained sandstone soft weathered igneous/metamore	GS Sorphic ro	gravel with porous (soft) stones ck

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine	M medium
-	C coarse	VC very coarse
ped shape	S single grain	M massive
	GR granular	AB angular blocky
	SAB sub-angular blocky PL platy	PR prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF	very friable	FR	friable	FM	firm	VM	very firm
EM extremely f	firm	EH	extremely h	nard			

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 **IMP** If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

Site Nar	me EAST S	SUSSEX SP U	CKFIELD		Pit N	umber	- 1	Р				
Grid Re:	ference T(46932235	Average	Annua	l Rai	nfall	1 79	mm Cl				
			Accumula	ated T	emper	ature	148	9 degree	days			
			Field C	apacit	y Lew	el	173	days				
			Land Us	e			Per	manent Gr	ass			
			Slope a	nd Asp	ect		02	degræes k	I			
HORIZON	TEXTURE	COLOUR	STONE	S >2	tot s	TONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	MCL	10YR53 0	o o		1		HR	с				
29- 53	MCL	25Y 74 04	0 0		0			M	MDCAB	FM	Ρ	
53- 68	HZCL	25Y 72 0	0 0		0			м	MDCAB	FM	Ρ	
Wetness	Grade 31	3	Wetness	Class	5	IV						
		-	Glevino			0	cm					
			SPL			029	cm					
Drought	Grade		APW	mm	MBW		0 mm					
			APP	mm	MBP		0 mm					
FINAL A	LC GRADE	3B										

Site Na	ame EAS	st su	SSEX SP	UCI	KFIELD	Pit Nu	mber	2	Ρ				
Grid Re	eference	TQ4	8542070		Average Annu	ual Rain	fall	79	3 mm				
					Accumulated	Tempera	ture	148	9 degree	days			
				1	Field Capaci	ity Leve	1	173	days				
				1	Land Use	•		Pen	manent Gr	ass			
				:	Slope and As	spect		03	degrees S	H			
		105	~~~~~	-	STOULS . 2	TOT ST				STOLICTURE	CONSTST		CALC
		IRE.		K	STURES >2	101 51	UNE		MUTTLES	STRUCTURE	CONSTRI	SUBSTRUCTURE	CALC
0- 28	S 1951	•	10YK43	00	1	5		MSSI				_	
28- 50) MSL	-	10YR54	00	0	30		MSST				P	
50- 70) MCL	•	10YR64	00	0	45		MSST				Р	
Wetness	: Grade	1		•	letness Clas	is	I						
				(Glevina			cm					
				9	SPL		No 3	SPL					
Drought	: Grade	3B		,	APW 084mm	MBW	-20	5 mm					
				1	APP 091mm	MBP	-14	4 mm					
FINAL A	ALC GRADE	3	в										

MAIN LIMITATION Droughtiness

Site Na	me EAS	t su	ssex sp	UCI	KFIELD	Pit N	lumber	. 3	3P				
Grid Re	ference	TQ4	8702032		Average Annu	ual Rai	nfall	79	93 mm				
				1	Accumulated	Temper	ature	148	9 degree	days			
				F	Field Capaci	ty Lev	el	173	days				
				L	land Use			Plo	ughed				
				\$	Slope and As	spect			degrees				
HORIZON	TEXTU	RF	COLOUS	ł	stones >2	TOT S	TONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 28	ZL		10YR53	00	0	5	i	ZR		•			
28- 45	ZL		10YR53	00	0	30	,)	ZR	С	MASSIV	VM	P	
45- 55	ZL		10YR72	00	0	50)	ZR	c	MASSIV	VM	Р	
Wetness	Grade	3B			letness Clas	. c	τv						
		00			Sleving		028	~					
				5	SPL		028	cm					
Drought	Grade	3A		,	APW 093mm	MBW	-1	6 mm					
				1	APP 096mm	MBP	-	7 mm					
FINAL A	LC GRADE	3	в										

Site Na	me EAS	T SL	ISSEX SP	UCKFIE	LD	Pit Numbe	r 4	¥P				
Grid Re	ference	TQ4	9072000	Aver Accu Fiel Land Slop	age Annu mulated d Capaci Use m and As	al Rainfal Temperatur ty Level	1 79 e 148 173 Per 02	93 mm 99 degree 9 days manent Gr degrees S	days ass W			
								y				
HORIZON	ΤΕΧΤυ	RE	COLOUR	\$T	'ONES >2	tot stone	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 25	FSZ	L	10YR53	00	0	5	ZR	С				
25- 40	FSZ	L	10YR63	00	0	20	ZR	M	MASSIV	VM	Р	
40- 50	ጀር		10YR81	00	0	0		М	MASSIV	VM	Ρ	
Wetness	Grade	3A		Wetn	ess Clas	s IV						
				Gley	ring	0	cm					
				SPL	-	025	cm					
Drought	Grade	38		APW	089mm	MBW -	20 mm					
				APP	089mm	MBP -	14 mm					
FINAL A	LC GRADE	3	SA .									

