A1

KENT MINERALS LOCAL PLAN REVIEW Land at Woodfalls Farm, Laddingford

Agricultural Land Classification ALC Map and Report

January 1998

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 2007/096/98 MAFF Reference EL 20/01847

AGRICULTURAL LAND CLASSIFICATION REPORT

KENT MINERALS LOCAL PLAN REVIEW LAND AT WOODFALLS FARM, LADDINGFORD

- 1 This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 47 2 of land at Woodfalls Farm Laddingford near Yalding in Kent The fieldwork was carried out during December 1998 and January 1999
- 2 The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) in connection with its statutory input to the Kent Minerals Local Plan Review This survey supersedes any previous ALC information for this land
- 3 The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- 4 At the time of survey the land use on the site was predominantly arable (ploughed land and stubble) with an area of horse paddocks and grazing adjacent to and north west of Woodfalls Farm The areas mapped as Other land comprise a menage an industrial estate and an area used for dumping scrap and for the storage of old agricultural equipment

SUMMARY

- 5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000 It is accurate at this scale but any enlargement would be misleading
- 6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	% surveyed area	% site area		
2 3a 3b Other Land	18 9 2 2 25 0 1 1	41 0 4 8 54 2	40 0 4 7 53 0 2 3		
Total surveyed area Total site area	46 1 47 2	100 0	97 7 100 0		

Table 1	Area of	grades	and	other	land
		BI AUCS	****		100110

7 The fieldwork was conducted at an average density of 1 boring per hectare In total 49 borings and three soil pits were described

¹ FRCA is an executive agency of MAFF and the Welsh Office

- 8 The agricultural land at this site has been classified as Grade 2 (very good quality) Subgrade 3a (good quality) and Subgrade 3b (moderate quality) The principal limitations include soil wetness and soil droughtiness
- 9 The Grade 2 land comprises medium silty clay loam and medium clay loam topsoils overlying similar or heavier subsoils The upper horizons are stoneless or slightly stony the lower subsoils are very stony Given these characteristics and the dry nature of the local climate the soils hold insufficient reserves of water all the year round and consequently a slight soil droughtiness limitation exists which will affect the level and consistency of crop yields particularly in drier years. Signs of soil wetness are also evident in some of these soils
- 10 The Subgrade 3a land has been mapped in the north west of the site and comprises medium clay loam topsoils overlying medium clay loam or sandy loam upper subsoils and lower subsoils of sand The topsoils are slightly stony the subsoils are moderately to very stony Given the sandier nature of these soils this land is droughtier than the Grade 2 land
- 11 The Subgrade 3b land occurs in the centre of the site and along the southern boundary and is generally co-incident with the geological deposit of alluvium The soils comprise heavy clay loam or clay topsoils over deep slowly permeable clay subsoils and suffer from a significant soil wetness problem Soil wetness reduces the versatility of the land in terms of access by machinery (e g for cultivations or harvesting) and grazing by livestock if damage to the soil is to be avoided and also adversely affects seed germination and root growth and will therefore reduce the level and consistency of yields This subgrade also includes some disturbed land to the west of Woodfalls Farm

FACTORS INFLUENCING ALC GRADE

Climate

- 12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- 13 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5 km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values				
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit Wheat Moisture Deficit Potatoes	N/A m AOD day°C (Jan June) mm davs mm mm	TR 689 495 13 1496 653 136 123 121	TR 686 486 12 1498 659 137 123 121			
Overall climatic grade	N/A	Grade 1	Grade 1			

Table 2 Climitic and altitude data

- 14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- 15 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- 16 The combination of rainfall and temperature within this survey area means that there is no overall climatic limitation. However climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. No climatic factors such as exposure or frost risk are believed to adversely affect the land quality on the site. This site is climatically Grade 1

Site

- 17 The survey area is situated in the Medway valley and lies at 12–14m AOD The land is level to gently sloping and nowhere on the site do gradient or microrelief adversely affect agricultural land quality
- 18 The Environment Agency has assessed the return frequency of flooding in the area in which the site lies as being about one in seven or eight years The landowner reports that there have been no major flood events since 1968 and that flooding is not a constraint to the agricultural use of the land

