A1

East Sussex Structure Plan Land at Plumpton Green, Agricultural Land Classification Reconnaissance Survey ALC Map and Report December 1995

Resource Planning Team Guildford Statutory Group ADAS Reading

ADAS Reference: 4105/163/95 MAFF Reference: EL 41/00458 LUPU Commission: 02116

AGRICULTURAL LAND CLASSIFICATION REPORT RECONNAISSANCE SURVEY

EAST SUSSEX STRUCTURE PLAN LAND AROUND PLUMPTON GREEN

Introduction

1. This report presents the findings of a reconnaissance Agricultural Land Classification (ALC) survey of 495 ha of land around the village of Plumpton Green in East Sussex. The survey was carried out during October, November and December 1995.

2. The survey was commissioned by the Ministry of Agriculture, Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the East Sussex Structure Plan. The results of this survey supersede any previous ALC information for this land.

3. The work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I. The survey was completed at a reconnaissance level of detail, on a 'free' survey basis, as it was undertaken primarily to update the 1:63,360 scale provisional ALC maps for this area. Consequently the results are designed for strategic planning purposes only. For site specific proposals, further, more detailed surveys may be required.

4. At the time of survey the ground cover was mainly permanent grass, with some areas primarily to the east and south in arable use. The areas shown as Urban include the village of Plumpton Green, separate dwellings and farm buildings. The woodland shown is mainly mature and deciduous. The Non-agricultural land includes playing fields and a disused clay pit currently being converted to a fishing enterprise.

Summary

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:50,000. It is accurate at this scale, but any enlargement would be misleading.

6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf.

7. The fieldwork was conducted at an average density of approximately 1 boring per 6 hectares. A total of 86 borings and five soil pits were described.

8. The agricultural land at this site has been classified as Subgrade 3a (good quality), Subgrade 3b (moderate quality) and Grade 4 (poor quality). The principal limitation to land quality is soil wetness. Medium and heavy clay loam, occasionally silty clay loam or clay topsoils overlie slowly permeable clays at shallow and moderate depths in the profile. The slowly permeable horizons cause drainage to be impeded such that land utilisation is restricted. The depth at which these horizons occur determines the severity of the soil wetness restrictions and therefore the ALC grade. In addition, the relatively moist climatic regime at this locality interacts with the heavy topsoil textures found in parts of the area to cause soil workability restrictions.

Grade/Other land	Area (hectares)	% surveyed area	% agricultural area
3a	19.7	4.0	4.7
3b	262.8	53.1	62.9
4	135.3	27.3	32.4
Non-agricultural	11.4	2.3	
Woodland	11.9	2.4	
Urban	53.9	10.9	
Total Agricultural Area	417.8		100.0
Total Site area	495.0	100.0	•

Table 1: Area of grades and other land

Climate

9. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.

10. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values	Values	Values
Grid reference	N/A	TQ 362 177	TQ 365 164	TQ 365 162
Altitude	m, AOD	53	38	30
Accumulated Temperature	day°C	1473	1490	1500
Average Annual Rainfall	mm	840	872	872
Field Capacity Days	days	179	185	185
Moisture Deficit, Wheat	mm	105	106	107
Moisture Deficit, Potatoes	mm	98	99	100

Table 2: Climatic and altitude data

11. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

12. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.

13. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. In regional terms, this area is relatively wet and warm, with a high accumulated temperature, a high average rainfall and subsequently high number of field capacity days. These factors combine to create moderate moisture deficits for the two reference crops used in the classification. In terms of grading, these factors are likely to reduce the likelihood of soil droughtiness being a limitation and conversely increase the likelihood of soil wetness. Other local climatic factors such as exposure and frost risk are believed not to affect the site. This area Grade 1 in terms of climate data alone.

Site

14. The site lies at an altitude in the range 30-60 m AOD. Overall the land is of a gently undulating nature. Nowhere on the site does gradient, microrelief or flooding affect the agricultural land quality.

Geology and soils

15. The published geological information for the site (BGS, 1984), shows the majority of the site to be underlain by Weald Clay, with occasional inclusions of 'Sand in Weald Clay' shown. Towards the south of the site a broad band of head drift deposits is mapped overlying the Weald Clay. In addition alluvial drift deposits are shown along the course of a stream running from east to west through the site just north of the railway line

16. The most detailed published soils information for the site (SSEW, 1983 and 1984) shows the site to comprise soils of the Wickham 1 Association. These are described as 'slowly permeable seasonally waterlogged fine silty over clayey, fine loamy over clayey and clayey soils.' (SSEW, 1983). Soils of this broad type were found across most of the site. In many instances, approximately where the 'Sand in Weald Clay' is shown, the soils were distinctly sandier overall and deeper over slowly permeable horizons.

Agricultural Land Classification

17. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 2.

18. The location of the auger borings and pits is shown on the attached sample location map and details of the soils data are presented in Appendix III.

Subgrade 3a

19. Land of good quality has been mapped in three areas to the north, and south east of the site. The principal limitation is soil wetness.

