Proposed Motorway Service Aren neur Cobhum, Surrey

Agricultural Land Classification August 1995

Resource Planning Team Guildford Statutory Group ADAS Reading ADAS Reference 4001/149/95 MAFF Reference EL 40/01268 LUPU Commission 02108

AGRICULTURAL LAND CLASSIFICATION REPORT

PROPOSED MOTORWAY SERVICE AREA AT COBHAM, SURREY

Introduction

1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 21 9 ha of land at Cobham Surrey The survey was carried out during August 1995

2 The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) Land Use Planning Unit Reading in connection with an *ad hoc* application for a proposed motorway service area This survey supersedes previous ALC surveys on this land

3 The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group in ADAS The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the time of survey the land use on the site was permanent grass Land mapped as Urban comprises hard surfaced roads Land shown as Non agricultural includes road embankments woodland a tractor storage area and an all weather horse exercise area

Summary

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10000 it is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Gradt/Other land	Area (hectares)	% site arca	% agricultural area
			10.2
3a	37	16 9	18.3
3b	16 5	75 3	81 7
Urban	02	09	
Non Agricultural	15	69	
Total survey area	20 2		100 0
Total site area	219	100 0	

Table 1 Aren of grades and other land

7 The fieldwork was conducted at an average density of one boring per hectare A total of 22 borings and one soil pit were described The survey was undertaken during one of the driest summers on record

8 The sloping land in the west of the site has been classified as Subgrade 3a good quality This land is limited by soil wetness and workability Slowly permeable clay occurs at moderate depths within the soil profile causing imperfect soil drainage conditions The interaction between such soil drainage and medium textured topsoils with the prevailing climate acts to restrict the flexibility of cropping stocking and cultivations

9 Elsewhere on the site the clay either occurs directly below the topsoil or at shallow depths within the soil profile Consequently this land is subject to more severe soil wetness and workability limitations than that of Subgrade 3a land This land is thus classified as Subgrade 3b moderate quality To the south of the M25 in the east of the site landscaping from the construction of the M25 has created slopes of greater than 7° to 11° Such gradients act to restrict the range of agricultural machinery that may be safely and efficiently used limiting the land to Subgrade 3b In addition it is likely that the land within this vicinity will be disturbed as a result of past earth movement

Factors Influencing ALC Grade

Climite

10 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

11 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values
Grid reference	N/A	TQ 111 574
Altıtude	m AOD	35
Accumulated Temperature	day°C	1481
Average Annual Rainfall	mm	692
Field Capacity Days	days	145
Moisture Deficit Wheat	mm	113
Moisture Deficit Potatoes	mm	108

Table 2 Climatic and altitude data

12 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

13 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relative warmth of a locality

14 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk are not believed to adversely affect the site. The site is climatically Grade 1 However climatic factors do interact with soil factors to influence soil wetness and droughtiness limitations. The field capacity days for at this locality are slightly below the regional average thus partially offsetting the likelihood of soil wetness limitations.

Site

15 Most of the site is flat and lies at approximately 30 m AOD In the west of the site the land rises gently through gradients of 1 3° to lie at approximately 35 m AOD To the south of the M25 landscaping arising from the construction of the motorway has resulted in slopes of greater than 7° to 11° Such slopes will act to limit the land quality

Geology and soils

16 The published geological information (BGS 1978) shows the entire site to be underlain by London Clay

17 The published soils information (SSEW 1983) maps the soils on the site as the Wickham 4 Association. These soils are described as slowly permeable seasonally waterlogged fine loamy over clayey and fine silty over clayey soils associated with similar clayey soils often with brown subsoils (SSEW 1983).

Agricultural Land Classification

18 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1

19 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix III

Subgrade 3a

20 The sloping land in the west of the site has been classified as Subgrade 3a good quality This land is limited by soil wetness and workability Non calcareous medium clay loam topsoils overlie similarly textured permeable upper subsoils At approximately 45 to 55 cm depth these profiles pass into poorly structured clay lower subsoils The clay is slowly permeable and acts to cause imperfect soil drainage conditions as indicated by gleying from the surface Consequently these profiles have been assigned to Wetness Class III (see Appendix II) Such profiles are represented by Pit 1 The interaction between the medium textured topsoils and impeded soil drainage with the prevailing climate acts to restrict the flexibility of cropping stocking and cultivations