Geology and soils

- 19 The published geological information for this area (BGS 1976) shows the northern part of the site to be underlain by Alluvium The southern part is underlain by First Terrace River Gravels with a small deposit of Weald Clay underlain by Paludina Limestone occurring on the eastern side of the site near to Woodfalls Farm
- 20 The most detailed published soils information at 1 25 000 scale covering the area (SSEW 1986) shows five soil series across the site Over the alluvium the Breamore Conway and Fladbury series have been mapped The Breamore series is mapped in the north of the site and is described as Permeable slightly mottled coarse loamy soils over flint gravel at 50 to 80 cm depth Occasional deeper fine loamy soils in places (SSEW 1986) The Conway series is mapped in the central part of the site and is described as Deep stoneless prominently mottled grevish fine silty soils (SSEW 1986) The Fladbury Series occurs along the southern boundary of the site and is described as Deep stoneless prominently mottled greyish clayey soils occasionally over gravel at between 80 and 100 cm depth. Some wetter soils with dark humose tops in depressions and a few similar fine silty soils in places (SSEW 1986) The Hook and Hamble series are mapped over the river terrace deposits in the south of the site The Hamble is the most extensive of the two and is described as Deep permeable stoneless brown silty soils sometimes over gravel between 80 and 100 cm depth Common similar stony or fine loamy soils (SSEW 1986) The Hook series is described as Deep permeable slightly mottled silty soils occasionally calcareous below 40 cm depth Common similar stony or fine loamy soils in places (SSEW 1986) Detailed field examination found the distribution and description of the soils on site to accord with that outlined above

AGRICULTURAL LAND CLASSIFICATION

- 21 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 2
- 22 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- 23 Land classified as Grade 2 very good quality occurs over the First Terrace River Gravels in the southern half of the site and has minor soil droughtiness and wetness limitations The profiles are represented by Pit 3 (see Appendix II) and typically comprise medium silty clay loam and medium clay loam topsoils Subsoils are of similar texture sometimes becoming heavier with depth (heavy silty clay loam) and the profiles have a moderate structure The topsoils are stoneless or very slightly stony containing up to 5% total stones by volume Upper subsoils have a similar or smaller stone content However across the central part of this area the soils were impenetrable to an auger at between 70 and 90 cm. At the soil pit the lower subsoil was very stony containing approximately 40% total stones by volume Given the local climate the reserves of soil available water act to impart a slight soil droughtiness limitation which may adversely affect crop growth as water supply may not match demand especially in drier years. Therefore this area is classified as Grade 2 on the basis of soil droughtiness
- 24 Most profiles are permeable and well drained (Wetness Class I) However a small number of profiles in the south east of this area exhibit signs of soil wetness in the lower subsoil Where gleying occurs in the absence of a slowly permeable layer the profiles remain in Wetness Class I However at three borings the heavy silty clay loam textured lower subsoil was assessed as being slowly permeable This leads to Wetness Class II being applied given the local climatic parameters When combined with the medium silty clay loam topsoils Grade 2 is appropriate This slight soil wetness limitation acts equally with the soil droughtiness limitation to restrict land to this grade The soil wetness limitation may restrict the number of days when either cultivations or grazing should occur without damaging the soil and may reduce flexibility of use Nevertheless such land is suitable for a wide range of agricultural and horticultural crops

Subgrade 3a

The land classified as Subgrade 3a (good quality) occurs in the north west of the site and is limited by soil droughtiness Pit 2 is representative of the soils in this subgrade. The soils typically comprise medium clay loam textured topsoil over medium sandy loam upper subsoil and medium to coarse sand lower subsoil the profiles are moderately structured. The topsoils are slightly stony containing approximately 6% stone by volume as assessed by eye. The stone content increases in the upper subsoil to 25% stone by volume and the lower subsoil contains 18% stone by volume. Subsoil stone content was assessed by wet sieving. Given the local climate, the reserves of soil available water act to impart a soil droughtiness limitation which may adversely affect crop growth as water supply may not match demand. Therefore this area is classified as Subgrade 3a on the basis of soil droughtiness. 26 Within the pit water was present at a depth of 58 cm The absence of a slowly permeable layer indicates that the presence of the water is likely to be due to a seasonally fluctuating water table The profile was assessed as Wetness Class II on the basis of probable duration of waterlogging

