A1

CHERWELL DISTRICT LOCAL PLAN
REVIEW
Land North of Banbury Oxfordshire

Agricultural Land Classification ALC Map and Report Semi Detailed Survey

September 1999

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 3301/049/99 MAFF Reference EL 33/01588

AGRICULTURAL LAND CLASSIFICATION REPORT

CHERWELL DISTRICT LOCAL PLAN REVIEW LAND NORTH OF BANBURY OXFORDSHIRE SEMI DETAILED SURVEY

INTRODUCTION

- This report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 188 hectares of land north of Banbury in Oxfordshire The survey was carried out during September 1999
- The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) The survey was carried out in connection with MAFF s statutory input to the Cherwell district Local Plan Review This survey supersedes any previous ALC information for this land
- The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I.
- At the time of survey the agricultural land on the site was mostly in arable use with wheat oilseed rape and linseed being grown the remainder was in permanent grassland. The areas mapped as Other land include farm buildings and residential dwellings road and trackways woodland a golf driving range spring lines a lake and crematorium.

SUMMARY

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 15 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	/ surveyed area	/ site area
2 3a 3b Other land	40 5 88 4 44 3 14 4	23 4 51 0 25 6 N/A	21 6 47 1 23 6 7 7
Total surveyed area Total site area	173 2 187 6	100	92 3 100

¹ FRCA is an executive agency of MAFF and the Welsh Office

- 7 The fieldwork was conducted at an average density of 1 boring per 1 8 hectares of agricultural land. In total 96 borings and 12 soil pits are described.
- The agricultural land on this site has mainly been classified as Grade 2 (very good quality) and Subgrade 3a (good quality) with smaller areas of subgrade 3b (moderate quality) Soil droughtiness and soil wetness are the principal limitations to land quality with gradient and high topsoil stone contents restricting in places
- 9 A soil droughtiness limitation exists on soils derived from the Marlstone Rock Bed which are located in the central and western areas of the site. The land is generally higher and flatter than elsewhere on the site These soils are well drained variably stony with fine loamy or fine silty textures over the brashy Marlstone Where these variably stony soils are deep the interaction of these soil properties with the local climate results in a minor reduction in the water available to a growing crop and Grade 2 land is appropriate. An increase in stone content and/or decrease in depth to the Marlstone results in less water available to a growing crop therefore increasing the soil droughtiness limitation with Subgrades 3a and 3b being appropriate depending upon the severity of the limitation. In certain areas often where there are breaks in slope the Marlstone is close to the surface resulting in a topsoil stoniness limitation which results in land assigned to Subgrade 3b The principal effect of a soil droughtiness limitation is to adversely affect the consistency and level of yields particularly in drier years Topsoil stoniness can increase production costs by causing extra wear and tear to implements and tyres
- Soil wetness is associated with soils derived from the Middle and Lower Lias Clays which are found to the east of the site and on lower lying land. The soils are typically fine loamy or fine silty over poorly draining clays at variable depths. It is the depth to these less permeable clays which determines the severity of the soil wetness limitation. In the absence of these clays or where they are found deeper in the soil profile, the land is classified Grade 2. However where these clays are found at moderate and shallow depths respectively, then Subgrade 3a and Subgrade 3b land is appropriate. The principal effect of a soil wetness limitation may cause a reduction in crop yield and limit the flexibility of the land particularly in wetter years.
- In places in the extreme west and north of the survey area gradient limits land quality to Subgrade 3b Such slopes will restrict the safe and efficient use of farm machinery

FACTORS INFLUENCING ALC GRADE

Climate

- 12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Table 2 Climatic and altitude data

Factor	Units	Values							
Grid reference	N/A	SP 433 428	SP 450 432	SP 447 430					
		ZONE A	ZONE B	ZONE B					
Altıtude	m AOD	145	95	110					
Accumulated Temperature	day°C (Jan June)	1334	1390	1373					
Average Annual Rainfall	mm	704	687	692					
Field Capacity Days	days	160	158	158					
Moisture Deficit, Wheat	mm	98	104	102					
Moisture Deficit, Potatoes	mm	86	94	92					
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1					

- The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. However, due to the large area involved there are climatic variations, particularly differences in moisture deficit values, which can be accounted for by zoning the site (Zone A and Zone B). The isohyte at 125m AOD divides the two zones and is located over the central area of the site. Zone A includes all land west of this and Zone B represents all land to the east of the 125m contour. Local climatic factors, such as exposure and frost risk do not affect land quality at this location. The site is climatically Grade 1. However, climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. At this locality the climate fairly typical of South East England.

Site

17 The site lies at altitudes in the range 95–148m AOD. There is a direct relationship with landform and underlying geology. Approximately half of the site is underlain by the harder Marlstone Rock Beds which represent the higher and generally flatter ground which falls through gentle gradients east and westwards. In the extreme west and the central to eastern half of the survey area, the Marlstone Rock Beds give way to the softer Middle and Lower Lias deposits. At these junctures gradients in the range between 7°–11° limit land quality to Subgrade 3b. In the east, a small valley stream bisects the land which represents the lowest lying ground. The land then rises towards the M40. The small stream in the east and the Sor Brook in the west are liable to flooding however records kept by the Environment Agency indicate that flooding is not significant in these localities (EA, 1999) personal communication). Microrelief does not affect land quality

Geology and soils

- The most recent published geological information for the area (BGS 1982) shows the site to comprise three different solid geological deposits. Approximately half of the survey area is underlain by the Marlstone Rock Bed which gives way to the Middle and Lower Lias deposits in the extreme west and in the east of the survey area. Additionally there is an area of alluvium mapped along the coarse of the two streams
- The most recent published soils information (SSEW 1983) maps two soil associations Banbury (544) in the west and Wickham 2 (711f) in the east. The Banbury soils are formed on Jurassic and Cretaceous ironstone and are described as. Well drained brashy fine and coarse loamy ferruginous soils over ironstone. Some deep fine loamy over clayey soils with slowly permeable subsoils and slight seasonal waterlogging (SSEW 1983). Soils of the Banbury Association are well drained and fall into Wetness Class I (SSEW 1984). Soils of the Wickham 2 Association are developed in drift over Jurassic and Cretaceous clay or mudstone and are described as. Slowly permeable seasonally waterlogged fine loamy over clayey fine silty over clayey and clayey soils. Small areas of slowly permeable calcareous soils on steeper slopes. (SSEW 1983). Soils of the Wickham 2 Association are seasonally waterlogged and therefore imperfectly or poorly drained. Wetness Class III or IV (SSEW 1984). Detailed field observations found soils similar in characteristics to those described here.

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- Very good quality agricultural land is mapped in a number of places and is coincident with two soil types
- Grade 2 land suffers from a minor soil droughtiness limitation associated with soils derived from the underlying Marlstone Rock Beds particularly in the central to western areas of the site. These soils are well drained (Wetness Class I) non calcareous and are typical of the soil profile represented by Pit 7 (see Appendix II). Pit 7 has a medium clay loam topsoil which may contain up to 14% total medium soft sandstone (MSST). This overlies a similarly textured upper subsoil which may contain up to 28% MSST and passes to a similarly textured lower subsoil which may contain up to 48% MSST. Moisture balance calculations derived from the interaction of these soil properties with the local climate indicate a reduction in the water available to a growing crop. The resulting minor drought stress may affect crop consistency and level of yield.
- 24 Elsewhere a minor soil wetness limitation restricts land quality to Grade 2 These soils are non calcareous and typically comprise stony medium clay loam topsoils which may contain up to 15% MSST These pass to heavy clay loam upper subsoils some of which are gleyed from

25cm and may contain up to 35% MSST. Where these upper subsoils are not gleyed they overlie poorly structured clays between 51–75cm. These slowly permeable clays if derived from the Marlstone Rock Bed are typical of Pit 5 (see Appendix II). The gleyed upper subsoil is typical of Pit 2 3 and 11 (see Appendix II). Soil profiles which are permeable but gleyed within 40cm due to a fluctuating groundwater or have a slowly permeable layer between 40–70cm are assigned to Wetness Class II. This combination of soil wetness class topsoil texture and the prevailing field capacity level (160–158 days) gives rise to a land classification of Grade 2. A minor soil wetness limitation may affect the level of yield and the range of crops which can be grown. In addition, soil wetness may affect the ease at which mechanised operations can be carried out or the advisability of grazing by livestock.