Subgrade 3b

Land classified as Subgrade 3b moderate quality is mostly restricted by soil wetness and workability Topsoils comprise non calcareous medium clay loams and occasionally heavy clay loams These either directly overlie clay subsoils or occasionally shallow permeable medium clay loam upper subsoils Where the latter occurs these profiles pass into clay subsoils at approximately 35 cm depth The clay is slowly permeable and its presence at shallow depths within the soil profile acts to cause poor soil drainage conditions This is indicated by gleying from the surface Consequently these profiles are assessed as Wetness Class IV The interaction between the topsoils and soil drainage status with the prevailing climate means that this land is subject to significant restrictions on the flexibility of cropping stocking and cultivations

22 To the south of the M25 in the east of the site landscaping arising from the construction of the motorway has resulted in slopes of greater than 7° to 11° Such gradients will act to restrict the range of agricultural machinery that may be safely and efficiently used In addition it is also likely that the land within this vicinity may be also be disturbed as a result of past earth movement

Gillian Iles Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

British Geological Survey (1978) Sheet No 286 Reighter 1 50 000 (drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAEE London

MAFF London

Met Office (1989) Climatological Data for Agricultural I and Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 and accompanying legend SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

ł

Built-up or 'hard' uses with relatively little potential for a return to agriculture including housing industry commerce education transport religous buildings cemetries. Also hard-surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on airports Also active mineral workings and refuse tips where restoration conditions to 'soft' after uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

1 1

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds, and where map scale permits, the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below

Wetness Class	Duration of waterlogging ¹
I	The soil profile is not wet within 70 cm depth for more than 30 days in most years 2
II	The soil profile is wet within 70 cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years
III	The soil profile is wet within 70 cm depth for 91 180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 31 90 days in most years
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91 210 days in most years
v	The soil profile is wet within 40 cm depth for 211 335 days in most years
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in *Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land* (MAFF 1988)

¹ The number of days is not necess irily a continuous period

² In most years is defined as more than 10 out of 20 years

APPENDIX III

SOIL DATA

Contents

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent Pasture	eley	Ley Grass	RGR	Rough Grazing
SCR	Scrub	CFW	Coniferous Woodland	DCW	Deciduous Wood
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	ОТН	Other
HRT	Horticultural Crop	os			

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MRELMicrorelief limitationFLOODFlood riskEROSNSoil erosion riskEXPExposure limitationFROSTFrost proneDISTDisturbed landCHEMChemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
ST	Topsoil Stonine	SS			-

Soil Pits and Auger Borings

1

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

TEXTURE soil texture classes are denoted by the following abbreviations

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20 40% VM very many 40% +

- 4 **MOTTLE CONT** Mottle contrast
 - **F** faint indistinct mottles evident only on close inspection
 - **D** distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 **PED COL** Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
СН	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	GH	gravel with non porous (hard) stones
MSST SI	soft medium grained sandstone soft weathered igneous/metamo	GS Sorphic ro	gravel with porous (soft) stones ck

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development	WK weakly developed ST strongly developed	MD moderately developed
<u>ped size</u>	F fine C coarse	M medium VC very coarse
ped shape	S single grain GR granular SAB sub angular blocky PL platy	M massive AB angular blocky PR prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	VF very friable	FR friable	FM firm	VM very firm
EM extre	mely firm	EH extremel	y hard	

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y' will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y will appear in this column

15 Other notations

- **APW** available water capacity (in mm) adjusted for wheat
- **APP** available water capacity (in mm) adjusted for potatoes
- MBW moisture balance wheat
- MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name	PROPOSI	ED M25 MOT	ORWAY SA		Pit Numbe	r 1	Р				
Grid Refe	arence TQ	10905740	Average A Accumula Field Ca Land Use	Annu ted i pach	al Rainfal Temperatur ty Level	1 69 e 148 145 Per	2 mm 1 degree 5 days manent Gr	days ass			
			Stope an	J A5,	peci	01	degrees c				
HORIZON		COLOUR	STONES	2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
30 45	MCI	107853 6	3 0		2	HR	м			м	
45- 65	C	25Y 52 0	0 0		0	T IX	м	MDCPR	VM	P	
Wetness (Grade 3A		Wetness	Clas	s II	I					
			Gleying		C) cm					
			SPL		45	cm					
Drought (Grade		APW	mm	MBW	0 mm					
			APP	mm	MBP	0 mm					
FINAL AL	C GRADE	3A									