Subgrade 3b

- 27 The land classified as Subgrade 3b moderate quality is subject to significant soil wetness and workability limitations Across much of this mapping unit poorly drained profiles arise from slowly permeable subsoils which occur directly below the topsoil Topsoils are variably textured typically medium/heavy clay loams and clays These pass into clay subsoils which are poorly structured and slowly permeable The surface water movement through these layers will be significantly reduced This results in poor soil drainage (Wetness Class IV) as indicated by gleying either from the surface or below the topsoil Such profiles are typified by Pit 1
- 28 To the west of Woodfalls Farm is an area where the land appears to have been lowered possibly by the extraction of brickearth The soils comprise medium clay loam topsoils over medium clay loam upper subsoils and loamy coarse sand lower subsoils The upper subsoils are very slightly stony whilst the lower subsoils are very stony and the profiles were impenetrable to an auger at between 65 and 85 cm The soils exhibit signs of wetness in the form of gleyed subsoils however no slowly permeable layer occurs within 80 cm At the time of survey (December 1998) there was standing water over much of this area and the water in the ditch was almost at field level The flat and low lying nature of this land means that artificial drainage measures are likely to prove inadequate due to lack of fall and freeboard and that groundwater levels would be high for much of the year Consequently this land was assessed as being poorly drained (Wetness Class IV)
- Across this entire mapping unit the interaction between the soil drainage characteristics the topsoil textures and the prevailing climate means that all of this land is classified as Subgrade 3b because of soil wetness. Soil wetness of this degree adversely affects seed germination and survival and inhibits the development of a good root system. Soil wetness also imposes restrictions on cultivations trafficking by machinery or grazing by livestock.

Vaughan Redfern and Gillian Iles Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 288 1 50 000 Maidstone (solid and drift edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1986) Sheet *IQ64 (Paddock Wood) Soils in Kent IV 1 25 000 Soil Survey record No 99* SSEW Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e g cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations - explanatory note

Soil pit and soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
рот	Potatoes	SBT	Sugar be t	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	отн	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

3 GRDNT Gradient as estimated or measured by a hand held opti al chnometer

4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers

5 AP (WHEAT/POTS) Crop-adjusted available water capac ty

6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)

- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, Y will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
ΕΧΡ	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbr viations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Ch mical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Weiness/Droughtiness
Łλ	Exposure				-

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbre lations

Sand	LS	Loamy Sand	SL	Sandy Loam
Sandy Silt Loam	CI	Clay Loam	ZCL	Silty Clay Loam
Silt Loam	SCL	Sandy Clay Loam	С	Clay
Sandy Clay	ZC	Silty Clay	OL	Organic Loam
Peat	SP	Sandy Peat	LP	Loamy Peat
Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts
	Sand Sandy Sılt Loam Sılt Loam Sandy Clay Peat Peaty Loam	SandLSSandy Silt LoamCISilt LoamSCLSandy ClayZCPeatSPPeaty LoamPS	SandLSLoamy SandSandy Silt LoamCIClay LoamSilt LoamSCLSandy Clay LoamSandy ClayZCSilty ClayPeatSPSandy PeatPeaty LoamPSPeaty Sand	SandLSLoamy SandSLSandy Silt LoamCIClay LoamZCLSilt LoamSCLSandy Clay LoamCSandy ClayZCSilty ClayOLPeatSPSandy PeatLPPeaty LoamPSPeaty SandMZ

For the sand, loamy sand, sandy loam and sandy silt loam class's the predominant size of sand fraction will be indicated by the use of the following prefix s

- F Fine (more than 66 / of the sand less than 0 2mm)
- M Medium (less than 66 / fine sand and less than 33 / coars sand)
- C Coarse (more than 33 / of the sand larger than 0 6mm)

The clay loam and sity clay loam classes will be sub-divided according to the clay content M. Medium (<27 / clay) H Heavy (27.35 / clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a per enting of the matrix or surface described

F few <2/ C common 2 20/ M many 20 40 VVI rv many 40/+

4 MOTTLE CONT Mottle contrast

- F faint indistinct mottles evident only on close inspection
- D distinct mottles are readily seen
- P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft, fine grained sandstone
ZR	soft, argillaceous, or silty rocks	CH	chalk
MSST	soft, medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic rock	GH	gravel with non porous (hard) stones

Stone contents (>2cm, >6cm and total) are given in percentag 's (by volume)