20. Soils in these mapping units are of two distinct types. The first occurs to the north of the site. These commonly comprise a stoneless to very slightly stony (up to 2% v/v total flints) medium clay loam or sandy clay loam topsoil passing to a gleyed stoneless medium clay loam or sandy clay loam upper subsoil. This overlies a gleyed, stoneless medium silty clay loam horizon which passes to a gleyed and slowly permeable stoneless clay lower subsoil to depth, as seen in the pit observation, 4p, which is representative of this soil type.

21. The second soil type assigned to Subgrade 3a which is affected by soil wetness occurs to the south east of the 'area of search'. Pit 5 is representative of this soil type. Soils in this area commonly comprise a stoneless medium clay loam topsoil, passing to gleyed, stoneless heavy clay loam upper subsoil horizons. These overlie stoneless, gleyed and slowly permeable, moderately structured clay lower subsoils to depth (120cm).

22. In both soil types the slowly permeable clayey horizons have the effect of restricting water flow through the soil profile which causes drainage to be impeded. The depth at which these horizons occur given the local climate leads to Wetness Class III being appropriately applied and subsequently Subgrade 3a given the medium workability status of the topsoils in these areas. Soil wetness affects plant growth and yield as well as restricting land utilisation in terms of the number of days when machinery cultivations and grazing by livestock can occur without causing structural damage to the soil.

Subgrade 3b

23. Land of moderate quality has been mapped over the majority of the site. The principal limitation to land quality is soil wetness and/or workability.

24. Soils in this area comprise stoneless, commonly gleyed medium clay loam, or medium silty clay loam topsoils. These commonly pass to a medium / heavy clay loam or silty clay loam gleyed and stoneless upper subsoil which, overlies gleyed and slowly permeable poorly structured clay, silty clay or moderately structured, but still slowly permeable, heavy silty clay loam. Occasionally the topsoil lies directly over the slowly permeable horizons. Pits 1, 2, and 3 are representative of this soil type. The slowly permeable horizons restrict water flow through the soil profile so causing drainage to be impeded to the extent that Wetness Class IV and Subgrade 3b has been appropriately applied in this area given the local climate and the workability status of the topsoils. Soil wetness affects plant growth and yield as well as restricting land utilisation in terms of the number of days when machinery cultivations and grazing by livestock can occur without causing structural damage to the soil.

Grade 4

25. Land of poor quality has been mapped in four areas of the site, to the north west, north east, and south east. The principal limitation is soil wetness and/or workability.

26. Soils in these areas are essentially similar to those described in paragraph 23, except that the topsoils are either heavy clay loam, heavy silty clay loam or clay as seen in the pit observations 2p and 3p. The heavier topsoils cause the land to be workable for shorter periods throughout the year and consequently it is less versatile in use, being primarily restricted to seasonal grazing or occasional cereals as seen throughout this site. The poorly structured slowly permeable subsoils restrict water flow through the soil profile so causing

drainage to be impeded to the extent that Wetness Class IV and Grade 4 has been appropriately applied in these areas given the relatively wet local climate and the poor workability status of the topsoils. Soil wetness affects plant growth and yield as well as restricting land utilisation in terms of the number of days when machinery cultivations and grazing by livestock can occur without causing structural damage to the soil.

> M Larkin Resource Planning Team ADAS Reading

SOURCES OF REFERENCE

/

British Geological Survey (1984) Sheet 318/333, Brighton and Worthing. Solid and Drift Edition. 1:50 000. Scale. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils of South East England. 1:250 000 Scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils of South East England. Bulletin No. 15. SSEW: Harpenden.

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Urban

Built-up or 'hard' uses with relatively little potential for a return to agriculture including: housing, industry, commerce, education, transport, religious buildings, cemeteries. Also, hard-surfaced sports facilities, permanent caravan sites and vacant land; all types of derelict land, including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture, including: private parkland, public open spaces, sports fields, allotments and soft-surfaced areas on airports. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply.

Woodland

Includes commercial and non-commercial woodland. A distinction may be made as necessary between farm and non-farm woodland.

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses. Temporary structures (e.g. polythene tunnels erected for lambing) may be ignored.

Open Water

Includes lakes, ponds and rivers as map scale permits.

Land Not Surveyed

Agricultural land which has not been surveyed.

Where the land use includes more than one of the above, e.g. buildings in large grounds, and where map scale permits, the cover types may be shown separately. Otherwise, the most extensive cover type will be shown.

APPENDIX II

SOIL WETNESS CLASSIFICATION

Definitions of Soil Wetness Classes

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile. Six soil wetness classes are identified and are defined in the table below.

Wetness Class	Duration of waterlogging ¹
Ι	The soil profile is not wet within 70 cm depth for more than 30 days in most years. ²
II	The soil profile is wet within 70 cm depth for 31-90 days in most years or, if there is no slowly permeable layer within 80 cm depth, it is wet within 70 cm for more than 90 days, but only wet within 40 cm depth for 30 days in most years.
Ш	The soil profile is wet within 70 cm depth for 91-180 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 70 cm for more than 180 days, but only wet within 40 cm depth for between 31-90 days in most years.
IV	The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or, if there is no slowly permeable layer present within 80 cm depth, it is wet within 40 cm depth for 91-210 days in most years.
v	The soil profile is wet within 40 cm depth for 211-335 days in most years.
VI	The soil profile is wet within 40 cm depth for more than 335 days in most years.