Subgrade 3a

- Good quality agricultural land has been mapped over half of the site. Both soil droughtiness and soil wetness are the principal limitations to land quality with soil workability in places
- Soil droughtiness is restricted to soils derived from the Marlstone Rock Bed These soils are 27 typically well drained (Wetness Class I) and non calcareous with variable stone contents over the Marlstone at moderate depths. These soils comprise medium clay loam topsoils which contain between 10-15% total MSST. These overlie similarly textured occasionally heavy clay loam upper subsoils which contain 10-40% MSST From about 40 to 95cm these soil profiles are impenetrable to the soil auger due to the underlying Marlstone and the dry conditions Pits 4 6 and 8 (see Appendix II) were dug to investigate these variably stony soils and are typical of the soils which are impenetrable over the MSST between 50-90cm. In all three pits topsoils were medium clay loams with 18-21% total MSST. These passed to similarly textured upper subsoils with 36-52% total MSST. In the case of Pits 4 6 and 8 brashy MSST was encountered at depths of 68 50 and 90cm respectively. In the case of Pit 4 this changed to a medium clay loam from 101cm. The brashy MSST proved to be rootable Moisture balance calculations derived from the interaction of these soil properties with the local climate resulted in a more severe reduction in the water available to a growing crop The resulting drought stress may affect crop consistency and level of yield particularly in drier years
- On the lower lying land to the north and mid to lower slopes in the east soil wetness with soil 28 workability restricts land quality to Subgrade 3a These soils are derived from the Middle and Lower Lias deposits which are generally clayer in texture. Over the central area of the site these soils comprise non calcareous medium clay loam or medium or heavy silty clay loam textures which are generally stoneless. These overlie heavy clay loam or heavy silty clay loam upper subsoils some of which are gleyed from 25-65cm. These pass to slowly permeable clay lower subsoils from 46-65cm Pit 2 and 3 (see Appendix II) is typical of these soils and proved the clay to be slowly permeable but with a moderate structure. Soil profiles which are gleyed within 40cm and have a slowly permeable layer between 44-71cm are assigned to Wetness Class III Where soil profiles are not gleyed within 40cm the slowly permeable layer is in the range 35-48cm. This combination of soil wetness class topsoil texture and the prevailing field capacity level (160-158 days) gives rise to a land classification of Subgrade 3a In the extreme west and east Pit 5 and 10 (see Appendix II) also represent soils which are assigned to Wetness Class III with Subgrade 3a appropriate. In the extreme north east of the survey area are soils which are typical of Pit 11 (see Appendix II) These soils comprise non

calcareous stoneless heavy clay loam or heavy silty clay loam topsoils. These pass to similarly textured or medium clay loam or medium silty clay loam stoneless upper subsoils. In Pit 11 both these horizons are gleyed and porous which result is an upper subsoil with moderate structural characteristic. In some of these soil profiles a slowly permeable clay or silty clay horizon is encountered at depth. These soils are assigned to Wetness Class II but with a heavy topsoil texture soil workability restricts land quality to Subgrade 3a. Soil wetness and soil workability may affect the flexibility of the land to grow a range of crops and impose restrictions on cultivations or grazing by livestock.

Subgrade 3b

- Moderate quality agricultural land is found mostly in the central to eastern part of the survey area. Soil wetness gradient and soil droughtiness are the principal limitations with topsoil stones to a lesser extent.
- A significant soil wetness limitation effects soils in the east of the survey area. In the north 30 east there are clayey soils associated with alluvial deposits Pit 12 (see Appendix II) is typical of these soils Soils comprise non calcareous stoneless medium or heavy clay loam topsoils These overlie a poorly structured clay from 25-27cm which continues down the soil profile in excess of 50cm. The affect of this slowly permeable clay is to impeded the movement of water down the profile These poor drainage characteristics have also caused gleying in the topsoil of some of these profiles which indicate that there are significant periods of waterlogging Consequently these soils are assigned to Wetness Class IV and the interaction of the topsoil texture and the prevailing field capacity level (160-158 days) results in Subgrade 3b land In the extreme east on the higher land surrounding the cemetery there are also soils which have similar drainage characteristics. Pit 9 (see Appendix II) is typical of these soils which are derived from the Middle Lias deposits. These soils are non calcareous and comprise stoneless heavy or medium clay loam topsoils. These pass directly to a poorly structured clay or pass through a thin heavy clay loam or heavy silty clay loam upper subsoil to the clay beneath The slowly permeable clay horizons are within 40cm of the surface which results in these soils being assigned to Wetness Class IV Subgrade 3b In the extreme west of the site there are areas of flatter land where excess water has difficulty draining resulting in a significant soil wetness problem Subgrade 3b is appropriate. Excessive soil wetness adversely affects seed germination and survival partly by a reduction in soil temperature and partly because of anaerobism. It also inhibits the development of a good root system all of which can affect the range of crops that can be grown and the level of yield Soil wetness also influences the sensitivity of the soil to structural damage and is therefore a major factor in determining the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock
- In the central to western half of the site there are areas where there is a significant soil droughtiness limitation where the Marlstone Rock Beds are in close proximity to the surface Pit 1 (see Appendix II) is typical of these soils. Soils in this unit are well drained (Wetness Class I) and non calcareous comprising medium clay loam topsoils with up to 16% total MSST. These overlie a similarly textured upper subsoil which contains up to 35% MSST. These high stone concentrations act to impeded the auger from 30-35cm. However, in Pit 1 the upper subsoil extends down to 55cm with 68% total MSST. From 55cm solid brashy MSST is encountered with rooting extending to 75cm. Drought calculations based on these soil characteristics result in a significant shortfall in water available to plants. In the local

climate this results in Subgrade 3b land. The severity of the limitation will affect the level and consistency of yield particularly in drier years.

- Topsoil stoniness is also a problem on this site between Drayton Lodge and the Warwick Road Sieve measurements recorded stone volumes in the range 16–18% greater than 2cm which restricts land quality to Subgrade 3b A high stone content can increase production costs by causing extra wear and tear to implements and tyres. Crop quality and crop impairment can also be impaired.
- 33 Gradients in the range 7°-11° were recorded using an optical clinometer. This degree of limitation has the effect of restricting land quality to Subgrade 3b. These slopes can affect the safe and efficient use of machinery since most mechanised farm operations perform best on level ground. Most of the land restricted by gradient occurs in the extreme west of the site on slopes falling to the Sor Brook however, they also occur in the central area of the site close to the juncture of the Marlstone Rock Beds with the underlying Middle Lias.