Site Na	me EAST S	SUSSEX SP (JCKF I ELD		Pit N	umber	- 5	P				
Grid Re	ferenca T(Q47682054	Average Accumul Field C Land Us Slope a	Annua ated T apacit e nd Asp	1 Rai empera y Lev ect	nfal' ature el	1 79 3 148 173 03	3 mm 19 degree 1 days degrees S	days W			
HORIZON 0- 28 28- 40 40- 60	TEXTURE MZCL MZCL ZC	COLOUR 10YR53 (10YR53 6 10YR53 6	STONE 00 0 53 0 00 0	S >2	TOT S 0 0 0	TONE	LITH	MOTTLES C M M	STRUCTURE MDCPL MDVCPR	CONSIST VM VM	SUBSTRUCTURE P P	CALC
Wetness	Grade 31	В	Wetness Gleying SPL	Class		IV 000 028	CTT CTT					
Drought	Grade		AP W APP	mm mm	MBW MBP		0mm 0mm					
FINAL A	LC GRADE	38										

Site Name	EAS	t suss	ex sp	UCK	FIELD	Pit Num	tber	6	P				
Grid Refe	erence	TQ463	52030	A	verage Annu ccumulated	al Rainf Temperat	all ure	79 148	3 mm 9 degree	davs			
				F	ield Capaci	ty Level		173	days	•			
				L	and Use								
				S	lope and As	pect		02 (degrees N	E			
	TEXTU	PF		,	STONES >2	TOT STO	WF	1 TTH	MOTTI ES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 25	MCL	1	0YR42	00	0	101 010		HR	INTILLO	OTROOTORE	0010101	SOLOTINO TONE	WILL O
25- 37	MCL	1	0YR43	00	0	1		MSST	F	MDCSAB	FR	м	
37- 70	MCL	1	0YR54	00	0	10		FSST		MDCSAB	FM	м	
70-120	MCL	1	0YR64	00	0	15		FSST				м	
Wetness (Grade	1		W	etness Clas	5	I						
		•		G	levina	-	- (am					
				S	PL		No S	SPL					
Drought (Grade	2		A	PW 146mm	MBW	30	5 mm					
				A	PP 113mm	MBP	8	3 mm					
FINAL ALC	GRADE	2											

MAIN LIMITATION Droughtiness

Site Name	EAST SL	JSSEX SP U	CKFIELD	Pit Number	76	>				
Grid Refe	enence TQ4	6772035	Average Annu	al Rainfall	793	3 mm				
			Accumulated	Temperature	1489	degree	days			
			Field Capaci Land Use	ty Level	173	days				
			Slope and As	pect	đ	legrees				
HORIZON	TEXTURE	COLOUR	stones >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 31	MSL	10YR43 0	0 0	5	MSST					
31- 43	LMS	10YR56 5	80	15	MSST		WKCSAB	VF	м	
43- 65	FSST	10YR64 7	20	0		м			Р	
Wetness G	irade 1		Wetness Clas	s I						
			Gleying		cm					
			SPL	No	SPL					
Drought G	irade 38		APW 066mm	MBW -4	4 mm					
			APP 069mm	MBP -3	6 mm					
FINAL ALC	GRADE 3	B								

MAIN LIMITATION Droughtiness

Site Name	e EAST S	ussex sp u	CKFIELD		Pit M	lumber	- 8	P				
Grid Refe	erence TQ	46751975	Average Accumula Field Ca Land Use Slope an	Annua ited T ipacit ad Asp	1 Rai emper y Lev ect	infal: ature /el	l 79 a 148 173 Per 04	3 mm 9 degree days manent Gr degrees S	days rass W			
HORIZON	TEXTURE	COLOUR	STONES	5 >2	TOT S	TONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0-23	MCL	104K42 0			2	2	HK	C		-		
23- 36	MCL	109R53 0	0 0		1		MSST	M	MDCSAB	FM	M	
36- 55	ZC	25Y 53 0	0 0		C)		М	STCPR	VM	Р	
Wetness (Grade 3B		Wetness	Class		I۷						
			Gleying			0	cm					
			SPL			036	cm					
Drought (irade		APW	mm	MBW		0 mm					
			APP	mn	MBP		0 mm					
FINAL ALC	GRADE	3B										

