A1

Land south of Guildford Road, Ash, Surrey Agricultural Land Classification ALC Map and Report June 1995

AGRICULTURAL LAND CLASSIFICATION REPORT

LAND SOUTH OF GUILDFORD ROAD, ASH, SURREY

1 Summary

- 1 1 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites around Ash in the Guildford Borough of Surrey The work forms part of MAFF's statutory input to a number of ad hoc applications for residential development submitted to the planning authority
- 1 2 The site comprises approximately hectares of land around Woolmer Farm to the north of the village of Bramshott An additional area of land has been surveyed to the south of the application site so that a more comprehensive map of the land quality in the vicinity may be obtained An Agricultural Land Classification (ALC) survey was carried out in June 1995 The survey was undertaken at a detailed level of approximately one boring per hectare A total of 6 borings and one soil inspection pit were assessed according to MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long term limitations on its use for agriculture
- 13 The work was carried out by members of the Resource Planning Team in the Guildford Statutory Group of ADAS
- 14 At the time of the survey the agricultural land on the site comprised barley and rough grassland The area marked as urban includes a tarmac road nonagricultural land comprises scrubland An area on the site has not been surveyed due to difficulties in obtaining permission to gain access in order to undertake the survey
- 15 The distribution of grades and subgrades is shown on the attached ALC map and the areas are given in the table below. The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading

Table 1 Distribution of Grades and Subgrades

Grade	Area (ha)	% of Site
3b	52	34 7
Non agricultural	08	53
Urban	05	33
Not surveyed	<u>85</u>	<u>56 7</u>
Total area of Site	150	100 0

- 16 Appendix I gives a general description of the grades subgrades and land use categories identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 17 All of the agricultural land surveyed on the site has been classified as Subgrade 3b moderate quality land with soil droughtiness as the main limitation Soils on the site typically comprise coarse sandy textured topsoils which become more sandy with depth Consequently these soils show a significant restriction on profile available water which can affect the level and consistency of crop yields Therefore a classification of Subgrade 3b due to droughtiness is appropriate

2 Climate

- 21 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 2 2 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature (day degrees Celsius Jan June) as a measure of the relative warmth of a locality
- 2 3 A detailed assessment of the prevailing climate was made by interpolation from a 5km gridpoint dataset (Met Office 1989) The details are given in the table below and these show that there is no overall climatic limitation affecting the site However climatic factors do interact with soil properties to influence soil wetness and droughtiness limitations
- 2.4 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolation

Grid Reference	SU 903 508
Altitude (m AOD)	80
Accumulated Temperature	1438
(day degrees Jan June)	
Average Annual Rainfall (mm)	698
Field Capacity (days)	147
Moisture Deficit Wheat (mm)	109
Moisture Deficit Potatoes (mm)	101
Overall Climatic Grade	1

3 Relief

3 1 The land on this site is relatively flat lying at approximately 80m AOD Nowhere on the site does altitude or relief impose limitations to agricultural land quality

4 Geology and Soil

- 4 1 The relevant geological sheet (BGS 1976) maps the southern half of the site as London Clay with Bagshot Beds in the north
- 4.2 The published soils information (SSEW 1983) shows the Wickham 3 soil association in the south of the site. These soils are described as Slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soils with slight waterlogging. Some deep coarse loamy soils affected by groundwater (SSEW 1983). In the north the Swanwick soil association has been mapped. These are said to be Deep permeable coarse loamy and sandy soils some peaty surface horizons affected by groundwater (SSEW 1983).
- 4 3 Detailed field survey broadly on the part of the site where access was granted broadly confirms the existence of soils similar to those described in paragraph 4 2 as the Swanwick association

5 Agricultural Land Classification

- 51 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map
- 5 2 The location of the soil observation points are shown on the attached sample point map

5 3 Subgrade 3b

All of the agricultural land on this site has been classified as Subgrade 3b moderate quality land with soil droughtiness as the main limitation. Soil profiles within this mapping unit typically comprise loamy medium sand topsoils and upper subsoils over medium sand or loamy medium sand lower subsoils. The total stone content ranges from 2-20% flint (v/v) in the topsoil (of which 2 3% >2cm) increasing to 5 15% in the upper subsoil. Deeper in the profile the stone content generally diminishes (2 10% total flint) although some soil observations found that similar stone contents prevail in the lower subsoil. Pit 1 is representative of these soils and shows that all of the subsoils are moderately well structured. Given the local climatic regime a combination of coarse soil textures and profile stone contents combine to restrict the amount of profile available water such that it is not fully adequate for crop growth. This in turn will affect the level and consistency of crop yields such that a classification of Subgrade 3b due to this significant droughtiness limitation is appropriate.