Colin Pritchard Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1982) Sheet No 201 Banbury BGS London

Environment Agency (1999) Flooding Land North of Banbury Personal Communication

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations explanatory note

Soil pit and soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

Arable	WHT	Wheat	BAR	Barley
Cereals	OAT	Oats	MZE	Maize
Oilseed rape	BEN	Field beans	BRA	Brassicae
Potatoes	SBT	Sugar beet	FCD	Fodder crops
Linseed	FRT	Soft and top fruit	FLW	Fallow
Permanent	LEY	Ley grass	RGR	Rough grazing
pasture				
Scrub	CFW	Coniferous woodland	ОТН	Other
Deciduous	BOG	Bog or marsh	SAS	Set Aside
woodland				
Heathland	HRT	Horticultural crops	PLO	Ploughed
	Cereals Oilseed rape Potatoes Linseed Permanent pasture Scrub Deciduous woodland	Cereals OAT Oilseed rape BEN Potatoes SBT Linseed FRT Permanent LEY pasture Scrub CFW Deciduous BOG woodland	Cereals OAT Oats Oilseed rape BEN Field beans Potatoes SBT Sugar beet Linseed FRT Soft and top fruit Permanent LEY Ley grass pasture Scrub CFW Coniferous woodland Deciduous BOG Bog or marsh woodland	Cereals OAT Oats MZE Oilseed rape BEN Field beans BRA Potatoes SBT Sugar beet FCD Linseed FRT Soft and top fruit FLW Permanent LEY Ley grass RGR pasture Scrub CFW Coniferous woodland OTH Deciduous BOG Bog or marsh SAS woodland

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

MREL Microrelief limitation	FLOOD Flood risk	EROSN Soil erosion risk
EXP Exposure limitation	FROST Frost prone	DIST Disturbed land
CHEM Chemical limitation		

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Lonmy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33 / coarse sand)
- C Coarse (more than 33 % of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27 % clay) H Heavy (27 35 % clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2/ C common 2 20/ M many 20-40/ VM very many 40% +

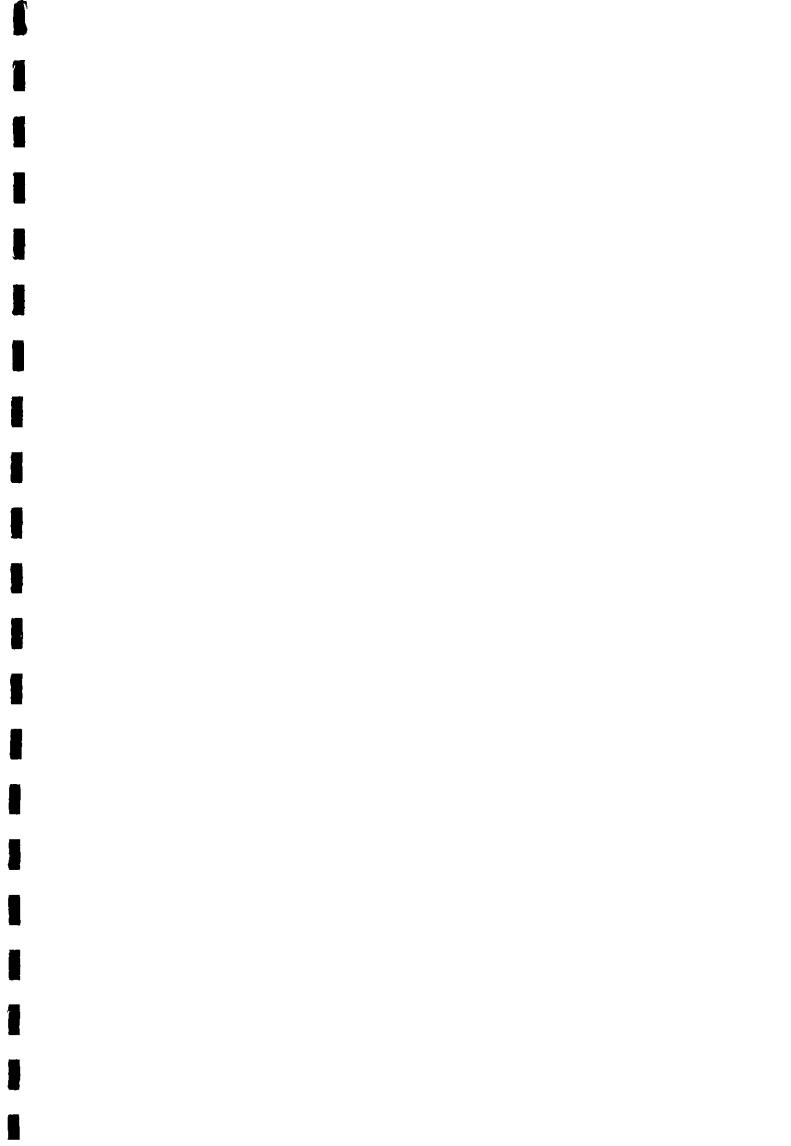
- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - **P** prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks	СН	chalk
MSST	soft, medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered igneous/metamorphic	GH	gravel with non porous (hard)
	rock		stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	sıngle grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic


9 CONSIST Soil consistence is described using the following notation

L loose FM firm EH extremely hard
VF very fnable VM very firm
FR fnable EM extremely firm

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 **POR** Soil porosity If a soil horizon has less than 0.5 / biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat available water capacity (in mm) adjusted for potatoes

MBW moisture balance wheat MBP moisture balance potatoes

POTS-ASPECT -WETNESS--WHEAT M REL EROSN FROST CHEM SAMPLE ALC GRONT GLEY SPL CLASS GRADE AP GRID REF USE MB AP MB DRT FL00D EXP DIST LIMIT COMMENTS QΩ 2 0 2 140 42 109 23 1 SP45204380 WHT WK 3A HCL T SOIL SP45304370 OTH W 27 27 4 **3B** 80 18 83 3 34 WE 38 SEE 9P 29 2 2 152 54 114 28 SP45104360 HHT 1 WE 2 HCL T SOIL 29 70 4 SP45404360 POT 34 119 21 117 31 2 WE H3 SEE 9P SP45204350 POT W 3 28 63 3 96 0 108 22 WE H3 SEE 9P 75 45 2 2 117 19 111 16 SP45504350 PGR 25 2 WE 2 SP45004340 WHT 20 20 4 **3B** 76 22 80 -6 3B WE 38 SEE 12P 1 25 2 34 152 54 112 26 18 SP45104340 OTH 1 WF RΣ SEE 11P 6 29 4 20 SP45304340 OTH 29 3B 78 81 5 34 WE SEE 9P SP44304330 WHT 46 46 3 127 29 102 16 WE ЗА SEE 12P 28 28 38 86 26 SP44704330 WHT 4 12 92 6 34 WE 3B SEE 12P 51 51 2 2 83 15 94 32 SP43204320 OTH 8 34 WD 2 SFF 7P 34 SP43404320 OTH 84 14 90 Δ 1 1 34 DR 3A 172CM SEE8P 35 SP43804320 WHT N 28 55 90 -8 3 38 98 12 34 WE **3B** 4 SP44204320 WHT 102 92 6 DR 2 TRS STONES? 2 2 95 42 SP44504320 WHT 25 3 98 12 34 WD 2 175 STONES? 43 SP44604320 OTH 48 48 3 34 95 3 105 19 ЗА WE H3 SEE 12P 25 25 86 44 SP44704320 OTH 4 **3B** 12 96 10 ЗА WE 3B SEE 12P 45 SP44804320 OTH 27 27 4 38 104 6 97 11 2 WE 38 SEE 12P SP44904320 WHT 26 26 4 ЯR 131 33 98 12 1 WΕ SEE 12P 45 45 SP45104320 PGR W 34 85 13 89 3 ЗΑ WE 3A H3 SEE 12P SP45204320 OTH 6 53 85 1 1 135 37 104 18 1 1 **GR2 STONES** 50 SP45304320 OTH 35 35 4 17 3 38 81 85 1 34 WE 38 SEE 9P 53 SP42904310 OSR 1 114 87 16 1 2 DR 2 SEE 7P 59 SP43504310 OTH 1 1 71 27 71 15 38 DR 3B I48 SEE 8P 60 SP43604310 WHT 1 70 28 71 15 34 DR 38 I52 SEE 8P 62 SP43804310 WHT E 6 18 38 76 22 81 5 3B WE 38 TMP60CM 65 SP44104310 WHT 1 1 130 32 94 8 2 **GR2 STONES** 66 SP44204310 WHT 2 55 55 3 34 137 35 115 23 1 WE Q TS TEX? 2 26 26 4 66A SP44254310 WHT 38 104 2 91 1 **3A** WE 3R SEE 2P 4 50 67 SP44304310 WHT N 25 **3R** 9 107 3 111 15 2 WE 38 SEE 2P SP44404310 WHT 2 1 1 125 23 117 25 2 DR 2 POSS 1 25 SP44504310 WHT 25 38 81 21 85 7 3B WE 3B H2 SPL 70 SP44604310 WHT 25 50 3 3**B** 146 44 113 21 1 WE 3B SEE 3P 71 SP44704310 HHT 30 50 3 **3**A 111 9 105 13 2 WF 3A SEE 2P 72 SP44804310 WHT 30 65 46 112 3 34 146 20 1 WE 3A SEE 3P 25 50 3 73 SP44904310 WHT 34 122 20 112 20 2 WD 3A SEE 3P 30 45 3 **3B** 110 8 106 74 SP45004310 WHT 14 WE 38 H3 SPL 2P 75 SP45104310 PGR 70 70 2 2 141 39 111 19 WF 2 H3 SPL 1 76 SP45204310 PGR W 50 48 110 1 1 150 18 1 1 78 SP45404310 OTH S 47 85 1 136 38 112 26 38 38 38 79 SP45504310 OTH S 5 125 27 100 14 2 WE 3B SEE 9P