SAMP	LE	A	SPECT				WET	NESS	-M	IEAT-	-PC)TS		H REL	EROSN	FR	DST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLE	y spl	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD		EXP	DIST	LIMIT		COMMENTS
ł	TQ46872250	PGR	NH	06	0	028	4	38		0		0						WE	38	Re Pit 1
1P	T046932235	PGR	W	02	0	029	4	3B		0		0						WE	38	Imp70 siltstn
2	TQ46552235	CER			030	030	4	3B		Ó		0						WE	38	Re Pit 1
2P	TQ48542070	PGR	SW	03			1	1	084	-26	091	-14	38					DR	38	Imp70 hard sst
3	TQ46932235	PGR	NW	05	028	028	4	3 B		0		0						WE	38	Re Pit 1
3P	TQ48702032	PLO			028	028	4	3B	093	-16	096	-7	3A					WE	38	Massive s/soil
4	T047032225	RGR	NE	02	0	020	5	4		0		0						WE	4	Wet flush
4P	TQ49072000	PGR	SW	02	0	025	4	3A	089	-20	089	-14	3B					WE	3A	Bordrline 3b d
5	TQ46622223	CER	NW	05	030	030	4	38		0		0						WE	3B	Re Pit 1
5P	TQ47682054	Maz	SW	03	000	028	4	38		0		0						WE	3B	
6	TQ46932220	RGR	NE	02	045	055	3	3A		0		0						WE	3A	
6P	TQ46352030	STB	NE	02			1	1	146	36	113	8	2					DR	2	Porous 70
7	TQ46472217	ARA	NH	04	030	030	4	3A		0		0						WE	3A	fszl topsoil
7P	TQ46772035	MAZ					1	1	066	-44	069	-36	38					DR	3B	Imp65 sst Q WC
8	TQ46972214	RGR	NE	02	060		1	1	100	-10	110	5	3A					DR	34	Imp68 sst Q WC
8P	TQ46751975	PGR	S₩	04	0	036	4	3B		0		0						WE	38	
9	TQ46752213	CER	SW	03	030	030	4	3B		0		0						WE	38	
10	TQ46452205	RGR	W	04	028	028	4	3B		0		0						WE	3B	
11	TQ46632186	RGR	W	05	030	034	4	3B		0		0						WE	3B	
12	TQ48512136	STB	NW	03	0	030	4	3B		0		0						WE	3B	Plastic 40
13	TQ48402124	PGR	NW	02	0	030	4	3B		0		0						WE	3B	
14	TQ48932121	STB	NH	03	030		2	1	068	-42	068	-37	3B					DR	3B	Imp45 sst Re2P
15	TQ48152117	PGR			030	060	3	3A		0		0						WE	3A	Q 3b flood ris
16	TQ48562117	STB	NW	06			1	1	076	-34	076	-29	3B					DR	3B	Imp50 sst Q WC
17	TQ48302115	PGR	N	02			1	1	072	-38	072	-33	38					DR	3B	Imp50 sst Q WC
18	TQ48252100	PGR	NW	05	060		1	٦	130	20	098	-7	3A					DR	2	
19	TQ48682090	PGR					1	1	074	-36	077	-28	3B					DR	3B	Imp65 sst Q WC
20	TQ48542070	PGR	SW	01			1	1	062	-48	062	-43	3B					DR	3B	Imp45 sst Q WC
21	TQ46752065	PGR	SW	02			1	1	084	-26	088	-17	3B					DR	3B	Imp65 sst Q WC
22	TQ48502040	PLO	N	04			4	38		0		0						WE	3B	Compact28 Re4P
23	TQ48562037	PLO			025	030	4	38		0		0						WE	3B	Compact30 Re4P
24	TQ48752020	PGR	SW	02	025	030	4	38		0		0						WE	3B	Compact30 Re4P
25	TQ48752007	PGR	SW	02	025	025	4	38		0		0						WE	3B	Compact50 Re4P
26	TQ49072000	PGR	SW	02	025	025	4	3A		0		0						WD	3A	fszl topsoil
27	TQ48971984	PGR	SW	02	028	028	4	38		0		0						WE	38	Compact50 Re3P
28	T048931973	PGR	SW	03	025	025	4	38		n		٥						WF	3R	Compact 43 Page
29	T046752065	STR			025	025	4	38		ň		ň						ᄣ	38	Compaction Reof
30	T047652054	MA7	W	01	023	023	4	38		ň		ň						90 10	20	
31	T047002043	STR	SM	02	025	025	4	3B		ň		ñ							30 72	SI alound 0
32	TQ46202030	STB	NE	02		JE J	1	1	153	43	117	12	1						1	Si gley 20-50
_																				
33	TQ46352030	STB	NE	02			1	1	109	-1	118	13	3A					DR	2	Imp72dry Re6P
34	TQ47582025	LEY	SW	02			1	1	085	-25	085	-20	38					DR	3A	Imp50sst Q WC