8 STRUCT the degree of development, size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed		
Ped size	F C	fine coarse	М	medium		
Ped shape	S GR SAB PL	sıngle graın granular sub-angular blocky platy	M AB PR	massive angular blocky prismatic		

9 CONSIST Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very f.m	
FR friable	FM extr n ly frm	

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

11 POR Soil porosity If a soil horizon has less than 0.5 / biopores >0.5 mm, a Y will appear in this column

12 IMP If the profile is impenetrable to rooting a Y will app ar in this column at the appropriate horizon

13 SPL Slowly permeable layer. If the soil horizon's slowly permeable a Y will appear in this column

14 CALC If the soil horizon is calcareous a Y will appear in this column

15 Other notations

APW	available water capacity (in mm) adjusted for vh at
APP	available water capacity (in mm) adjusted for potatoes
MBW	moisture balance wheat
MDD	an and the balance in states a

MBP moisture balance potatoes

SAMP	ĽΕ	ASPECT	г		-	WETNESS		IEAT-	PC	TS-	١	M REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	GRDNT G	iley s	PL C	CLASS GRADE	AP	MB	AP	MB	DRT	FLOOD	EX	P DIST	LIMIT		COMMENTS
1	TQ68904960	FLW		34		22	74	-49	74	-47	38				DR	3A	Imp50 see 2P
1A	TQ68954973	FLW		34 3	4	4 38	128	5	105	-16	3A				WE	38	
2	TQ68804950	FLW				1 1	87	-36	90	-31	38				DR	3A	Imp60 see 2P
3	TQ68904950	FUN				1 1	82	-41	83	-38	38				DR	3A	Imp52 see 2P
4	TQ68704940	PL0		30 3	D	4 38	90	-33	93	-28	3B				WE	3B	I65 prob3aDR
5	TQ68804940	FLW		32 3	2	4 3B	109	-14	107	-14	3A				WE	38	Water 90
6	TQ68904940	FLW		37 7	0	4 3B	114	-9	104	-17	3A				WE	38	Impen 100
7	TQ68604930	PL0		47		1 1	78	-45	78	-43	38				DR	3A	Imp50 see 2P
7A	TQ68554925	PL0		34 3	4	4 3B	130	7	107	-14	3A				WE	38	Lower land
8	TQ68704930	PL0		30 3	0	4 3B	156	33	118	-3	2				WE	3B	
9	TQ68804930	PLO		62 6	2	22	118	5	115	-6	3A				DR	3A	Imp90 Q 2 DR
10	TQ68904930	PLO		34 3	4	4 38	108	-15	104	-17	3A				WE	38	
. 11	TQ68604920	PL0		30 3	0	4 3B	101	-22	106	-15	3B				WE	38	Impen 80
12	TQ68704920	PLO		28	_	2 3A	78	-45	82	-39	3B				DR	3B	Impen 70
13	TQ68804920	PLO		30 34	0	4 3B	91	-32	102	-19	3B				WE	38	Impen 70
14	TQ68904920	PLO		25 2	5	4 38	127	4	104	-17	3A				WE	3B	H2 feint motts
15	TQ68404920	PLO		30 3	5	4 38	156	33	118	-3	2				WE	3B	
16	1068504910	PLO	4	5 45		3 38	133	10	109	-12	3A SA				WE	3B	
	1068604910	PLO		34 34 24 2	4	4 38	110	-/	114	-/	AL .				WE	38	
- 18	1068704910	PLU		34 34	4	4 38	118	-5	110	5	3A				WE	38	
19	TQ68804910	PLO		26 20	5	4 3B	137	14	114	-7	2				WE	38	See 1P
20	TQ68304900	PLO				1 1	138	15	125	4	2				DR	2	Imp97 see 3P
21	T068404900	PLO				1 1	126	3	118	-3	3A				DR	2	Imp90 see 3P
22	TQ68504900	PLO				1 1	108	-15	118	-3	3A				DR	2	Imp70 see 3P
23	TQ68604900	ARA		30 34)	4 38	129	6	106	-15	3A				WE	38	H3 many Mn
24	TQ68704900	ARA	:	30 34	5	4 38	132	9	109	-12	3A				WE	38	V wet at 90
25	TQ68804900	PGR				1 1	156	33	118	-3	2				DR	2	
26	TQ68304890	ARA S	2			1 1	108	-15	100	-21	3A				DR	3A	3a dr -pots
27	TQ68404890	ARA				1 1	123	0	117	-4	3A				DR	2	Imp90 see 3P
28	TQ68504890	SAS				1 }	156	33	118	-3	2				DR	2	
29	TQ68604890	SAS				1 1	157	34	119	-2	2				DR	2	S1 sandy
30	TQ68704890	PGR		29		1 1	76	-47	78	-43	38				DR	38	Wet at 65
31	TQ68804890	PGR	i	28		4 38	121	2	118	-3	3A				WE	38	G water WC IV
32	TQ68404880	PGR		0 30)	4 3B	132	9	109	12	3A				WE	3B	Standing water
33	TQ68504880	PLO		48		2 2	121	2	125	4	3A				WD	2	Imp80 see 3P
34	TQ68604880	FLW				1 1	109	14	123	2	3A				DR	2	Imp70 see 3P
35	TQ68704880	FLW				1 1	104	19	116	-5	3A				DR	2	Imp70 see 3P
36	TQ68804880	FLW	:	38		22	104	19	116	-5	3A				DR	2	Imp70 see 3P
38	TQ68504870	PGR		0 20)	4 38	124	1	101	20	3A				WE	38	
39	TQ68604870	PLO	(60 60)	22	161	38	125	4	2				WD	2	
40	TQ68704870	MZL				1 1	128	5	127	6	2				DR	2	Imp85 see 3P
41	TQ68804870	FLW	(60		1 1	131	8	125	4	2				DR	2	Imp90 see 3P