Assessment of Wetness Class

Soils have been allocated to wetness classes by the interpretation of soil profile characteristics and climatic factors using the methodology described in Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

¹ The number of days is not necessarily a continuous period.

² 'In most years' is defined as more than 10 out of 20 years.

APPENDIX III

SOIL DATA

.

.

.

Contents:

Sample location map Soil abbreviations - Explanatory Note Soil Pit Descriptions Soil boring descriptions (boring and horizon levels) Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. **GRID REF**: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD:	Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW:	Fallow
PGR:	Permanent Pasture	LEY:	Ley Grass	RGR:	Rough Grazing
SCR:	Scrub	CFW:	Coniferous Woodland	DCW:	Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW:	Fallow
PLO:	Ploughed	SAS:	Set aside	OTH :	Other
HRT:	Horticultural Crop	s			

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. **DRT**: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column.

MREL:Microrelief limitationFLOOD:Flood riskEROSN:Soil erosion riskEXP:Exposure limitationFROST:Frost proneDIST:Disturbed landCHEM:Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC :	Overall Climate	AE:	Aspect	EX:	Exposure
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
ST:	Topsoil Stonines	SS			_

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations.

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL :	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. **MOTTLE CONT:** Mottle contrast
 - F: faint indistinct mottles, evident only on close inspection
 - D: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. **STONE LITH**: Stone Lithology One of the following is used.

HR:	all hard rocks and stones	SLST:	soft oolitic or dolimitic limestone
CH :	chalk	FSST:	soft, fine grained sandstone
ZR :	soft, argillaceous, or silty rocks	GH:	gravel with non-porous (hard) stones
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered igneous/metamo	orphic ro	ck
U 1.		"Pille i o	ýn -

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

degree of development	WK: weakly developed ST: strongly developed	MD: moderately developed
ped size	F: fine	M: medium
	C: coarse	VC: very coarse
ped shape	S : single grain	M: massive
	GR: granular	AB : angular blocky
	SAB: sub-angular blocky	PR: prismatic
	PL: platy	-

9. CONSIST: Soil consistence is described using the following notation:

L: loose	VF: very friable	FR: friable	FM: firm	VM: very firm
EM: extre	mely firm	EH: extremely	y hard	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. **POR**: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations

- APW: available water capacity (in mm) adjusted for wheat
- **APP**: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

Site Name :	e sussex sp	PLU	1PTON GRN		Pit N	lumb	er	: 1	Р				
Grid Referen	ice: TQ372416	02	Average Accumul Field C Land Us Slope a	ated 1 apacit e	emper y Lev	atı 1	ıre	: 149 : 185 : Cer	0 deg ree days	days			
-	XTURE COL MZCL 10YR	OUR 43 (STONE		TOT.S		٧E	LITH HR	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
26- 42	HZCL 25Y	52 (0 O		0)			С	MDCSAB	FM	м	
42- 70	HZCL 25Y	62 (0 0		C)			м	MDCAB	FR	м	
Wetness Grad	e : 38		Wetness Gleying SPL			: I : 2 : 4	26						
Drought Grad	e :		APW : APP :	mm mm	mbw Mbp	-		0mm 0mm					
FINAL ALC GR	ADE : 3B												

•

.

Site Name : E SUSSEX SF	P PLUMPTON GRN P1	it Number :	: 2P				
Grid Reference: TQ37241	1632 Average Annual Accumulated Tem Field Capacity Land Use Slope and Aspec	nperature : Level : ;	: 1490 degree (: 185 days				
	DLOUR STONES >2 TO YR43 00 0	DT.STONE L	LITH MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
28- 65 C 051	Y 71 61 0	0	м	WKCPR	FM	Р	
Wetness Grade : 4	Wetness Class Gleying SPL	: IV : 28 cm : 28 cm					
Drought Grade :			កតា កតា				
FINAL ALC GRADE : 4							

.

.

Site Name	: E SUSS	ex sp plur	IPTON GRN		Pit N	umber	r: 3	}P				
Grid Refer	Land Use			●: 149 : 185 : Per								
HORIZON 0- 13 13- 26 26- 60	TEXTURE HZCL ZC C	COLOUR 10YR41 (10YR53 (10YR52 (0 0		TOT.S 0 0 0		LITH	MOTTLES F C M	STRUCTURE MDVCSB MDCAB	Consist Fr Fm	SUBSTRUCTURE M P	CALC
Wetness Gr	rade : 4		Wetness Gleying SPL		-	: IV : 13 : 26						
Drought Gr	rade :		APW : APP :	mm mm	MBW MBP	-	0 mm 0 mm					
FINAL ALC	GRADE :	4										

.

Site Name	e : E SUSSI	ex sp plum	IPTON GRN	Pit Number	: 4	ΙP				
Grid Refe	erence: TQ	36051766	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ity Level	: 149 : 185 : Per		ass			
HORIZON	TEXTURE	COLOUR	STONES >2	TOT, STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 29	MCL	10YR43 0	0 0	2	HR					
29- 48	MCL	10YR44 0	0 0	2	HR	F	MDCSAB	FR	м	
48- 76	MZCL	25Y 64 6	i1 0	0		С	MDCSAB	FR	м	
76- 87	С	25Y 61 0	0 0	0		М	WKCAB	FM	Р	
87-120	С	25Y 61 7	0 וי	0		м	MDCAB	FM	Ρ	
Wetness (Grade : 3A		Wetness Clas Gleying SPL	ss : II : 48 : 76						
Drought G	Grade : 1		APW : 150mm APP : 122mm		4 mm 3 mm					
	GRADE :									

.