LIST OF BORINGS HEADERS 12/01/96 EAST SUSSEX SP UCKFIELD

SAMP	LE	A	SPECT				WETP	ESS	-WH	EAT-	-P0	TS-	М	REL	EROSN	FRC	DST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FL000) E	XP	DIST	LIMIT		COMMENTS
35	TQ46772017	PGR	NW	03			1	1	070	-40	070	-35	38					DR	38	Imp43 sst Q WC
36	TQ46432015	PGR	NE	01			1	1	097	-13	107	2	за					DR	34	Imp70sst Q WC
37	TQ46402003	PGR	NE	03	0	050	3	3A		0		0						WE	3A	
38	TQ46572005	PGR			0	023	4	38		0		0						WE	38	
39	TQ46902005	PGR			0	035	4	3B		0		0						WE	38	Some sst
40	TQ47001996	PGR	SW	03			1	1	081	-29	081	-24	3B					DR	3B	Imp50 sst Q WC
41	TQ47231997	PL O	SW	03			2	2	153	43	115	10	1					WE	2	S1 gleyed 25
42	TQ46281981	ARA	NE	02	025	050	3	3A		0		0						WE	ЗА	
43	TQ46751975	PGR	SW	04	0	035	4	38		0		0						WE	3B	Re Pit 8
44	TQ47301970	PGR	S	03	028		2	2	082	-28	082	-23	38					DR	ЗА	Imp50 sst Q WC
45	TQ46311966	ARA	NE	01	018	030	4	38		0		0						WE	38	
46	TQ47071965	PGR	SW	05	015	025	4	38		0		0						WE	38	S1 gleyed 0
47	TQ46381955	MAZ	NE	01	028	045	4	3B		0		0						WE	38	S1 gleyed 0
48	TQ47931950	PGR	SW	03	020	030	4	3B		0		0						WE	3B	
49	TQ57253954	PGR	SW	02	0	028	4	3B		0		0						WE	3B	Very hard clay
50	TQ46751943	CER	NE	05	020	030	4	3B		0		0						WE	38	
51	TQ46751923	PGR	NE	02	025	035	4	3B		0		0						WE	3B	S1 gleyed 0
52	TQ47201920	CER	NE	03	028	038	4	38		0		0						WE	3B	
53	TQ46751897	PGR	SH	02	030	038	4	3B		0		0						WE	3B	

COMPLETE LIST OF PROFILES 12/01/96 EAST SUSSEX SP UCKFIELD

---- MOTTLES----- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 1 0-28 mc1 10YR42 00 10YR56 52 C Y 0 0 0 10YR53 00 10YR56 00 C Re Pit 1 28-55 mc1 Y 0 0 0 Ρ Y 10YR63 00 75YR68 81 M 0 0 Re Pit 1 55-90 wc] Y 0 Ρ Y 90-120 z1 10YR81 00 75YR68 00 M Y 0 0 0 Ρ Y Re Pit 1 1P 0-29 mcl 10YR53 00 10YR56 00 C Y O O HR 1 Y 0 0 29-53 25Y 74 00 10YR68 00 M O MOCAB FM P Y Borderline mzcl mcl Y Y 0 0 53-68 hzc1 25Y 72 00 10YR66 00 M O MOCAB FM P Y Y Platy siltstn 68 0-30 10YR43 00 2 0 0 Û നലി 25Y 53 00 10YR58 00 M COMNOO 00 Y 0 0 Re Pit 1 30-65 hc1 Ô Р Y 65-85 05Y 61 00 75YR58 00 M 0 0 0 P hc1 Y Y 2P 0-28 10YR43 00 1 0 MSST 5 msl 28-50 നടി 10YR54 00 0 0 MSST 30 Ρ 50-70 10YR64 00 0 0 MSST 45 Ρ 170sst Qroots 70 നവി 3 0-28 mc1 10YR43 00 0 0 0 10YR53 00 10YR56 00 C Y 0 0 Ρ Re Pit 1 28-55 mc1 0 Y 55-68 10YR64 00 75YR68 72 M Y 0 0 Ρ Re Pit 1 0 Y mzcl Y 0 0 10YR71 00 75YR68 00 M Ρ 68-80 Y Re Pit 1 Q siltstn mzcl 0 0-28 10YR53 00 3P **z**] 0 0 Z R 5 00MIN00 00 Y 0 0 ZR 28-45 10YR53 00 10YR58 00 C 30 MASSIV VM P Y zl Y Compact 10YR72 00 10YR66 00 C 0 0 ZR 50 MASSIV VM P Y 45-55 zl Y Y V compact 55 0-20 25Y 52 00 75YR46 00 M Y 0 0 Δ mc] ۵ 20-35 10YR72 00 10YR74 68 M Y 0 0 Ρ mc] 0 Y 35-80 10YR72 00 10YR74 68 M Y 0 0 0 Ρ Y zc Water seepage area Y 0 0 ZR 4P 0-25 fszl 10YR53 00 75YR46 00 C 5 25-40 10YR63 00 75YR46 00 M Y 0 0 ZR 20 MASSIV VM P Y fszl Y 40-50 zl 10YR81 00 10YR66 68 M Y 0 0 0 MASSIV VM P Y Y 0-30 mcl 10YR43 00 0 0 5 0 30-50 mc1 25Y 53 52 75YR58 00 M 00MIN00 00 Y 0 0 0 Ρ Y Re Pit 1 50-80 c 05Y 61 71 10YR68 00 M Y 0 0 0 Ρ Y 5P 0-28 mzcl 10YR53 00 75YR58 00 C Y 00 0 28-40 mzcl 10YR53 63 75YR46 00 M Y 0 0 0 MDCPL VM P Y Y Plough Pan Y 0 0 0 MDVCPR VM P Y 10YR72 00 10YR58 00 M Y 40-60 zc 0-25 10YR42 00 0 0 6 സ്റി 0 10YR42 00 10YR66 00 F 0 0 0 25-45 mcl. M 10YR54 53 10YR66 00 C Y 0 0 45-55 wc] 0 Μ Browner - Q sp1 55-80 z1 10YR72 00 10YR74 68 M Y 0 0 0 Ρ Y 6P 0-25 mcl 10YR42 00 0 0 HR 1 0 0 MSST 1 MDCSAB FR M 25-37 mc l 10YR43 00 10YR56 00 F 0 0 FSST 10 MDCSAB FM M 37-70 mc] 10YR54 00 70-120 mc1 10YR64 00 0 0 FSST 15 м