LIST OF BORINGS HEADERS 28/01/99 WOODFALLS FM LADDINGFORD

	SAMP	SAMPLE		ASPECT						-WETNESS		-MHEAT-		TS-	M REL		EROSN	FROST		CHEM	ALC	
	NO	GRID	REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	5	(P (DIST	LIMIT		COMMENTS
	42	TQ6890	04870	FLW			80		1	ı	155	32	117	-4	2					DR	2	
	43	TQ6860	34860	PL0			50	50	2	2	161	38	125	4	2					WD	2	
	44	TQ6870	34860	FUN			78		۱	1	161	38	125	4	2					OR	2	
	45	TQ6880	34860	FLW			60	60	2	2	156	33	120	-1	2					WD	2	
	46	TQ6860	04850	PGR			0	30	4	38	129	6	106	-15	3A					WE	38	
	47	TQ6870	3485 0	ARA					1	1	155	32	110	-11	3A					DR	3A	3a dr- pots
	48	T06860)4840	PGR			30	30	4	38	135	12	112	-9	2					WE	3B	H3 plastic
	1P	TQ6890)4950	PL0			28	28	4	38	135	12	114	~7	2					WE	38	
	2P	TQ6890	04950	STB	SE	1			1	1	107	-16	99	-22	3A					DR	3A	Water 58
	3P	TQ6860	04880	FLW					1	1	149	26	124	3	2					DR	2	H2 mixed