ADAS Ref 4003/122/95 MAFF Ref 40/1211 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 285 Aldershot 1 50 000 Scale (solid & drift edition)

MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agricultural Land Classification

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quanty Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or hard uses with relatively little potential for a return to agriculture including housing industry commerce education transport religious buildings cemeteries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to soft after uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Definition of Soil Wetness Classes

Wetness Class	Duration of Waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years ²
П	The soil profile is wet within 70 cm depth for 31-90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Soils can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors. Adequate quantitative data will rarely be available for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field. The method adopted here is common to ADAS and the SSLRC

¹The number of days specified is not necessarily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note Soil Pit Descriptions

Database Printout - Boring Level Information

Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pastur	eLEY	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop	ps			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant 'Y' will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonines	SS			

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S SZL	Sand Sandy Silt Loam	LS CL	Loamy Sand Clay Loam	SL ZCL	Sandy Loam Sıltv Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam		Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27-35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR MSST SI	soft argillaceous or silty rocks soft medium grained sandstone soft weathered igneous/metamo	GS	gravel with non-porous (hard) stones gravel with porous (soft) stones ck

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

11

sł.

degree of development	WK weakly developed ST strongly developed	MD moderately developed
ped size	F fine C coarse	M medium VC very coarse
<u>ped shape</u>	S single grain GR granular SAB sub angular blocky PL platy	M massiveAB angular blockyPR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a 'Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column

15 Other notations

- APW available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- **MBP** moisture balance potatoes

05 94

SOIL PIT DESCRIPTION

Site 1	Name :	S OF G	UILDFORD	RD	ASH	Pit	Number	. 1	P				
Grnd I	Referen	ce SU9	0205090	Ac F La	verage Ana coumulated reld Capad and Use lope and d	d Temp city L	erature evel	e 14: 14	98 mm 38 degree 7 days ~ley degrees	days			
HORIZO	-	KTURE _MS	COLOUR 10YR32		STONES >: 6	2 TOT	STONE	LITH HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
30- 4	40	MS	10YR32	00	0		15	HR		WKCSAB	VF	м	
40	60	MS	10YR54	56	0		2	HR		WKMSAB	VF	м	
60 1	20	MS	10YR68	64	0		0			MDCPL	FR	М	
Wetne	ss Grad	G	Wetness Class I Gleying 000 SPL No			cm SPL							
Droug	ht Grad	e 38			PW 68 m PP 51 m			41 mm 50 mm					
FINAL	. ALC GR	ADE 3	3 B										

MAIN LIMITATION Droughtiness

program ALCO12 LIST OF BORINGS HEADERS 27/07/95 S OF GUILDFORD RD ASH

s	LE	Į:	SPECT		WET	NESS	₩Н	EAT	-P(DT\$	MF	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT	GLEY SP	PL CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
	SU90105100			000	1	1	56	-53	•	50					DR	3B	190 SEE1P
TP	SU90205090			000	1	1	68	-41		-50					DR	3B	
2	SU9021509	-		000	1	1	45	-64		54					DR	3B	I60 SEE1P
	SU9010509			000	1	1	27	-82		74					DR	3B	I30 SEE1P
	SU9020509) BAR		000	1	1	33	-76	33	-68	4				DR	3B	I40 SEE1P
	SU9030509			000	1	1	67 77	42 -32		~50 -42	3B				DR	3B	
	SU9027508	D DAK		000	•	•	11	-32	28	-42	JD				DR	3B	

page 1

pigram ALCO11

page 1

				-	MOTTLES		PED		-	-\$7	ONES		STRUCT	/ si	JBS								
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	TOT	CONSIST	r S'	TR P()r (IMP	SPL	. CAL	.C			
1	0 30	lms	10YR31 00						2	0	HR	5											
	30 40	າms	10YR32 00						0	0	HR	15		ł	4								
	40 60	ms	10YR56 54						0	0	HR	15		I	4								
	60 90	ms	10YR56 66						0	0	HR	2		I	4					I	IMPEN F	LINTS	5
1 P	0 30	lms	10YR32 00						6	0	HR	10											
	30 40	ໄຫຮ	10YR32 00						Û	0	HR	15	WKCSAB	VF	м								
	40 60	ms	10YR54 56	10					0	0	HR	2	WKMSAB	VF	M								
	60 120	ms	10YR68 64						0	0		0	MDCPL	FRI	М								
2	0 30	lms	10YR32 00						0	0	HR	5											
	30 40	ໄຫຮ	10YR32 00						0	0	HR	5			м								
	40 60	ms	10YR54 00						0	0	HR	10			м					1	IMPEN F	LINT	S
3	0 25	Ims	10YR31 00						3	0	HR	10											
	25 30	lms	10YR44 46						0	0	HR	15			м]	IMPEN F	LINT	S
4	0 30	lms	10YR32 00						0	0	HR	10											
	30 40	ms	10YR43 00						0	0	HR	10			M					-	IMPEN F	LINT	S
5	0 30	lms	10YR42 00						3	0	HR	5											
	30 60	ms	10YR43 00						0	0	HR	5			М								
	60 120	ms	10YR43 63						0	0	HR	5			м								
6	0 30	lms	10YR32 00						0	0	HR	2											
	30 45	lms	10YR32 00						0	0		0			м								
I _	45 120	lms	10YR54 00						0	0	HR	5			М								