COMPLETE LIST OF PROFILES 12/01/96 EAST SUSSEX SP UCKFIELD

1

					MOTTLES	;	PED			s	TONES		STRUCT/	SUE	s					
Sample	DEPTH	TEXTURE	COLOUR	COF	ABUN	CONT	COL	GLE	Y 2	>6	LITH	тот	CONSIST	STR	POR	IMP	SPL (CALC		
7	0-30	fszl	10YR43 00						0	0)	0								
	30-75	acl	10YR64 00	75YR5	18 00 M			Y	0	0	1	0		Ρ			Y		Re Pit 1	
	75–110	mcl	10YR63 00	75YR5	M 00 8			Y	0	0)	0		Ρ			Y		Re Pit 1	
7P	0-31	തടി	10YR43 00						D	0	MSST	5								
	31-43	lms	10YR56 58						0	0	MSST	15	WKCSAB \	/F M						
	43–65	fsst	10YR64 72	10YR6	8 00 M				0	0	l	0		Ρ					Compact - Q spl 6	5
8	0-30	mcl	10YR32 00						5	0	MSST	5								
	30-60	mcl	10YR42 00	10YR4	4 00 F				0	0	MSST	5		M						
	60-68	mcl	10YR42 53	10YR4	4 00 C			Y	0	0	MSST	5		M					Compact - Q spl 6	8
8P	0-23	mcl	10YR42 00	10YRS	6 00 C			Y	0	0	HR	2								
	23-36	mcl	10YR53 00	10YR5	6 00 M	(OOMNOO	00 Y	0	0	MSST	1	MDCSAB I	FM M						
	36-55	zc	25Y 53 00	10YR6	8 56 M	ł	DOMNOO	00 Y	0	0)	0	STCPR	/M P	Y		Y			
9	0-30	mcl	10YR42 00						0	0)	0								
	30-55	hc1	10YR52 00	10YR5	6 00 C	(DOMNOO	00 Y	0	0)	0		Ρ			Y		Re Pit 1	
	55-90	с	05Y 61 71	10YR6	8 00 M			Y	0	0)	0		Ρ			Y			
10	0-28	mcl	10YR53 00	10YR5	800F				0	0	HR	1								
	28-45	hc1	25Y 63 00	10YR5	8 00 C			Y	0	0	Ì	0		Ρ			Y		Re Pit 1	
	45-60	с	05Y 72 00	75YR5	M 00 B			Y	0	0)	0		Ρ			Y			
11	0-30	mcl	10YR53 00	10YR5	800 F				0	0	HR	1								
	30-40	hcl	25Y 63 00	10YR6	8 00 C			Y	0	0	HR	5		P			Y		Re Pit 1	
	40-60	c	25Y 72 00	75YR5	18 00 M			Y	0	0	1	0		P			Y			
12	0-30	mcl	10YR53 00	75YR5	8 00 C			Y	0	0)	0								
	30-40	с	10YR63 00	75YR5	8 51 M			Y	0	0	MSST	10		₽			Y			
	40-60	с	10YR72 00	75YR5	18 00 M			Y	0	0)	0		P			Y			
13	0-30	mzcl	10YR53 00	10YR5	i6 52 C			Ŷ	0	0	I	0								
	30-60	с	10YR73 00	75YR5	18 00 M			Y	0	0	Ì	0		Ρ			Y			
14	0-30	msl	10YR43 00						0	0	MSST	10								
	30-45	ms1	10YR64 00	10YR6	6 62 M			Y	0	0	MSST	10		M					Compact - Q spl 4	5
15	0-30	mzcl	10YR53 00	10YR5	600F				0	0	l	0) Flat and low	
	30 60	mzcl	10YR53 00	10YR5	6 00 C			Y	0	0	l	0		M) lying land -	
	60-80	hzcl	10YR63 00	10YR5	6 00 C			Y	0	0	I	0		Ρ			Ŷ) Q 3b flood risk	
16	0-30	mcl	10YR43 00						0	0	MSST	5								
	30-40	mcl	10YR54 00						0	0	MSST	25		M					_	
	40-50	mcl	10YR54 00						0	0	MSST	35		Ρ					Impen 50 sst	
17	0-25	mcl	10YR43 00						0	0	MSST	5								
	25-40	mcl	10YR54 00						0	0	MSST	30		Ρ						
	40-50	mcl	10YR54 00						0	0	MSST	40		Ρ					Impen 50 sst	