COMPLETE LIST OF PROFILES 28/01/99 WOODFALLS FM LADDINGFORD

				M	OTTLES	S	PED			STONES	STRUCT	/ SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL /	ABUN	CONT	COL	GLEY >	2 >(S LITH	TOT CONSIS	ST STR POR IN	IP SPL CALC	
1	0-34	SCL	75YR43						0	0 HR	8			
	34-48	SCL	10YR53	10YR56	с	F		Y	0	0 HR	10	м		
•	48-50	SCL	10YR52						0	0 HR	50	м		Imp50 gravelly
14	0-34	с	10YR42						0	0	0			
	34-56	С	10YR53	10YR56	С	F		Y	0	0	0	Р	Y	
	56-120	С	25Y63					Y	0	0	0	Р	Y	
2	0-33	MCL	10YR43						0	0 HR	6			
-	33-48	MCL	75YR54						0	0	0	м		
	48-60	SCL	75YR42						0	Ô HR	50	м		Imp60 gravelly
3	0-36	MCL	75YR42						0	0 HR	6			
_	36-49	MCL	10YR54						0	0 HR	10	м		
	49-52	MCL	10YR52						0	0 HR	50	м		Imp52 gravelly
4	0-30	MCL	10YR43						0	0 HR	5			
)	30-50	HCL	25Y73	10YR56	м	D		Y	0	0	0	M	Y	
	50 65	SCL	10YR53						0	0 HR	60	M		Imp65 gravelly
5	0-32	HCL	10YR42						0	o	0			
	32-60	С	10YR42	10YR46	С	D		Ŷ	0	0	0	Р	Y	
l I	60-80	с	10YR42	10YR46	с	D		Y	0	0	0	Р	Y	
	80 90	С	25753	10YR56	м	Ρ		Y	0	0	0	Р	Y	Water at 90
6	0-37	HCL	75YR42						0	0 HR	5			
	37-70	С	10YR53					Y	0	0 HR	5	Р		
1	70-100	С	25Y74	10YR58	M	D		¥	0	0	0	P	Y	Imp100 gravelly
7	0 30	MCL	10YR43						2	0 HR	8			
	30-47	HCL	75YR43						0	0 HR	8	м		
	47-50	HCL	75YR42	75YR56	С	D		Y	0	0 HR	50	M		Imp50 gravelly
, 7A	0 34	MCL	10YR42						0	0	0			
	34 45	HCL	10YR53	10YR56	С	D		Y	0	0	0	м	Y	
	45 120	С	25Y73	10YR56	С	D		Y	0	0	0	Р	Y	
8	0-30	MCL	10YR42						0	0	0			
	30-65	HCL	75YR53	75YR46	M	D		Y	0	0	0	м	Y	
	65-82	MCL	75YR53	75YR46	м	D		Y	0	0	0	м		
	82 120	SCL	75YR53						0	0	0	м		
9	0-30	MCL	10YR42						0	0	0			
	30 62	HCL	75YR42						0	0	0	м		
	62 90	HCL	10YR74	10YR46	м	D		Y	0	0	0	м	Y	Imp90 gravelly
10	0-34	HCL	10YR42						0	0	0			
	34-90	с	25Y73	10YR68	м	Ð		Y	0	0	0	Р	Y	

rogram	ALCO11	I		COMPLET	page 2									
				M	DTTLES	; 	PED		s	TONE	S STRUCT/	SUBS		
AMPLE	DEPTH	TEXTURE	COLOUR	00L /	ABUN	CONT	COL	GLEY	>2 >6	LIT	H TOT CONSIST	STR POR I	MP SPL CALC	
11	0-30	HCL	10YR42						D	0	0			
	30-50	с	25Y 53	10YR58	С	D		Y	0	0	0	Р	Y	
	50-80	С	25Y 53	10YR58	н	D		Ŷ	0	0	0	P	Y	Imp80 gravelly
12	0-28	HCL	10YR42						2	0 н	R 8			
	28-45	С	25Y 53	10YR58	С	D		Y	0	0 н	R 20	Р		
	45-55	HCL	10YR43						0	ОН	R 40	м		
	55-70	LCS	10YR46						0	он	R 45	м		Imp70 gravelly
13	0-30	HCL	10YR42						0	0 н	R 2			
	30-50	С	25Y 53	10YR58	С	D		Y	0	0 н	R 2	Р	Y	
	50-70	С	25Y 63	10YR58	м	Ð		Y	0	0 ні	R 12	Ρ	Y	Imp70 gravelly
14	0-25	HCL	10YR42						0	0	0			
	2560	С	25Y 53	10YR56	С	F		Y	0	0	0	Р	Y	
	60-120	С	25Y 72	10YR58	M	D		Y	0	0	0	Ρ	Y	
15	0-30	HCL	10YR43						0	0	0			
	30-48	HCL.	10YR53	10YR56	С	F		Y	0	0	0	м	Y	
	48-97	MCL	10YR63	10YR56	С	D		Y	0	0	0	м	v	