Site Name : E S	USSEX SP PLU	1PTON GRN	Pit Number	: 5	5P				
Grid Reference:	TQ37001562	Average Annu Accumulated Field Capaci Land Use Slope and As	Temperature ty Level	: 149 : 185 : Cer	0 degree 6 days	days			
HORIZON TEXTU 0-28 MCL 28-52 MCL 52-80 C	10YR43 (0 0	TOT.STONE 0 0 0	LITH	MOTTLES C M	STRUCTURE MDCSAB MDCAB	CONSIST FR FR	SUBSTRUCTURE M M	CALC
Wetness Grade :	3A	Wetness Clas Gleying SPL	s : III :S28 : : 52 :	cm					
Drought Grade :		APW: mm APP: mm		0 mm 0 mm					
FINAL ALC GRADE	: 3A								

.

.

5

LIST OF BORINGS HEADERS 11/01/96 E SUSSEX SP PLUMPTON GRN

SAM	9LE	A	SPECT				WETI	NESS	-WH	EAT	-P0	TS-	м.	REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF			GRONT	GLEY	SPL	CLASS				AP		DRT	FLOOD		KP DIST			COMMENTS
1	TQ36881657	STB	Ε	1	25	25	4	3B		0		0					WE	3B	
11	P TQ37241602	CER			26	42	4	3B		0		0					WE	3B	PIT 70 AUG 90
	TQ37001679			3	28	65	3	3A	128	22	126	27	2				WE	3A	
26	P TQ37241632	STB	S	2	28	28	4	4		0		0					WE	4	PIT 65
3	TQ37081710	CER	S	1	30	30	4	3B		0		0					WE	3B	
	P TQ35901719		NE	2	13	26	4	4		0		0					WE	4	PIT 60
	TQ37081754				28	28	4	4		0		0					WE	4	
	P TQ36051766		S	2	48	76	2	3A	150	44	122	23	1				WE	3A	PIT 95 AUG 120
	T037181730				28	48	4	4		0		0					WE	4	
5F	7Q37001562	CER			52	52	3	3A		0		0					WE	3A	PIT80 SLGLEY28
-			_					••										_	
	TQ37401691			2	28	60	3	3A		0		0					WE	3A	POSS 3B
7	•			2	28	35	4	38		0		0					WE	3B	
8	TQ37241632			2	30	30	4	4		0		0					WE	4	
9	TQ37521612		8	1	30	40	4	4		0		0					WE	4	
10	TQ37551576	CER			30	30	4	3B		0		0					WE	3B	
	T007041500	050				40		20		~		•						AA	
11	TQ37241592				27	40	4	3B		0		0					WE	3B	
12	TQ37161616				30	30 45	4	4		0		0					WE	4	
13	TQ36871602		e	2	26 30	45 45	4	38 38		0		0 0					WE	3B	
14 15	TQ36751629 TQ36601648			2 2	30	45 30	4 3	30 4		0		0					WE	3B	
15	040100001040	FUR	IN	2		30	3	4		U		v					WE	4	SL GLEYED 30
16	TQ36821785	PCP	s	2	25	35	4	3B		0		0					WE	3B	
17	TQ36811769			2	25	45		3B		õ		õ					WE	3B	
18	TQ35861645			2	0	25	4	4		ō		Ō					WE	4	
19	TQ35921670		•	-	23	23	4	4		Ō		Ō					WE	4	
20	TQ35861730		E	2	0	28		4		Ō		0					WE	4	
			-	-	•		,			-		•						•	
21	TQ35901718	PGR	NE	1	0	35	4	4		0		0					WE	4	
22	T035951705			2	25	35	4	3B		0		0					WE	3B	
23	TQ36041681				23	38	4	3B		0		0					WE	3B	
24	TQ35951742				0	38	4	3B		0		0					WE	3B	
25	TQ36051766		S	4	50	70	2	3A		0		0					WE		SEE 4P
26	TQ36181770	PGR	NE	2	23	40	4	38		0		0					WE	3B	
27	TQ36201781	PGR	ε	2	25	40	4	38		0		0					WE	3B	
28	TQ36221800	PGR			25	43	4	3B		0		0					WE	3B	
29	TQ36251748	pgr	S	2	38	90	2	3A		0		0					WE	3A	
30	TQ36521657	PGR			0	28	4	4		0		0					WE	4	
31	TQ36451665				0	30		3B		0		0					WE	3B	
32	TQ36511673			1	0	35		3B		0		0					WE	3B	
33	TQ36601755			2		45	4	38		0		0					WE	3B	
34	TQ36821753			3		45	4	38		0		Ô					WE	3B	
35	TQ36781735	PGR	N	2	25	35	4	38		0		0					WE	3B	
				_															
36	•			1		35	4	38		0		0						3B	
37	TQ36981720	PGR	SW	3	30	30	4	4		0		0					WE	4	