MAIN LIMITATION Wetness

AMP	LE		ASPECT				WET	NESS	WHE	EAT-	P0	TS	MI	REL	EROSN	FROST	CHEM	ALC	;	
b	GRID REF	USE		GRDNT	GLEY	Y SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIS	ST LIM	T	CC	OMMENTS
1	TQ1090577	O PGF	SE	03	0	45	3	3A		0		0					WE	3A		
1P	TQ1090574	0 PGF	Ε	01	0	45	3	3A		0		0					WE	3A	SI	sandy
2	TQ1100577	'O PGF			0	45	3	3A		0		0					WE	3A		
3	TQ1110577	O PGF			0	35	4	3B		0		0					WE	3B	SI	sandy
4	TQ1120577	'O PGF	l		0	35	4	3B		0		0					₩E	3B		-
- 5	TQ1080576	io pgr	NE	02	0	45	3	3A		0		0					₩E	ЗA		
6	TQ1120576	0 PGF			0	35	4	3B		0		0					WE	38		
7	TQ1130576	io pgr			0	25	4	3B		0		0					WE	3B		
8	TQ1140576	io pgr			0	25	4	3B		0		0					WE	36		
9	TQ1090575	0 PGF	NE	02	0	45	3	ЗА		0		0					WE	ЗA	S1	sandy @ 45
10	TQ1100575	0 PGF			0	30	4	3B		0		0					WE	3B	QH	ncl horizon2
11	TQ1110575	O PGF			0	30	4	3B		0		0					WE	3B		
12	TQ1120575	0 PGF			0	28	4	3B		0		0					WE	3B		
h 3	TQ1130575	O PGR	Ε	01	0	26	4	3B		0		0					WE	3B		
14	TQ1090574	0 PGF	E	01	0	55	3	ЗА		0		0					WE	ЗA		
15	TQ1105574	0 PGF			20	20	4	38		0		0					WE	3B		
17	TQ1120574	0 PGR	W	02	30	30	4	38		0		0					WE	3B	Imp	en 50 dry
18	TQ1130574	0 PGR	S	01	0	28	4	38		0		0					WE	3B		-
19	TQ1144574	4 PGR			0	30	4	3B		0		0					WE	3B		
20	TQ1110573	0 PGR			0	30	4	3B		0		0					WE	3B		
21	TQ1120573	O PGR	s	03	0	30	4	3B		0		0					WE	3B	Fei	int mottles
22	TQ1130573	O PGR	SE	03	0	30	4	3B		0		0					WE	3B	Fei	int mottles
23	TQ1073577	6 PGR	NW	01	0	28	4	3B		0		0					WE	3B		