	SAMPL	F	A	SPECT				-WET	NESS-	WH	EAT	P0	TS-	,	M REL	EROSN	FROST	CHEM	ALC	
•	W		USE		GRONT	GLEY	SPL			AP	MB		MB	DRT	FLOOD	EXP	DIST			COMMENTS
•	~	4120 //42					_, _								. 2000	4.	010.			00112,1110
	80	SP42434300	STB	W	6			1	1	136	38	100	14	1					1	
	81	SP42504300		W	4			1	1	49	-49	49	37	3B				DR	3B	IMP30CM
	82	SP42604300		W	4			1	1	116	18	99	13	2				DR	2	IMP99CM
	84	SP42904300			-			1	1	67	31	67	19	3B				DR	3B	I41 SEE 6P
_	87	SP43104300						1	1	111		100	14					DR DR	2	197 SEE 7P
	•	4. 1210101						•	•				• • •	_				5	-	157 022 71
_	90	SP43404300	ОТН					1	1	122	24	97	11	2				DR	2	
_	94	SP43904300						1	1	50	-48	50	36	38				DR	38	I35 SEE 1P
	98	SP44204300		N	5			1	2	106		113	21	3A				WE	2	DR75 ALSO WK
46		SP44304300		NH.	5			1	2	110		118	18	2				WE	2	DR80 ALSO WK
		SP44404300		N	4			i	2	62	40	60		3B				DR	3B	I45 HR SEE 1P
1				••	•			•	•					-					JU	143 TIK OCL IF
1,	01	SP44504300	WHT	N	4	50		1	1	150	48	110	18	1					1	SEE 2P NO SPL
		SP44604300		N.	4	45	60	2	2	106		110	18	3A				WE	2	DR 180 DRY
		SP44704300		N	2	30	60	3	3A	120		109	17					WE	2 3A	SEE 2P
		SP44804300		E	2	45	00	1	1	123		113	21	2				DR	2	I90 DRY
_		SP44904300		_	3	35	80	2	3A	123		115	23	_				WE		H3 FRIABLE 2P
_ '		G-74304300	ALII	_	J	33	55	۷	J A	123	۷,	113	23	۲				ME	ЗА	HO FRIABLE ZP
١	06	SP45004300	WTI			30		2	2	133	31	113	21	1				WE	2	POSS3A Q TEX
		SP45104300				28	38	4	3B	97		100	9	3A				WE	3B	SEE 2P
		SP45204300		u	3		~	1	1	130		110	18	2				AC.	1	DRY/FRIABLE
	109	SP45304300			4	27	54	3	3A	98		105	19	3A				WE	3A	SEE 10P
1		SP45304320		J	•	27	55	3	3A	101		105	19	3A				WE	3A	PIT AT AB77
	V	34 43304320	0			۲,	J J	3	J A	101	J	103	13	J.M				ME	ЭА	PII AI AB//
= 1	10	SP45404300	отн	s	4	26	95	2	2	141	43	104	18	1				WE	2	
		SP43504290		H	3			1	1	70	28	70	16	3В				DR		SEE 5P 3A WE
		SP43704290			2			1	1	74	24	77	9	3B				DR		I58 SEE 6P
		SP42904290			-			1	1	70	28	70	16	3B				DR		ISO SEE 6P
		SP45204380				32		2	2A	150		110	24					WK		PIT AT AB4
			• • • • • • • • • • • • • • • • • • • •					-	_,					•				****	<u></u>	711 41 854
1	21	SP43304290	ОТН					1	1	80	18	84	2	3A				DR	ЗА	I60 SEE 8P
1	23	SP43504290	нто					1	1	101	3	92	6	3A				DR	3A	IMP95 GR27
		SP43704290						1	1	81	17	82	4	3A				DR	-	152 SEE 8P
		SP43904290		NE	3			1	1	130	32		17							STONES?
		SP44104290		-	4			1	1	52	46	52	34					DR		I35 SEE 1P
٦	2P	SP45004340	ОТН			0	25	4	3B	72	26	70	6	3B				WE	3B	PIT AT AB17
_1	30	SP44204290	WHT	N	4			1	1	54	-48	54	38	38				DR		IMP35 HR 1P
1	3	SP44304290	HHT	N	4	45	45	3	3A	103	1	117	25	3A				WE		I70 DRY DR70
4 1	32	SP44404290	WHT					1	1	53	49	53	39	3B				DR		I35 H2 GRITTY
1	33	SP44504290	WHT	N	2	75		1	1	156	54		26	1						POSS 2 TEX/SPL
1	34	SP44604290	WHT	N	3	28		2	2	121	19	113	21	2				WE	2	I90DRY QU 1DR
_1	35	SP44704290	HHT	NE	2		70	2	2	121	19	108	16	2						SEE 2P QU 1DR
<u>_1</u>	36	SP44804290	HHT	Ε	3	27	27	4	38	94	8	97	5					WE		H2 PLASTIC
1	37	SP44904290	WHT	E	3	30	30	4	3B	86	14	98	6	3 A				WE		H2 PLASTIC
-	41	SP42804280	WHT	W	1			1	1	128	30	100	14	1						GR2 SEE 7P
_																				
	44	SP43104280	STB					1	1	130	32	98	12	1					1	BORDER 2 7P
	49	SP43604280	OTH					1	1	74	24	77	9	3B				DR	38	I57 SEE 8P