page 1

LIST OF BORINGS HEADERS 11/01/96 E SUSSEX SP PLUMPTON GRN

page 2

SAMP	LE	A	SPECT				WE1	NESS	-WHE	EAT-	P01	'Ş	M. REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF			GRONT	GLEY	SPL		GRADE			AP		DRT FLOOD	EX		LIMIT		COMMENTS
	TQ36871709		SM	3	35	35	4	38		0		0				WE	3B	
	TQ36701702				0	35	4	4		0		0				WE	4	
	TQ35451792			2	30	45	4	4		0		0				WE	4	
	TQ35571781		N	3	25	25	4	4		0		0				WE	4	
42	TQ35561800	CER			30	30	4	38		0		0				WE	38	
				_						_		-						
	TQ35811808			2	25	45	4	3B		0		0				WE	3B	
	TQ35811788			1	30	30	4	4		0		0					4	-
	TQ35791770			2	45		3	3B		0		0				WE	3B	SL GLEYED 30
	TQ35251775		Ł	2	30	30	4	4		0	100	0				WE	4	
47	TQ35411767	UER			28		2	2	167	61	129	30	1			WE	2	
48	TQ35551757	CER	s	3	33	33	4	4		0		0				WE	4	
	TQ35751752			1	32	32	4	ЗВ		0		0				WE	3B	
	TQ35731738			2		40	4	4		Ō		Ō				WE	4	
	T035601740			1	25	25	4	38		Õ		Ō				WE	38	
52	TQ35611772			1	27	38	4	38		0		0				WE	3B	
53	TQ36261735	PGR			0	30	4	3B		0		0				WE	3B	
54	TQ36161712	PGR			20	30	4	3B		0		0				WE	3B	
55	TQ36201677	PGR			0	25	4	4		0		0				WE	4	
56	TQ36401765	PGR	Ε	2	20	45	4	3B		0		0				WE	3B	
57	TQ36401815	PGR	E	2	0	60	3	3A		0		0				WE	3A	
	TQ35351746				30	30	4	4		0		0				WE	4	
	TQ35551745			2	30	30	4	4		0		0				WE	4	
	TQ35511725			2		37	4	4		0		0				WE	4	
	TQ35531718		S	1	0	30	4	38		0		0				WE	3B	
62	TQ35181730	pgr			0	28	4	4		0		0				WE	4	
63	TQ35221751	000			20	20	4			•		•				1.15		
	T036611585				30 30	30 48	4	4 3B		0		0 0					4	
	TQ36811588				27	40 50	4 4	3B		0		0				WE	38 38	
	T036721562					45	3	3A		0		0				WE		BORDER 3A SL GLEY 25
	TQ36671536				30		4	3B		ŏ		ō					3B	SL GLET ZS
0.	1000011000	ULIX					-	00		Ŭ		Ť					50	
68	TQ35451618	CER	N	1	25	38	4	3B		0		0				WE	3B	
	TQ35681632			1	28		4	3B		0		0					3B	
	TQ35911618				28	52	3	3A		0		0					3A	
71	TQ36121610	PLO			33	33	4	38		0		0					3B	
72	TQ36071588	PLO			30	50	4	3B		0		0				WE	3B	BORDER 3A
73	TQ35661605	CER			25	37	4	3B		0		0				WE	3 B	
	TQ35751662					22	4	4		0		0				WE	4	
	TQ35731700					25	4	4		0		0				WE	4	
76	TQ35661732			2		25	4	4		0		0				WE	4	
77	TQ36901550	CER	Ε	2	28	52	3	3A		0		0				WE	3A	SEE 5P
		0 0 0	-	•		4-				-		-						
	TQ37071580			2	28		4	38		0		0						SEE 5P
/9	TQ37001562	UER	E.	2	55	55	3	ЗА		0		0				WE	3A	5P SL GLEY 28

LIST OF BORINGS HEADERS 11/01/96 E SUSSEX SP PLUMPTON GRN

SAMP	LE	ļ	SPECT				WETI	VESS	-WH	EAT-	-P0	TS-	М.	REL	EROSN	FROST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL.	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ð	(P DIS	r limi	F	COMMENTS
80	TQ37041556	PGR			0	25	4	4		0		0					WE	4	ALLUVIAL
81	TQ37441557	CER			28	28	4	3B		0		0					WE	3 B	SEE 5P
82	TQ35601577	PLO			0	25	4	38		0		0					WE	38	
83	TQ35721552	PLO	N	2	0	28	4	38		0		0					WE	38	
84	TQ36051565	PGR	N	1	0	20	4	4		0		0					WE	4	
85	TQ35851585	CER			0	25	4	3B		0		0					WE	38	
86	TQ35441600	SAS			25	25	4	3B		0		0					WE	38	

page 3

.