-		48-97	MCL	10YR63	10YR56	С	D	Y	0	0	0	м	Ŷ	
		97-120	SCL	10YR56					0	0	0	M		
	17	034	HCL	10YR42					0	0	0			
		34 55	HCL	25Y53	10YR56	с	D	Y	0	0	0	м	Y	
		55- 9 0	С	25Y74	10YR56	С	D	Y	0	0	0	Р	Y	Imp90 gravelly
-	18	0-34	HCL	10YR42					0	0	0			
		34-60	HCL	10YR63	10YR56	С	D	Y	0	0	0	м	Y	
		60-90	С	10YR53	10YR56	M	D	Y	0	0	0	Ρ	Y	Imp90 gravelly
-	19	0-26	с	10YR42					0	0	0			Hand textd hzcl
		26 50	HCL	25Y 53	10YR58	С	D	Ŷ	0	0	0	м	Y	Q clay texture
•		50 120	С	25Y 62 7	2 10YR58	м	D	Y	0	0	0	Р	Y	
	20	0-29	MZCL	10YR43					0	0	0			
8		29-50	MZCL	75YR54					0	0	0	м		
		50-70	HZCL	75YR66					0	0	0	м		
		70-97	HZCL	10YR64					0	0	0	м		Imp97 gravelly
•	21	030	MCL	10YR43					0	0	0			
-		30-45	MCL	10YR44					0	0	0	м		
		4564	MCL.	10YR54					0	0	0	м		
		64-90	MCL	10YR66					0	0	0	м		Imp90 gravelly

0 0

0 0

0 0

0

0

0

Μ

Μ

Imp70 gravelly

0-28

28-48

48-70

MCL

MCL

CSL

10YR43

10YR64

10YR53

COMPLETE LIST OF PROFILES 28/01/99 WOODFALLS FM LADDINGFORD

-- -- ----- -----

----STONES---- STRUCT/ SUBS ---- PED SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 23 0-30 HCL 10YR42 0 0 0 30-50 С 25Y 52 10YR58 C D 0 0 Y 0 Ρ Y 50-120 C 05Y 61 10YR58 M D Y 0 0 0 Ρ Y 24 0-30 HCL 10YR42 0 0 Û 30-40 HCL 25Y 53 10YR56 C D Y 0 0 0 Y M 40-120 C 05Y 61 10YR58 0 0 M D Y 0 Ρ Y 25 0-30 MCL 10YR43 0 0 0 30-120 MCL 10YR44 0 0 0 М 26 0-30 MCL 10YR43 0 0 ۵ 30-45 HCL 10YR56 43 0 0 HR 2 Μ Mixed horizon 45-60 HCL. 10YR58 0 HR 0 30 м 60-80 LCS 10YR58 0 O HR 40 М 80-100 LMS 10YR58 0 O HR 20 Imp100 gravelly M 0-30 MCL 27 10YR43 0 0 0 MCL. 30-60 0 10YR56 10YR58 C D S 0 0 М S1 gleyed 60-80 MCL. 10YR56 10YR58 C D S 0 0 HR 8 S1 gleyed М 80 90 HCL 10YR56 10YR58 C D Ş 0 0 HR 15 M S1 gleyed I90 28 0 30 MCL 10YR43 0 0 0 30 90 MCL 75YR43 0 ٥ 0 м 90 120 MCL 75YR43 10YR56 FF 0 0 0 м 29 0-35 MCL 10YR43 0 0 0 35-90 MCL 75YR43 0 0 0 м 90-120 MCL 10YR54 0 0 0 м 30 0-29 MCL 10YR43 10YR56 F D \$ 0 0 0 29-36 MCL. 10YR56 0 0 10YR42 C D Y ۵ м 36-65 LCS 10YR52 0 0 HR 40 Μ 31 0-28 MCL 10YR43 10YR56 C D S 0 0 0 28-85 MCL. 10YR53 10YR56 C D Y 0 0 0 М Imp85 wet85 32 0 30 HZCL 05Y 52 10YR56 Y 0 0 C D 0 30-70 С 05Y 51 10YR58 M D 0 0 Y 0 Ρ Y 70 120 C 10YR58 10GY 5 M D Y 0 0 0 Ρ Y 0-30 33 MZCL 10YR43 0 0 0 30-48 MZCL 10YR54 0 0 0 М 48-80 MZCL 10YR74 10YR56 C D Y 0 0 0 М Imp80 gravelly 0-38 MCL 10YR43 0 0 0 38-50 MZCL. 10YR53 0 0 0 Μ 50-70 HZCL 10YR64 0 0 0 Μ Imp70 gravelly