	SAMPL	£	A	SPECT				WETN	ESS-	-WHE	AT	Р0	TS-	М	REL	EROSN	FRO	ST	CHEM	ALC	
ı	NO	GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	M8	AP	MB	DRT	FL000	E	ΧP	DIST	LIMIT		COMMENTS
										0.0		•	_	24							
		SP43804280						1	1	86	12	91	5	3A					DR	3A	I63 SEE 8P
		SP44104280		N	2			1	1	79	19	83	3	3A					DR	ЗА	ISB SEE 1P
_		SP44204280		N	2	80		1	1	141		115	23	1						1	FRIABLE/DRY
_		SP44304280						1	2	85	17	88	-4	3A					DR	3A	I55 SEE 1P
	156	SP42504270	STB			75	75	2	2	140	42	116	30	1					WE	2	
1		^^4^	~ ^							00	10	^3	11	24							170 055 40
		SP42704270		W	5			1	1	88	10	97	11	-					DR		I70 SEE 4P
		SP43104270		S	1			1	1	121	23	97	11	2					DR	2	
		SP43304270		~.				1	1	98	0	91	5	3A					DR	3A	I72 SEE 8P
		SP43404270		SM	2			1	1	74	24	77	9	3B					DR	3B	I57 SEE 8P
	166	SP43504270	PGK					1	1	48	50	48	38	3B					DR	3B	IMP32CM
ı	168	SP43704270	ΛTU	W	1			1	1	69	29	70	16	3B					DR	38	I52 SEE 8P
_		SP44204270		**	•			1	2	82	20	85	7	3A					DR		ISS SEE 1P
-		SP42704260		W	4			i	1	91	7	96	10	3A					DR		175 SEE 4P
		SP42904260		П	•			i	1	72	26	72	14	3B					DR		I47 SEE 4P
		SP42904260 SP43304260		c	5			'	•	43	55	43		4					DR DR	3B	•
	1//	3F4330420U	USK	3	3					43	33	43	43	*					UK	30	3B STONES
I	180	SP42804250	OSR	W	2			1	1	122	24	97	11	2					DR	2	
		SP42704240		W	6			1	1	72	26	72	14	3B					DR	3B	I48 SEE 4P
		SP42904240		NH.	2			1	1	50	48	50	36	3B					DR		IMP300M
		SP42804220		W	2	44	44	3	3B	92	6	98	12	3A					WE		160 H3 SPL
		SP44404290		N	2	***	77	1	1	63	39	65	27	3B					DR		IMP75 HR
	••	0	*****	••	-			•	,	•••	-	-							5	-	2111 / 3 TIK
	2P	SP44704300	WHT			30	62	3	3A	114	12	119	27	2					WE	3A	H3 SPL
	3P	SP44804310	WHT			26	60	3	3A	119	17	117	25	2					WE	ЗА	H3 SPL
-	4P	SP42904270	STB					1	1	98	0	86	0	3A					DR	ЗА	PIT AT AB60
_	SP	SP42504290	OSR	W	3	47	47	3	3 A	86	12	97	11	ЗА					WE	ЗА	PIT AT AB113
	6P	SP42904290	OSR					1	1	79	19	71	15	3A					DR	3A	PIT AT AB117
	7P	SP43204310	OTH					1	1	115	17	91	5	2					DR	2	PIT AT AB57
4	8P	SP43304290	OTH					1	1	90	8	79	7	3A					DR	3A	PIT AT AB121
	9P	SP45504320	ОТН	S	3	25	25	4	3B	78	20	78	8	3A					WE	3B	PIT AT AB52

				-1	MOTTLES	_	PED			S	TONES-	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT	COL	GLEY	2			•		IMP SPL CALC
			·				-							
1	0-26	HCL	10YR42	10YR44	6 C	D		Y		0	0	0		
	26-90	MCL	25Y 63	10YR4	6 M	D		Y		0	0	0	M	
	90-120	C	25Y 61	10YR5	6 M	D		Y		0	0	0	P	Y
5	0-27	HZCL	25Y 44							0	0	0		
	27-60	ZC	05Y 52 63	10YR5	6 M	D		Y	1	0	0	0	Р	Y
7	0-29	HCL	10YR42						1	0	0	0		
	29-65	MZCL	25Y 63	10YR4	6 C	D		Y	1	0	0	0	М	
	65-120	MZCL	25Y 62	10YR44	6 C	D		Y		0	0	0	М	
10	0-29	MZCL	10YR42							0	0	0		
	29-70	MZCL	25Y 64	10YR6	6 C	D		Y		0	0	0	М	
	70-90	ZC	25Y 52 64	10YR6	6 M	D		Y		0	0	0	P	Y
13	0-28	MCL	10YR42	10YR4	6 F	D				0	0	0		
	28-63	HCL	25Y 63 53	10YR56	6 M	D		Y		0	0	0	M	
	63–70	С	25Y 52	10YR5	6 M	D		Y		0	0	0	Р	Y
16	0 35	MCL	10YR43							0	0	0		
	35-45	HCL	10YR43							0	0	0	М	
	45-75	HCL	25Y 53	10YR5	6 C	D		Y		0	0	0	М	
	75–90	С	25Y 63 64	10YR6	6 M	0		Y		0	0	0	Р	Y
17	0-20	HCL.	10YR42	10YR5	6 C	D		Y		0	0	0		
	20-60	C	25Y 63	10YR5	6 M	D		Y		0	0	0	Р	Y
18	0-25	HZCL	10YR43							0	0	0		
	25-70	MCL	25Y 63	10YR56	5 M	D		Y	-	0	0	0	М	
	70-80	MCL	25Y 63	10YR5	6 M	D		Υ		0	0	0	М	
	80-120	MCL	25Y 62 63	10YR5	6 M	D		Y		0	0	0	M	
20	0-29	HCL	10YR43							0	0	0		
	29-60	ZC	05Y 61	10YR5	6 M	D		Y	1	0	0	0	Р	Y
22	0-28	MCL	10YR43						1	0	0	0		
	28-46	MCL	10YR54						- 1	0	0	0	M	
	46-73	С	25Y 53	10YR68	в м	D		Y		0	0	0	P	Y
	73-97	С	25Y 53	10YR58	B M	D		Y	- 1	0	0	0	Р	Y
	97 120	C	25Y 63	10YR56	в с	D		Y	1	0	0	0	Р	Y
26	0-28	MCL	10YR42	10YR56	5 C	F		Y	(0	0 MSST	5		
	28-60	С	25Y 63 62	10YR58	8 M	D		Y	١	0	0	0	Р	Y
32	0-30	MCL	75YR43						ı	0	0 MSST	15		
	30-51	HCL	75YR44								0 MSST		М	
	51 70	C		10YR68	3 M	D		Y	(0	0 MSST		P	Y