					MOTTLES	5	PED			-ST(ONES-		STRUCT/	SU8S		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	тот	CONSIST	STR PO	R IMP SPL CALC	
18	0-28	mcl	10YR43 00	I					0	01	MSST	5				
	28-45	mcl	10YR54 00	l.					0	01	MSST	30		Ρ		
	45-60	mcl	10YR64 56						0	0 1	MSST	30		Р		
	60-85	ms l	10YR64 00	10YR6	8 00 C			Y	Ó	0	MSST	30		P		
	85-120	scl	10VR64 00	10786	8 00 M			Ý	Ô	01	MSST	30		P		
	00-120	30,1	1011004 00	TOTICO	0.00.11			•	Ŭ	•••				•		
19	0-30	ms]	10YR43 00	l					0	01	MSST	10				
	30-50	msl	10YR54 00	l					0	0	MSST	30		Р		
	5060	lms	10YR64 00	l					0	0	MSST	50		Р		
	60-65	fsst	10YR73 00	l					0	0		0		Р		Compact 65
20	0-30	mcl	10YR43 00	•					0	0 1	MSST	20				
	30-45	mcl	10YR54 00	i.					0	01	MSST	35		м		Imo 45 sst
	•••								•	• •		•••				
21	0-30	mcl	10YR43 00	I					0	01	MSST	10				
	30-50	wcl	10YR54 00	l -					0	01	MSST	20		M		
	50-58	mcl	10YR54 00	l					0	01	MSST	30		P		
	58-65	msst	10YR63 00	I					0	0		0		Ρ		Compact 65
22	0-25	zl	10YR53 00	l					0	0 3	ZR	5				
	25-28	zÌ	10YR64 00	i -					Ō	0	ZR	30		м		128compact Re4P
									•							
23	0-25	zł	10YR53 00	l					0	0	ZR	5				
	25-30	zl	10YR63 00	75YR6	8 00 M			Y	0	0	ZR	30		Ρ	Y	I30compact Re4P
24	0-25	z	10YR53 00	ŀ					0	0 3	ZR	5				
	25-30	zl	10YR64 00	10YR5	6 00 C	C	OMNOO O	10 Y	0	0	ZR	30		Ρ	Y	I30compact Re4P
25	0-25	7]	10VP53 00	I					n	0 3	7R	10				
23	25-45	~ 1 7]	10VP63 72	10705	6 00 C		INMNOO O	n v	ň	0 1	70	35		P	v	
	25-45 AS-50	21 ~]	101003 72	10105	6 00 C	,		v	ñ	0 / 0	LN	55		b	v	150compact PodP
	43-30	21	101872 00	TUTKS	0 00 0			,	Ŭ	Ű		v		r	•	130Compace Rear
26	0-25	fszl	10YR53 00						0	0 2	ZR	10				
	25-40	fszl	10YR81 72	10YR5	6 00 C			Y	0	0 2	ZR	30		Р	Y	
	40-45	zl	10YR81 72	10YR5	8 00 M			Y	0	0		0		Ρ	Y	145compact Re3P
07	0.00	_ `	100050 00						~	•	70	-				
21	0-28	ZI	101853 00	1000	C CO M				0	0	2K 70	5		_	v	TE0+ D-2D
	28-50	ZI	101881 /2	IUTRO	008 11			Y	U	0 /	ZK	30		٢	Ŷ	150Compact ResP
28	0-25	zÌ	10YR53 00	I					0	0 2	ZR	10				
	25-38	zl	10YR81 72	10YR6	6 68 M			Y	0	0 2	ZR	35		P	Y	
	38-43	zl	10YR75 00	10YR6	6 00 C			Y	0	0		0		Ρ	Y	143compact Re3P
~~	0.05	1	100043 60						~	~		~				
29	0-25	101C h = 1	101843 00	35105					0	0	HCCT	10		D		
	20-30	ne i	101853 00		0 40 M			¥	U	01	1001	10		۲ 0	۲ ۲	
	30-60	С	IUYR/1 00	/5YK4	0 UU M			Ŷ	U	U	1001	10		۲	Ŷ	
30	0-23	mzcl	10YR53 00	10YR5	6 00 F				0	0		0				
	23-40	hzc1	25Y 74 66	10YR5	6 00 C			Y	0	0		0		P	Y	
	40-70	hzc1	10YR71 00	10YR5	658 M			Y	0	0		0		Р	Y	