COMPLETE LIST OF PROFILES 28/01/99 WOODFALLS FM LADDINGFORD

---- MOTTLES---- PED ----STONES--- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 35 0-36 MCL. 10YR43 0 0 HR 5 36 70 HCL 10YR56 0 0 0 М Imp70 gravelly 36 0-38 MCL 10YR43 0 0 HR 5 38-70 10YR64 10YR56 HCL. C D Y 0 0 0 М Imp70 gravelly 38 0-20 HCL 10YR52 10YR56 C D Y 0 0 0 20-120 C 05Y 72 10YR68 0 0 MD Y 0 Ρ Y 39 0-30 MZCL 10YR43 0 0 0 30-60 MZCL 10YR44 0 0 0 м 60-120 HZCL 10YR64 10YR66 0 0 M D ¥ 0 м Y 40 10YR43 0-38 MZCL 0 0 0 38-85 HZCL 10YR54 0 0 0 Μ Imp85 gravelly 41 0-30 MZCL 10YL43 0 0 0 30-60 MZCL 10YR53 0 0 0 м 60-90 MZCL 10YR64 10YR66 C D 0 0 0 Y М Imp90 gravelly 42 0 25 MCL 10YR43 0 0 0 25-37 MCL 10YR54 0 0 0 м 37-80 10YR66 MCL. S 0 0 0 Μ 80-120 MZCL 10YR64 10YR66 C D Y 0 0 0 M 43 0-30 MZCL 10YR43 0 0 0 30-50 HZCL 10YR54 0 0 0 Μ 10YR64 50-75 HZCL 10YR56 C D Y 0 0 0 Μ Y 75-120 HZCL 10YR63 10YR5658 M D Y 0 0 0 М Y 44 0-30 MZCL 10YR43 0 0 0 30-78 MZCL 10YR64 0 0 0 М 78-120 MZCL 10YR53 10YR66 C D 0 0 0 Μ 45 0-30 MCL. 10YR43 0 0 0 30-50 HCL 10YR44 00MN00 С 0 0 0 м 10YR54 50-60 MZCL 00MN00 С 0 0 0 М 10YR58 60-120 HZCL 10YR53 C D Y 0 0 0 М Y 46 0-30 HCL 10YR51 10YR46 C D Y 0 0 0 30-60 С 05Y 51 10YR58 M D Y 0 0 0 Ρ Y 60-120 С 05Y 72 10YR58 0 0 M D Y 0 Ρ Y 47 MCL 10YR43 0-30 0 0 0 30-50 MCL 75YR43 0 0 0 Μ 10YR44 50-60 LMS 0 0 0 м 10YR44 60-90 MSL. 0 0 0 М 90-120 MCL 10YR54 10YR56 C D S 0 0 0 М S1 gleyed

COMPLETE LIST OF PROFILES 28/01/99 WOODFALLS FM LADDINGFORD

s	ample	DEPTH	TEXTURE	COLOUR	# COL	iottle: Abun	S CONT	ped Col	GLEY >	S 2 >6	STO 5 L	NES	S от С	STRUCT/ CONSIST	SU St	8s R PC	OR IM	P SPL	CALC		
	48	0-30	MCL	10YR43						0	0		0								
		30-50	HCL	25Y 53	10YR58	C	D		Y	0	0		0			M			Y		
-		50-120	с	05Y 61	10YR58	M	D		Y	0	0		0			Ρ			Y		
	1P	0-28	с	10YR42						0	0		0							Hand te	extd hzcl
		28-50	HCL	10YR53	10YR56	С	Ð		Y	0	0		0	MDCAB	FR	м	Y		Y		
		50-92	с	25Y 62	10YR58	M	D		Y	0	0		0	MDCPR	FM	ρ	Y		Y		
		92-110	с	25Y 62	10YR58	M	D		Y	0	0	HR	20			Ρ			Y		
		110-120	MCL	25Y 62	10YR58	M	D		Y	0	0	HR	30			M					
_	2P	0~36	MCL	10YR43						1	0	HR	5								
		36-68	MSL.	10YR54						0	0	HR	25	MDCSAB	FR	M					
		68-120	ß	10YR54						0	0	HR	18	WKFSAB	VF	G					
	3P	0-32	MZCL	10YR43						0	0	HR	2								
		32-72	MZCL	10YR5643						0	0		0	MDCSAB	FR	м					
		72-95	SCL	10YR56						0	0	HR	10	MDCPL	FR	м					
		95-120	MCL	10YR56						0	0	HR	40			M					