				-M 01	ITLES	} -	PED		s	TONES	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A	BUN	CONT	COL	GLEY					IMP SPL CALC
_													
34	0-30	MCL	75YR43							0 MSST			
	30-72	MCL	75YR44 56						U	0 MSST	40	М	
35	0-28	HZCL	75YR43						0	0 SLST	10		
	28-44	C	25Y 53	10YR68	С	D		Y	0	0 MSST	10	P	N
•	44-55	С	25Y 53	10YR68	М	D		Y	0	0 MSST	35	M	
	55-75	С	25Y 62	10YR68	М	D		Y	0	0	0	Р	Y
39	0-23	MCL	10YR43						0	0 MSST	5		
	23-45	MCL	10YR44						0	0 MSST		M	
-	45-67	SCL	10YR54						0	0 MSST	35	M	
	67–85	MSL	10YR54 64						0	0 MSST	10	М	
42	0-25	MCL	10YR42						0	0 MSST	2		
	25-52	HCL	25Y 63	10YR58	С	D		Υ	0	0 MSST		М	
	52 75	SCL	25Y 63 72		М	D		Υ	0	0 MSST		м	
43	0-27	MCL	10YR42						0	0	0		
.	27 48	HZCL	10YR43 44		_				0	0	0	M	
_	48-70	С	25Y 53	10YR66	С	D		Y	0	0	0	Р	Y
44	0 25	MCL	10YR42						0	0	0		
	25-70	С	25Y 53	10YR66	М	D		Y	0	0	0	P	Y
45	0-27	MCL	10YR42	10YR56	С	D		Y	0	0	0		
	27 95	C	25Y 53	10YR66		D		Y		0	0	P	Y
					_						_		
46	0 26	MCL	10YR42	10YR56	Ç	D		Y	0	0 MSST		_	
	26 56	C	25Y 61	10YR58	M	D		Y	0	0	0	P	Y
	56 90 90–120	MSL HZCL	25Y 62 25Y 63	75YR46 10YR58	M	0		Y	0	0	0	M P	v
2	30-120	NZCL	251 03	IUTKS	М	D		V	Ū	U	Ü	r	Y
48	0-27	MCL	10YR44						0	0	0		
	27-45	HCL	25Y 54	10YR46	С	F		S	0	0	0	М	
•	45–60	С	05Y 62	10YR46	М	D		Y	0	0	0	Р	Y
49	0-26	MCL.	10YR43						0	0 MSST	5		
-	26-53	HCL	10YR44							0 MSST		М	
	53-85	SCL		10YR56	С	D		Υ	0	0	0	М	
	85–120	С	25Y 72 64	10YR66	С	D		Y	0	0	0	P	Y
50	0-30	HCL	10YR43	10YR46	С	D		s	o	0	0		
	30-35	HCL		10YR46	C			S		0 MSST		м	
	35-60	C	25Y 63 71		M			Ÿ		0		P	Y
53									_				
53	0-30	MCL.	75YR44							0 MSST			
	30-60	MCL	75YR44 46							0 MSST		M	
1	60-120	nzCL	75YR46 56						0	0 MSST	40	М	

					MOTTLE	S-	PED			STONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2	6 LITH TO	OT CONSIST	STR POR IMP	SPL CALC	
5 9	0-26	MCL	75YR43						0	0 MSST	5			
	26-48	MCL	75YR44						0	0 MSST	25	М		
60	0-26	MCL	75YR43						0	0 MSST	15			
	26-52	MCL	75YR44 46						0	0 MSST	35	M		
62	0-18	HCL	10YR44						0	0 MSST	15			
	18-44	C	05Y 61	10YR6	8 M	D		Y	0	0	0	P	Y	
	44-60	С	25Y53 63	10YR5	8 C	D		Y	0	0 MSST	10	Р	Y	
65	0-36	MCL	10YR44						0	0 MSST	10			
	36-65	MCL	75YR46						0			M		
_	65-120	MCL	75YR46 56						0	0 MSST	15	M		
66	0-35	MZCL	10YR53						0		0			Q HZCL
	35-55	HZCL	10YR53	10000				.,	0		0	M		
_	55–65 65–90	C C	10YR53 25Y 51 61	10YR6				Y	0	0	0	M	Y	SEE 3P
ł	90-110	SCL	25Y 61	101R6		D		Y	0	0	0	M M	Y	
-	0.00		100054											
66A	0 26 26 65	MCL C	10YR54	10005				v	0	0 HR	2			
	65-100	C	25Y 53 63 25Y 51 61			D D		Y	0	0 0	0	M M	Y Y	CEE 20
_	03-100	C	237 37 01	73184	• •	U		1	U	U	· ·	п	Ť	SEE 2P
67	0-25	HZCL	10YR43						0		2			SEE 2P
	25-50	HZCL	10YR52	10YR6				Y	0	_	0	М		
	50-90	С	25Y 61 51	10YR6	в с	D		Y	0	0	0	М	Y	
68	0-30	MZCL	10YR54						0	0	0			SEE 2P
•	30-90	HZCL	10YR53						0	0	0	М		
69	0–25	HZCL	10YR43						0	0	0			
	25–60	С	25Y 61	10YR6	в м	D		Y	0	0	0	M	Y	SEE 2P
70	0-25	HZCL	10YR43						0	O HR	2			
	25-50	HZCL		10YR6		_		Y	0		0	M		
_	50-90	C		10YR5				Y	0	0	0	M	Y	SEE 3P
	90-120	SCL	10YR53	10YR5	в с	D		Y	0	0	0	М		
71	0-30	MZCL	10YR53						0	0	0			
i	30-50	HCL		10YR6		D		Y	0	0	0	M	Y	
	50-90	HCL	25Y 61 62	IUYR6	B C	D		Y	0	0	0	М	Y	
72	0-30	MCL	10YR53						0	0	0			
	30-65	HCL		10YR58		D		Y	0	0	0	М	Y	
	65-90	C		10YR6		D		Y	0	0	0	M	Y	SEE 3P
_	90-120	SCL	10YR53	10YR6	3 C	D		Y	0	0	0	M		

				MOTT	EC		DED			07	ONES	STRUCT/	CLIDC			
	OTU	TEVTIDE	COL OLID	-MOTTI		CONT	PED COL	CI EV	2				STR POR IMP S	DI CALC		
SAMPLE	DENIH	TEXTURE	COLOUR	CUL ABUI	•	CONT	COL	GLET	2	0	LIII IC) CONSTSI	SIR FOR IMP S	PL CALC		
73	0-25	MZCL	10YR53							0	٥	0				
/3	25-50	HCL	10YR53	10YR58	С	n		Y		0	0	0	М			
	50-90	C	107R53	10YR58	C			Ÿ		0	0	0	 M		SEE 3	(P
	50-90	C	101833	TOTROS	·			1		•	•	•	••		OLL J	"
74	0-30	HZCL	10YR53							0	٥	0				
/4	30-45	HCL		10YR58	С	v		Y		a		0	м			
		C	25Y 53	75YR46	C			Ÿ		0		0	M	γ	SEE 2	0
	45-90	·	231 33	/31K40	٠	U		•		•	•	Ū	17	,	JEE 2	
75	0-35	MCL	10YR53							0	0	0				
75	35-70	HCL	10YR53 54							0	0	0	м			
	70-120		25Y 53 63	100050	С	n		Υ		0	0	0	 М	Y	SEE 2	
	/0-120	С	231 33 03	IUTKOO	·	U		T		U	U	U	п	•	3¢¢ 2	.г
76	0-30	MCL	10YR53							0	0	0				
70	30 50	HCL	10YR54							0	0	0	м			
	50-85	HCL	101R54	10YR56	С	F		Υ		0	0	0	M M			
	85-120	HCL	25Y 53 63		C			Y		0	0	0	M			
	63-150	INCL	231 33 03	101830	•	,		•		~	•	J	••			
78	0-27	MCL	10YR43							0	0	0				
70	27-47	MCL		10YR56	С	D		s		0	0	0	м			
	47-85	MZCL		10YR56	C			Y		0	0	0	M			
	85-120	HZCL	05Y 62	10YR66	М			Ÿ		0	0	0	P	Υ		
	05 .20	11202	•••		•	-		•		•	•	-	•			
79	0-26	MCL	10YR43	10YR46	С	D		s		0	0	0				
	26 38	HZCL	10YR54	10YR56	C	D		s		0	0 MSST	5	М			
	38-120	С	25Y 62 71	10YR58	M	D		Y		0	0	0	Р	Y		
80	0-27	MCL	75YR44							0	0 MSST					
	27 50	MCL	75YR44							0	0 MSST		М			
	5088	HCL	75YR44							0	0 MSST		М			
	88-120	HCL.	25Y 53							0	0 MSST	15	М			
	- 85		****							_						
81	0-25	MCL	75YR43								0 MSST					
	25-30	MCL	25Y 53							u	0 MSST	lu	М			
82	0-28	MCL	75YR43							0	0 MSST	15				
02	28-45	MCL	75YR44								0 MSST		М			
	45-60	MCL	75YR46 44								0 MSST		M			
	60 99	MCL	75YR46 56								0 MSST		M M			
	00 33	ITOL	/J1K40 30							•	0 1001	10	••			
84	0-35	MCL	75YR43							1	0 MSST	10				
•	35-41	MCL	75YR43 46								0 MSST		м			
	33		,							•	•					
87	0-34	MCL	75YR43							2	O MSST	10				
-	34-77	MCL	75YR46								0 MSST		М			
	77 97		75YR46							0	0 MSST	5	М			
90	0-28	MCL	75YR44								0 MSST					
1	28-70	HCL	75YR44								0 MSST		М			
	70-120	MCL	75YR44							0	0 MSST	40	М			
,																