					MOTTLES	\$	PED			-ST	ONES-		STRUCT/	SUBS			
SAMPL E	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6 l	LITH	тот	CONSIST	STR	POR IMP SF	PL CALC	
31	0-25	നറി	10VP43 00	75705	8 00 C			s	0	n		n					Si aleved
51	25-40	hel	10VR64 00	75784	6 58 M			v	٥ ٥	ñ		ñ		Р	v	,	or groged
	40-60	c	10YR71 00	75YR5	8 46 M			Ŷ	ō	ō		0		P	Ŷ	,	
32	0-20	mzcl	10YR42 00						D	0)	HR	1					
	20-50	mcl	10YR54 00	10YR5	8 00 C	(DOMNOO	00 S	0	0		0		M			S1 gleyed
	50-70	mcl	10YR54 00	10YR5	8 00 F				0	0 1	MSST	2		M			
	70120	wcj	10YR64 00						0	01	MSST	5		м			
33	0-25	mzcl	10YR53 00						0	01	HR	1					
	25-45	mcl	10YR54 00						0	Ð		0		м			
	4570	നലി	10YR54 00	10YR5	8 00 F				0	0 1	MSST	2		M			
	70-72	mcl	10YR64 00						0	01	MSST	5		M			Imp 72 hard/dry
_		_															
34	0-25	mcl	10YR53 00						0	0		0					_
	25-50	mcl	10YR54 00						0	0		0		M			Impen 50 sst
35	0-23	mcl	10YR53 00						2	0 1	MSST	2					
	23-38	mcl	10YR43 00						0	01	MSST	2		м			
	38-43	fszl	10YR43 00						0	01	MSST	50		Ρ			Impen 43 sst
		_							_								
36	0-25	mcl	10YR43 00						0	0		0					
	25-55	nncl	10YR54 00						0	01	MSST	20		M			
	55-70	mcl	10YR56 00						0	01	MSST	10		м			Impen 70 sst
37	0-28	mcl	10YR53 00	10YR5	8 00 C			Ŷ	0	0		0					
	28-50	mcl	25Y 63 00	75YR5	8 00 C	(DOMINOO	00 Y	0	0		0		Μ			Q spl
	50-68	hc]	10YR72 00	75YR5	8 00 M	(DOMNOO	00 Y	0	0		0		Р	Y	,	
	68-85	с	10YR61 00	75YR5	8 00 M			Y	0	0		0		Р	١	,	
38	0-23	hci	104853 00	75YK5				¥ V	U O	0		0		-			
	23-40	hcl	10YR51 00	75YR5	6 00 M			Ŷ	0	0		0		P	1		
	40-80	ZC	INAKOI ON	TUYK5	8 00 C			Ŷ	U	U		U		Р	1		
39	0-15	mcl	75YR53 00	75YR5	6 00 C			Ŷ	0	0)	HR	2					
	15-35	hc1	75YR53 00	75YR5	6 00 M			Y	0	0		0		P			Q spl
	35-60	с	10YR61 00	10YR6	8 00 M	(DOMNOO	00 Y	0	0		0		Р	Ŷ	,	
40	0-25	mel	10VR43 00						n	0,	HD	2					
	25-40	mcl	10VR53 00						n	0.	T22N	5		м			
	40-50	mcl	107853 00						ň	0.	T22W	20		M			Imo 50 set
	40-50	11 .C 1							Ŭ	•	~~~	20		••			1110 330
41	025	hc1	10YR53 00	10YR5	8 00 F				0	01	HR	2					
	25-70	hc)	10YR54 00	10YR5	8 00 C			S	0	01	HR	2		Μ			S1 gleyed
	70–120	hc]	10YR54 00	10YR5	8 00 C			S	0	0		0		Μ			S1 gleyed
42	0-25	mzcl	10YR43 00						۵	0	ISST	2					
	25-50	mcl	10YR53 00	10YR5	6 00 C			Y	Ō	01	ISST	5		м			Re Pit 8
	50-80	c	10YR72 00	75YR5	6 00 M			Ŷ	0	01	ISST	10		P	Ŷ	,	
				-						-							