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

page 1

,

					AOTTLES		ED						STRUCT,		JBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT CO	ж.	GLEY	>2	>6	LITH	тот	CONSIST	r si	rr po	DR IMP	SPL	CALC	
1	0-25	mcl	10YR43 00						0	0	HR	3							
-	25-120	hcl	25Y 62 63	10YR68	3 00 M	001	000	00 Y	Ō			õ			1		Y		SPL AS 1P
									-	-		-			•		-		
1P	0-26	mzcl	10YR43 00						0	0 1	HR	2							PSD-MZCL/ZL 1%
	26-42	hzcl	25Y 52 00	10YR56	5 00 C	OOM	000	00 Y	0	0		0	MDCSAB	FM N	1 1	(PSD-HZCL/MZCL 1%
	42-70	hzcl	25Y 62 00	10YR58	8 00 M	25Y	52	00 Y	0	0		0	MDCAB	FR N	1 '	(Y		PSD-HZCL/ZC 1%
2	0-28	fszl	10YR43 00						-	0	HR	3							
	28-65	mcl	25Y 63 00					00 Y	-	Ó		0			1				
	65-90	с	05Y 61 00	10YR68	3 00 M	DOM	100	00 Y	0	0		0		F			Y		
20	0.00	_	10/042-00						•	~		~							
2P	028 28-65	c c	10YR43 00 05Y 71 61		00 M	257	53	00 Y	D	0		0	WKCPR	ГМ (,	Y		PSD-C/ZC 2%
	20-03	C	051 /1 01	7.51100		201	55	00 T	U	U		U	WKUPK	F 191 1	יכ	r	Y		
3	0-30	mcl	10YR43 00						n	0 1	HR	3							
•	30-70	с	05Y 61 00	10YR68	N 00 6			Y	ō		, av	õ		F	2		Y		
									•	-		-		•					
3P	0-13	hzc1	10YR41 00	10YR56	5 00 F				0	0		0							PSD-HZCL/MZC BORDER
	13-26	zc	10YR53 00	10YR58	3 00 C	104	252	00 Y	0	0		0	MDVCSB	FR N	1	(PSD-MZC
	26-60	с	10YR62 00	10YR58	8 00 M	25Y	71	00 Y	0	0		0	MDCAB	FM F	י	1	Y		
4	0-28	hc1	10YR43 00							01	HR	2		_					
	28-70	с	05Y 62 00	10YR68	5 00 M	OOM	100	00 Y	0	0		0		F)		Y		
4P	0-29		100043 00						•	01	цр	2							000
4P	29-48	mc] mcl	10YR43 00 10YR44 00	nomining		1075	242	00		01		2	MDCSAB	-	4				PSD DSD MCL/SCL 27
	48-76	mzcl	25Y 64 61					00 Y	0		ΠK		MDCSAB						PSD-MCL/SCL 2% PSD-MZCL/ZL 1%
	76-87	C	25Y 61 00					00 Y	õ	-			WKCAB			,	Y		
		c	25Y 61 71					00 Y	0				MDCAB				Ŷ		
5	0-28	hcl	10YR43 00						0	0		0							
	28-48	hc]	25Y 53 00	10YR58	00 M	DOM	100	00 Y	0	0		0		١	1				
	48-80	с	05Y 61 71	75YR58	00 M	OOM	100	00 Y	0	0		0		F	>		Y		
									_	_		_							
5P	0-28	mcl	10YR43 00	100050		004		<u></u>	0			0							
	28-52 52-80	mcl	10YR54 00 25Y 53 52					00 S	0				MDCSAB			,			SLIGHTLY GLEYED
	52-60	C	251 55 52	TUTKOC	00 M		100	00 Y	0	0		0	MDCAB	rk r	ו נ	ſ	Y		
6	0-28	mcl	10YR43 00						٥	0 1	HR	2							
-	28-60	hc]	25Y 53 00	10YR58	00 M	OOMN	100	00 Y	0			0		N	1				
	60-80	с	25Y 62 61					00 Y	0			Ō		F			Y		
														•					
7	028	mcl	10YR43 00						0	0		0							
	28-35	hc1	25Y 53 00	10YR58	00 M	OOM	100	00 Y	0	0		0		N	1				
	35-70	с	05Y 61 00	75YR58	00 M	OOM	100	00 Y	0	0		0		F	>		Y		
-	•									_									
8		c	10YR43 00	76./					0			0							
	30-70	c	05Y 61 00	/57858	00 M			Ŷ	0	U		0		F	,		Y		

9

10

11

12

13

14

15

16

17

18

19

20

21

0-23

23-35

35-70

hc1

hc]