-MOTTLES-PED STONES-STRUCT/ SUBS COLOUR COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH **TEXTURE** 7 0 MSST 15 0-23 MCL 10YR43 0 0 MSST 35 23-35 MCL 75YR44 0-28 10YR54 0 0 HR 2 98 HCL 28-75 MZCL 10YR54 0 0 0 0-30 0 0 0 99 HCL 10YR53 30-45 HCL 10YR53 54 0 0 0 M 45-80 MCL 10YR54 0 0 0 М 100 0-30 HCL 10YR54 53 6 2 HR 15 HCL 0 0 HR 30-45 10YR54 12 М 101 0-30 MCL 10YR53 0 0 0 30-50 10YR53 0 0 HCL 0 М 50-80 HCL 10YR43 10YR56 C D 0 0 0 M 80-120 HZCL 25Y 53 63 10YR56 C D 0 0 0 М 102 0-30 0 0 MCL 10YR53 n 30-45 HCL 10YR53 10YR58 FF 0 0 0 М C D 0 0 45-60 HCL 10YR53 10YR58 0 М 60 80 С 0 0 С 25Y 53 63 10YR68 D 0 Υ M SEE 2P 103 0 30 MZCL 10YR53 O D HR 2 C D 0 0 30-60 HÇL 10YR53 10YR56 Y 0 М Ç 60 100 C 25Y 53 10YR58 D 0 0 0 М SEE 2P 104 0-30 MZCL 10YR53 0 0 O 30-45 MCL 10YR53 0 0 0 45-80 MCL 10YR53 10YR58 C D 0 0 0 М 10YR58 CD 0 0 80-90 HCL. 10YR53 0 M 105 0 0 0-35 HZCL 10YR53 0 35-45 HCL 10YR52 53 10YR68 С D 0 0 0 М 45-80 C D 0 0 MCL 10YR53 10YR58 Y n М C D 80-90 С 25Y 51 61 10YR58 0 0 0 М Υ TOO DEEP 0-30 0 0 106 MZCL 10YR53 ٥ 30-100 HCL 10YR53 10YR58 C D 0 0 0 M MCL 0 0 107 0-28 10YR43 Ω 28-38 C 25Y 63 10YR68 C D Y 0 0 0 38-80 10YR58 0 0 C 25Y 53 0 M SEE 2P 0 0 108 0-30 MCL 0 10YR53 30-50 MCL 10YR54 0 0 0 M 50 100 HCL 10YR53 10YR56 FF 0 0 0

Ì				4	40TTLES	_	PED		s	TONES-	5	STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN			GLEY						R IMP	SPL CALC	
109	0-27	HCL	10YR42							0	0					
	27 56	MCL	10YR63 53					Y	0		0		М			
	56-75	С	25Y 71 72	10YR5	в м	D		Y	0	0	0		Р		Y	
			104043						^	0	^					
10P	0-27 27 55	MCL C	10YR43 25Y 53 63	10705	R M	D		γ		0	0	MDCSAB	FD M	N	N	
	55-80	C	05Y 52 62					Ÿ		0	0			Y	Y	
ì	33-00	·	00. 02 02	,,,,,,,				·	·	•	·		•	•	•	
110	0-26	MCL	10YR43						0	0	0					
	26-55	HCL	25Y 74 63	10YR5	6 M	D		Y	0	0 MSST	10		M			
.	55-95	SCL	25Y 83	10YR5	5 M	D		Y	0	0	0		М			
	95–120	SC	25Y 62	10YR5	B M	D		Y	0	0	0		Р		Y	
									_							
113	0 28	MCL	75YR44							0 MSST						
	28-48	MCL.	75YR44 46						U	0 MSST	25		М			
115	0-30	MCL	75YR44						0	0 MSST	15					
	30-58	MCL	75YR44 46							0 MSST			М			
	55 55															
117	0-30	MCL	75YR43						0	0 MSST	15					
r	30-50	MCL	75YR44 46						0	0 MSST	35		M			
						_		_	_							
11P	0 32	HCL	10YR43	10YR5				S		0	0					
ì	32 120	HCL	25Y 53	10YR5	6 M	D		Y	0	0	0	MDCSAB	FR M		N	
121	0 36	MCL	75YR44						4	0 MSST	15					
161	36 50	MCL	75YR44 46							0 MSST			М			
•	50 60	MCL	75YR56							0 MSST			М			
123	0 27	MCL	75YR44							0 MSST						
	27 50	MCL	75YR44 46							0 MSST			М			
1	50-95	MCL	75YR56						0	0 MSST	40		M			
125	0 32	MCL.	10YR44						n	0 MSST	- 5					+5% SLST
123	32 52	HCL	75YR46							0 MSST			М			TUM OLUT
	J. J.		7011110						·				••			
127	0-26	HC1_	10YR43						0	0 MSST	10					
	26-55	HCL	75YR44						0	0 MSST	10		M			
,	55-80	С	75YR46 56							0 MSST			М			
_	80-120	SC	10YR44						0	0 MSST	25		М			
100	0.00		10/043						_	O MCCT						
129	0-26	MCL MZCI	10YR43							0 MSST			м			
	26-35	MZCL	75YR44						U	v rissi	30		п			
12P	0-25	HCL.	10YR42	10YR56	5 C	D		Y	0	0	0					
	25-50	C	25Y 52	10YR50		D		Y	0	0	0	MDCAB	FM P	Y	Y	
130	0-30	HCL.	10YR53 54							1 HR	15					
	30 35	HCL-	10YR53						0	O HR	10		M			