page 1

rogram ALCO11

COMPLETE LIST OF PROFILES 24/08/95 PROPOSED M25 MOTORWAY SA

___ ___

MOTTLES --- PED ----STONES - STRUCT/ SUBS MPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 10YR42 00 10YR56 00 C 0 0 HR 0-26 mc] Y 3 1 26 45 10YR53 00 10YR58 00 M Y 0 0 0 mc1 Μ 45 80 с 25Y 52 51 75YR68 00 M Y 0 0 0 Ρ Y 0-30 mc1 10YR42 00 10YR58 00 C Y 0 0 HR 1P 2 Y 0 0 HR 30-45 mcl 10YR53 63 10YR58 00 M 2 М Very dry/hard 45-65 С 25Y 52 00 10YR58 51 M Y 0 0 0 MDCPR VM P Y Y 0-26 mc1 10YR42 00 10YR56 00 C Y O O HR 2 26-45 mc1 10YR53 51 10YR58 68 M 00MN00 00 Y 0 0 0 М 25Y 53 51 75YR58 00 M Y 0 0 45-75 c 0 Ρ γ 3 10YR42 00 10YR56 00 C 0-25 mc1 Y 0 0 HR 2 10YR53 00 10YR58 00 M 25-35 Y O O HR mcl 2 М 35 60 25Y 53 00 10YR58 68 M Y 0 0 0 Ρ с Y 0-25 mc1 10YR42 00 10YR58 00 C Y O O HR 4 2 25-35 mcl 10YR53 00 10YR58 00 M Y 0 0 HR 2 М 35 60 25Y 51 00 10YR68 00 M Y 0 0 ¢ 0 Ρ Y 5 0-25 mc1 10YR42 00 10YR58 00 C Y 0 0 HR 2 25 45 10YR53 00 10YR58 00 M Y 0 0 HR mcl 2 М 45-65 c 25Y 52 00 10YR58 51 M Y 0 0 Ω Ρ Y 0-25 10YR42 00 10YR56 00 C 0 0 HR mcl Y 2 25 35 mc] 10YR53 00 10YR58 00 M Y 0 0 0 М 35–70 c 25Y 53 61 75YR68 00 M Y 0 0 0 P Y 0-25 mc1 10YR42 00 10YR58 00 C 7 Y O O HR 2 25-60 с 25Y 52 00 10YR58 51 M Y 0 0 0 Ρ Y 0-25 10YR42 00 10YR58 00 C Y O O HR hcl 2 25-60 25Y 52 00 10YR68 51 M Y 0 0 0 Ρ С ٧ 0-30 mcl 10YR42 00 10YY58 00 C Y O O HR 2 30-45 mcl 10YR53 00 10YR58 00 M Y O O HR 2 м 45-65 c 10YR53 00 10YR58 51 M Y 0 0 0 P Y 0 30 mcl 10YR42 00 10YR58 00 C Y 0 0 HR 2 30-40 25Y 52 00 10YR58 51 C 0 0 0 с Y Ρ 40-60 c 25Y 51 00 10YR58 61 M 00MN00 00 Y 0 0 0 р Y O O HR 11 0-30 mc1 10YR42 00 10YR58 00 C 2 30-60 с 25Y 52 00 10YR58 51 M Y 0 0 0 ρ Y 028 hcl 10YR42 00 10YR46 00 C Y O O HR 5 28 60 c 10YR53 00 10YR58 00 M Y 0 0 0 P Y

page 1

	DEPTH	TEXTURE	COLOUR	- 1 COI		S - CONT	PED COI	GLEY	>2	ST	ONES	τοτ	STRUCT/	SUBS	POR		SPI			
			002000	002		00.11	00L	0221					00110101	QIR	, ou	1		UNLU		
13	0-26	mcl	10YR42 00	10YR56	5 00 C			Y	0	0	HR	2								
	26-70	с	25Y 42 52	10YR58	3 00 M			Y	0	0		0		Ρ			Y			
14	0-30	mcl	10YR42 00	10YR56	5 00 C			Y	0	0	HR	2								
	30-55	mcl	10YR53 00	10YR56	5 00 C			Y	0	0		0		Μ						
-	55-80	с	25Y 53 00	10YR58	3 00 M			Y	0	0		0		Ρ			Y			
15	0-20	mcl	10YR42 00						0	0	HR	2								
	20-100	с	25Y 42 52	10YR58	3 00 M			Y	0	0		0		Ρ			Y			
1 7	0-30	hc1	10YR43 00	10YR56	5 00 C			S	0	0	HR	3							S 1	gleyed
	30-50	с	10YR53 00	10YR58	3 00 M			Y	0	0		0		Ρ			Y			
18	0-28	mcl	10YR42 00	10YR56	5 00 C			Y	0	0	HR	3								
	28-65	с	25Y 42 52	10YR58	3 00 M			Y	0	0		0		Ρ			Y			
19	0-30	mcl	10YR42 00	10YR56	5 00 C			Y	0	0	HR	3								
	30-70	с	25Y 52 00	75YR58	3 00 M			Y	0	0	HR	2		Ρ			Y			
20	0-30	mcl	10YR42 00	10YR58	3 52 C			Y	0	0		0								
	30-60	с	25Y 52 00	10YR68	3 00 M			Ŷ	0	0		0		ρ			Y			
21	0-30	hcl	10YR42 00	10YR56	5 00 C			Y	0	0		0								
_	30 50	С	10YR31 00	10YR56	5 00 C			Ŷ	0	0		0		Ρ			Y			
	50-60	с	10YR31 00	10YR56	5 00 C			Y	0	0	HR	5		Ρ			Y			
22	0-30	hc1	10YR42 00	10YR56	5 00 C			Ŷ	0	0		0								
	30-60	с	10YR31 00	10YR56	5 00 C			Y	0	0	HR	5		Ρ			Y			
23	0 28	mc]	10YR42 00	10YR56	5 00 C			Ŷ	0	0	HR	2								
2	28 120	c	25Y 53 52	10YR58	3 00 M			Y	0	0		0		Ρ			Y			

page 2