с

10YR52 00 10YR56 00 C

25Y 62 00 10YR66 00 M

25Y 61 71 10YR68 00 M

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

-----MOTTLES----- PED -----STONES----- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0-30 10YR43 00 0 0 hc] n . 30-40 25Y 53 00 10YR56 00 C 00MN00 00 Y 0 0 hc1 0 М 40-70 С 05Y 61 00 75YR58 00 M Y 0 0 0 Ρ Y 0-30 mzc] 10YR41 00 3 0 HR 8 30-70 c 05Y 51 61 75YR56 00 M 00MIN00 00 Y 0 0 0 Ρ ٧ 0-27 mc] 10YR43 00 0 0 HR 3 27-40 10YR53 00 10YR56 00 C 00MIN00 00 Y 0 0 mc1 0 М 40-100 c 25Y 62 63 10YR68 00 M 00MN00 00 Y 0 0 0 м ۷ 0-30 10YR42 00 hc] 0 0 Ô. 30--70 с 05Y 61 00 75YR58 00 M Y 0 0 0 Ρ Υ 0-26 10YR43 00 mzc] 0 0 HR ২ Y 0 0 26-45 05Y 62 00 10YR58 00 M hc] 0 Μ 45-55 С 05Y 62 00 75YR58 00 M 00MN00 00 Y 0 0 0 М ۷ 55-60 05Y 62 00 75YR58 00 M DOMINOO OO Y 0 0 HR 20 С М Y 0-30 mc1 10YR43 00 0 0 0 30-45 25Y 53 00 10YR58 00 M hc] Y 0 0 0 м 45-90 05Y 61 62 75YR68 00 M 00MN00 00 Y 0 0 С 0 Ρ Y 0-30 с 10YR43 00 0 0 0 30-70 10YR54 00 10YR58 00 C 00MIN00 00 S 0 0 C 0 Ρ Y SLIGHTLY GLEYFD 0–25 mc1 10YR43 00 0 0 0 25-35 hc1 25Y 53 00 10YR58 00 M Y 0 0 0 Μ 35-70 с 05Y 61 71 75YR58 00 M Y 0 0 Ρ 0 ۷ 0-25 10YR43 00 mzcl 0 0 0 25-45 25Y 62 63 10YR58 00 C mzc1 Y 0 0 n М 45-65 hzc] 25Y 63 00 10YR58 00 M Y 0 0 0 М SPL AS 1P Y 25Y 62 00 75YR68 00 M 65-90 hc1 00MN00 00 Y 0 0 n Μ Y SPL AS 1P 90-110 c 05Y 61 71 10YR68 00 M 0 0 0 ₽ Y Y 0-25 hzc1 10YR41 00 10YR46 00 C Y 0 0 Ω 25-55 С 05Y 63 00 25Y 66 00 M Y 0 0 0 Ρ γ 55-70 05Y 43 00 25Y 66 00 C С Y 0 0 0 Ρ Y 0-23 hc1 10YR42 00 0 0 HR 2 23-70 с 10YR63 00 10YR68 71 M 00MIN00 00 Y 0 0 Û Ρ Y 0-28 hc1 10YR51 52 10YR58 00 C Y 0 0 Ω 28-70 c 25Y 61 71 10YR68 00 M Y 0 0 0 Ρ Y

00

Y 0 0

Y 0 0

0

0

0

M

Ρ

٧

Y

page 2

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

page 3

						S PEC				ет		STDUCT /	CHIPC		
SAMPLE		TEXTURE	COLOUR								ONES	-	SUBS	IMP SPL CAL	~
SAULT LL	UCF III	TEATORE	ULUUK		ADUN				72	>0		CONSIST	SIR PUR	IMP SPL CAL	,C
22	0-25	mc]	10YR42 00	10YR5	6 00 F				0	0	0				
	25-35	hc1	25Y 52 00					Y		0	0		м		
	35-70	c	05Y 52 00					Ŷ	ō	-	ů O		P	Ŷ	
		-						•	•	·	·		•	·	
23	0-23	mzcl	10YR42 00						0	0	0				
	23-38	hcl	10YR53 00		5 00 C			Y			0		м		
	38-70	с	25Y 61 51					Ŷ	Ō		Ō		P	Ŷ	
24	0-25	mcl	25Y 41 00	10YR56	5 00 C			Y	0	0	0				
	25-38	hc]	25Y 62 71	10YR68	3 00 M			Y	0	0	0		м		
	38-70	с	25Y 71 00	10YR68	3 00 M			Y	0	0	0		₽	Y	
25	0-30	mzcl	10YR43 00						0	0	0				
	30-50	mcl	10YR44 00	OOMNOO) 00 F				0	0	0		М		
	50-70	scl	25Y 53 00	10YR56	5 00 C			Y	0	0	0		М		
	70-90	с	25Y 62 61	10YR58	3 00 C			Y	0	0	0		Ρ	Y	
	90-120	с	25Y 61 71	10YR58	3 00 M			Y	0	0	0		Ρ	Y	
26	0-23	mcl	10YR43 00						0	0	0				
	23-40	hc1	10YR53 00	10YR66	5 00 C	OOMNO	0 00	Y	0	0	0		М		
	40-70	с	25Y 53 61	10YR68	3 00 M			Y	0	0	0		Р	Y	
27	0-25	scl	10YR43 00						0	0	0				
	25-40	mcl	25Y 51 52					Y	0		0		М		
	40-70	с	25Y 61 71	10YR68	3 00 M			Y	0	0	0		Р	Y	
	0.05	•	1000040 00	10/05/					~	•	•				
28	0-25	mcl h-l	10YR42 00						0	-	0				
	25–43 43–70	hc]	25Y 52 00 25Y 53 61					Y Y	0 0		0 0		M P	v	
	43-70	c	201 00 01	TOTROC	5 UU M			T	0	U	U		r	Y	
29	0-25	mzcl	10YR43 00						0	0	0				
23	25-38	mcl	10YR44 00	nomnor	00 F				õ	0	0		м		
	38-50	mzcl	10YR53 63					Y	õ		0		M		
	50-65	hc1	25Y 61 00					Ŷ	-	-	Ő		M		
	65-90	scl	25Y 61 00					Ŷ	-	-	0		M		
	90-120		05Y 61 00					Ŷ	0		0		P	Y	
30	0-28	hc1	10YR52 00	10YR58	00 C			Y	0	0	0				
	28-45	с	25Y 62 61	10YR68	00 M	OOMNO	0 00	Y	0	0	0		Р	Y	
	45-70	с	05Y 71 00	10YR68	00 M			Y	0	0	0		Р	Y	
31	030	mcl	10YR31 00	10YR46	00 C			Y	0	0	HR 3				
	30-70	с	25Y 73 71	10YR68	00 M	OOMNO	0 00	Y	0	0	0		Ρ	Y	
32	0-25	mzcl	10YR53 00					Y	0	0	0				
	25-35	hc]	25Y 53 52			OOMNO					0		М		
	35-70	с	05Y 71 00	10YR68	00 M	OOMNO	0 00	Y	0	0	0		Ρ	Y	