1				-мотт	1 F	.	PED		,	TONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABU		CONT		(I) FV			TOT CONSIST		P SDI CALC	
- SAPPLE	OCPIN	ICATORE	COLDON	50L AD	**	•		CALL!	_ `		101 0010131	SIR FOR IN	r SPE CALC	
131	0-26	MCL	10YR53						0	O HR	5			
	26-45	HCL.	10YR53	10YR58	F	F			0	0	0	М		
	45-70	С	25Y 53 63	10YR56	С	Đ		Y	0	0	0	M	Y	SEE 2P
132	0-25	MCL	10YR53							2 HR	15			
1.32	25-35	MCL	10YR54						0	O HR	12	М		
	23-33	CIUL	(U(KJT						Ū	O rik	12	rs		
133	0-30	MCL	10YR54						0	0	0			
	30-45	HCL	10YR53						0	0	0	М		
	45-75	MCL	10YR54						0	0	0	М		
	75-120	HCL	25Y 53 63	10YR68	С	D		Y	0	0	0	М		
134	0-28	MCL	10YR54						0	O HR	2			
-	28-90	MZCL	10YR54	10YR68	С	D		Y	ō	0	0	М		
	20-30	1202	TOTAL .		Ĭ	•		•	Ť	·		"		
135	0 25	MCL	10YR53						0	0 HR	2			
_	25-50	HCL	10YR53 54						0	0	0	М		
	50-70	HCL	10YR53 54		С	D		Υ	0	0	0	м		
	70-95	С	05Y 61 51			D		Y	0	0	0	М	Y	SEE 2P
_	95–100	MCL	10YR54	10YR58	С	Đ		Y	0	0	0	М		
136	0 27	HCL	10YR42						0	0	0			
	27 80	С	25Y 53	10YR58	С	D		Υ	0	0	0	M	Y	SEE 2P
_														
137	0-30	HCL.	10YR42 43						0	0	0			
	30-70	С	25Y 53 61	10YR58	M	D		Y	0	0	0	M	Y	SEE 2P
141	0-32	MCL	75YR43						1	0 MSS	T 10			
141	32 52	MCL	75YR43 46						Ö	0 MSS		М		
	52 120	MCL	75YR46						0	0 MSS		м.		
•														
144	0-31	MCL	75YR43						0	O MSS	T 10			
	31-45	MCL	75YR44 46						0	0 MSS	T 30	M		
•	45-90	HCL.	75YR44 46							0 MSS		М		
	90-120	MCL.	75YR46						0	0 MSS	T 20	М		
149	0-27	MCL	75YR43						0	0 MSS	T 15			
•	27 57	MCL.	75YR44 46							0 MSS		M		
151	0–35	MCL.	75YR44							0 MSS				
	35-48	HCL.	75YR44 46							0 MSS		М		
	48-63	MCL	75YR56						0	0 MSS	T 40	M		
153	0-28	MCL.	10YR43						Ó	0 MSS	T 10			
• • •	28-40	MCL.	75YR44							O MSS		М		
	40-58	MCL	10YR44							0 MSS		M		
	.								=	<u> </u>	_			
154	0-30	MCL	10YR54		_	_				O HR	6			
6	30-60	HCL.		10YR68					0		0	M		
	60-80	C		10YR58				v	0		0	M		
	80-120	C	75YR43	10YR58 68	Ü	U		Y	0	Ų	0	M		

				_	MOTTLES	S-	PED		S	TONES-	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	2 6	LITH TO	OT CONSIST	STR POR	IMP SPL CALC
155	0-30	HCL	10YR54						3	0 HR	8		
133	30-55	HCL	10YR53							O HR	5	М	
	3 , 55												
156	0-28	MCL	10YR44						0	0	0		
	28-52	MCL	10YR44 46						0	0	0	M	
	52 75	HCL	10YR46						0	O HR	5	M	
ì	75-120	С	10YR46	10YR5	6 C	D		Y	0	O HR	5	Р	Y
158	0-35	MCL	75YR43						0	0 MSST	15		
_ ,,,,	35-70	HCL	75YR44 46							0 MSST		М	
•	00												
162	0-27	MCL	75YR43							0 MSST			
_	27 67	HCL	75YR44						0	0 MSST	25	М	
8	67 120	MCL	75YR56 46						0	0 MSST	40	М	
164	0-30	MCL	75YR43						0	0 MSST	20		
	30-92	MCL	75YR44 46						0	0 MSST	35	М	
Ì													
165	o 28	MCL	75YR43						0	0 MSST	15		
	28-57	HCL	75YR44 46						0	0 MSST	35	М	
1									_				
166	0-27	MCL	75YR43							0 MSST			
	27 32	MCL,	75YR44 46						0	0 MSST	40	М	
168	0 25	MCL	75YR43						0	0 MSST	15		
100	25-52	MCL	75YR44 46							0 MSST		м	
									_				
169	0-28	HCL	10YR54						3	0 HR	6		
	28-55	HCL.	10YR54	10YR5	8 F	F			0	O HR	15	М	
_													
171	0-30	MCL	75YR44						0	0 MSST			
	30-55	MCL	75YR44 46						0	0 MSST		М	
_	55–75	MCL	75YR46						0	0 MSST	35	М	
173	0-28	MCL	75YR43						1	0 MSST	10		
	28-47	MCL	25Y 53							0 MSST		M	
-													
177	0-30	MCL	75YR44						17	0 MSST	25		
180	0-35	MCL,	75YR44						0	0 MSST	15		
-	35-55	MCL	75YR46						0	0 MSST	25	M	
	55-120	MCL	75YR46 56						0	0 MSST	40	М	
185	0-26	MCL	75YR43						1	0 MSST	10		
	26-48	MCL	75YR44							0 MSST		М	
Ļ									-		-	•	
187	0-30	MCL	75YR43						3	0 MSST	10		

				-1	MOTTLES	;_	PED		-5	AOT	IES-	Ş	STRUCT/	SUI	BS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT		GLEY				от с	CONSIST	ST	R POR	IMP :	SPL CALC	
197	0-27	HZCL	75YR44						0	0	MSST	2						
	27-44	С	75YR44 46						0	0		0			M			
	44 60	С	25Y 73 63	10YR5	8 M	D		Y	0	0		0			P		Υ	
18	0-26	MCL	10YR44						5	2	HR	16						BRASHY SURFACE
	26 55	HCL	10YR54 53						0	0	MSST	68	MDCSAB	FR	М			
	55-75	MSST							0	0		0			M			IMP 75 HR
												_						
2P	0–30	MZCL	10YR44							0		0						
	30-62	HCL	10YR53	10YRS		D		Y		0			MDCSAB					
	62-80	С	25Y 53 52	10YR5	6 C	D		Y	0	0		0	WKCAB	FR	М	Y	Y	
22	0.06	MOI	100042						^	۸								
3P	0 26	MCL	10YR43	10000		_		v	0			0		- 0				
	26 60 60 90	MCL	10YR52 42 10YR53		6 58 C	D		Y		0			MDCSAB MDCAB			u.	v	
	60 90	С	101K33	IUTKO	0 36 4	U		7	0	0		U	MUCAD	rĸ	М	Ť	Y	
4P	0 29	MCL	75YR43						2	0	MSST	21						WET SIEVE
	29 68	MCL	75YR44						0	0	MSST	39	MDCSAB	FM	М .	N		WET SIEVE
l	68 101	MSST							0	0	MSST	72			M			WET SIEVE
	101 120	MCL	75YR44 46						0	0	HR	17			M			WET SIEVE
5P	0 28	MCL	75YR43						1	0	MSST	14						WET SIEVE
•	28-47	MCL	75YR44						0	0	MSST	24	MDCSAB	FR	M			WET SIEVE
1	47 70	C	10YR52	10YR6	6 C	F		γ	٥	0	MSST	10	MDCPR	FM	P	Y	Y	
6P	0 28	MCL	75YR43 44								MSST							WET SIEVE
_	28-50	MCL	75YR44 46										MDCSAB	FR		N		WET SIEVE
	50 120	MSST							0	0	MSST	72			P			MSST
1 79	0 25	MCL	75YR43 44						1	n	MSST	1.6						WET SIEVE
٠,٠	25-55	MCL	75YR45										MDCSAB	FD	M 1	u		WET SIEVE
	55-120		75YR44 46						0		MSST		1100010			V		WET SIEVE
,	•••								•	Ī						•		HET GIEVE
89	0-25	MCL	75YR44						2	0	MSST	18						WET SIEVE
1	25-50	MCL	75YR46 44						0	0	MSST	52	MDCSAB	FR	M I	N		WET SIEVE
	50 90	MCL	75YR44						0	0	MSST	55			M I	4		WET SIEVE
	90 120	MSST							0	0		0			P			
1																		
9P	0 25	HCL	10YR43	10YR66				S		0		0						
	25-50	C	05Y 62	10YR66	5 M	D		Υ	0	0		0	MDCAB	FM	Ъ,	4	Υ	