COMPLETE LIST OF PROFILES 12/01/96 EAST SUSSEX SP UCKFIELD

				MO TT	LES	PED				-STO	NES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABL	IN CONT	COL	GL	EY	>2 >	>6 L	ітн тот	CONSIST	STR POR IM	P SPL CALC	
43	0-20	mzcl	10YR42 00	75YR58 00	C			Y	0	0	0				
	20-35	mzcl	10YR53 00	10YR56 00) C (DOMNOO	00	Y	0	0	0		М		Re Pit 8
	35-60	zc	25Y 63 61	75YR46 00	M			Y	0	0	0		Р	Y	
44	0-28	mcl	10YR53 43						0	0 H	R 2				
	28-50	mcl	10YR63 00	10YR58 00	M (00 MN 00	00	Y	0	0 M	SST 10		M		Impen 50 sst
45	0-18	mzcl	10YR43 00						0	0	0				
	18-30	mcl	10YR63 00	10YR56 00	IC (DOMNOO	00	Y	0	0	0		M		
	30-60	с	10YR73 00	75YR56 00	M I	00mn00	00	Y	0	0	0		Р	Y	
		_						_	_	_	-				
46	0-15	mzcl	10YR44 00	10YR58 00	C			S	0	0	0				Si gleyed
	15-25	mzcl	10YR53 00	10YR56 00) C (COMNOO	00	Y	0	0	0		M		Re Pit 8
	25-60	ZC	25Y 63 61	75YR46 00	M			Ŷ	0	0 M	SST 2		Р	Y	
47	0.00		100044 00	100050 00				~	•	^	•				61 - 1
47	0-28	mzc i	10YR44 00	TUTKOB UU		0040100	~~	3	0	0	0		м		Signeyed
	20-43		101K55 00	TEVDAC OF		UUMNUU	00	T V	0	0	0			v	REPICO
	43-03	ZÇ	251 03 01	/31K40 UL	i m			T	U	0	U		٢	T	
48	0-20	m*~1	257 43 00	107858 00				ç	٥	n	0				SI cleved
	20-30	mzel	107853 00	107856 00			nn	v	ñ	ň	ů N		м		Re Pit 8
	30-60	70	257 63 61	75YR46 00	i M		~~	Ŷ	õ	ОМ	SST 2		P	Y	
		-0	20, 00 01	1011140 00				•	v	•			•	•	
49	0-28	mzcl	10YR53 00	10YR56 00	С			Y	0	ОН	R 2				
	28-60	zc	10YR53 00	75YR58 52	M (OOMNOO	00	Ŷ	0	0	0		Р	Y	
50	0-20	mzcl	10YR44 00	10YR58 00	С			S	0	ОН	R 1				S1 gleyed
	20-30	mzcl	10YR53 00	10YR56 00	C I	DOMINOO	00	Y	0	0	0		м		Re Pit 8
	30-60	zc	25Y 63 61	75YR46 00	M			Y	0	0	0		Ρ	Y	
51	0-25	mzcl	10YR44 00	10YR58 00	H C			S	0	0	0				S1 gleyed
	25-35	mzcl	10YR53 00	10YR56 00	0 0 0	OOMNOO	00	Y	0	0	0		м		Re Pit 8
	35-60	c	25Y 63 61	75YR46 00	M			Y	0	0	0		Р	Y	
52	0-28	mzcl	10YR42 00						0	0 н	R 2				
	28-38	hc]	25Y 63 00	10YR58 00	M (DOMNOO	00	Y	0	0 Н	R 2		M		Q sp1
	38-60	с	25Y 73 00	10YR58 00	M (00 m N00	00	Y	0	0 Н	R 2		Р	Y	
											-				
53	0-30	mzcl	10YR44 00				~ -		0	0	0				
	30-38	mzc1	10YR53 00	TUYR56 OC		DUMINOO	00	Y	U	0	0		M		Ke Pit 8
	38-50	с	25Y 72 00	75YR68 00) M (DMNOO	00	Y	0	0	0		P	Y	
	50-70	c	25Y 63 61	75YR58 00	M			Y	0	0	0		Р	Ŷ	