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

page 4

							050				OTONIC	-	CTOUCT /	CUDC			
SAMPLE		TEVTIDE											STRUCT/				
JAPIPLE	UEPIN	TEXTURE	COLOUR	UUL	ABUN	CUNT	ωL.	GL	.E Y	>2 :	>0 LIII		CONSIST	STR PUR	IMP (SPE CALC	
33	0-26	mcl	10YR42 00							0	0	0					
	26-45	hc1	10YR53 51	10YR5	6 00 C	1	DOMNOO	00	Y	0	0	0		м			
	4570	c	05Y 53 00	10YR6	в оо м	(00min00	00	Y	0	0	0		Ρ		Y	
34	0-25	mzc]	10YR42 00							0	0	0					
	25-45						004000	~~	v	-	-	-		м			
		hc1	10YR53 62				000000			0	-	0		M			
	4570	c	25Y 61 63	IUYKO	5 00 M	ı	00 MN 00	00	¥	0	U	0		Ρ		Ŷ	
35	0-25	mcl	10YR42 00	OOMNOO	00 F					0	0	0					
	25-35	hc1	10YR53 52	10YR6	500C	(00MN00	00	Y	0	0	0		Μ			
	35-70	c	05Y 61 71	10YR68	B 00 M				Y	0	0	0		P		Y	
36	0-35	നവി	10YR42 00	COMNO	00 F					0	0	0					
	35-70	с	05Y 61 71						Y	0	0	0		Р		Y	
									•	•	-	•				•	
37	0-30	hc1	10YR42 00	OOMNOO)00 F					0	0	0				•	
	30-70	с	25Y 63 61	10YR68	3 00 M				Y	0	0	0		Ρ		Y	
38	0-25	mcl	10YR42 00							0	0	0					
	25-35	hc]	10YR53 00	COMNOC) 00 F					0		0		м			
	35-70	с	05Y 71 00						Y	-	-	Ō		P		Y	
		-							•	•	•	-				•	
39	0-25	hc1	10YR42 00	10YR56	6 00 C				Y	0	0	0					
	25-35	hc1	25Y 53 51	10YR66	500C	(DOMNOO	00	Y	0	0	0		М			
	35-45	с	25Y 53 00	75YR68	8 00 M				Y	0	0	0		P		Y	
	45-70	С	75YR53 00	75YR58	3 00 M				Y	0	0	0		Р		Y	
40	0-30	hcl	10YR42 00	10YR56	500 F	C	DOMNOO	00		0	0	0					
	30-45	hc1	10YR52 00	10YR66	5 00 C		DOMNOO		Y	0	0	0		м			
	45-70	c	05Y 71 00						Ŷ	0		0		P		Y	
	0.05									•	•	•					
41	0-25	hc1	10YR42 00	-						0		0		-			
	25-70	c	05Y 71 00	IUYKO	5 UU M				Y	0	U	0		Р		Y	
42	0-30	mcl	10YR42 00							0	0 HR	2					
	30-45	с	05Y 71 00	10YR58	8 00 M	C	DOMNOO	00	Y	0	0	0		Р		Y	
	45-70	с	05Y 71 00	10YR68	3 00 M				Y	0	0	0		Ρ		Y	
43	0-25	mcl	10YR41 00							0	0	0					
	25-45	hc]	25Y 62 00	10YR58	3 00 C	C	OMINOO	00	Y	0	0	0		м			
	45-70		05Y 61 00						Ŷ	0	0	0		P		Y	
44	0-30	hc1	100042 52							^	•	^					
44			10YR42 52	100050	. co M					0	-	0		-			
	30-70	c	05Y 71 00	TUYR5	M 80 0				Y	0	U	0		Р		Y	
45	0-30	hc1	10YR43 00							0	0	0					
	30–45	hc]	10YR44 00	10YR58	3 00 C				s	0	0	0		Μ			SLIGHTLY GLEYED
	45-60	c	10YR53 00	75YR68	M 00 8	C	oomnoo	00	Y	0	0	0		Μ		Y	
	60-80	c	05Y 71 00	10YR68	00 M				Y	0	0	0		Ρ		Y	

-

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

page 5

				1	OTTLES		PED				ONES	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN								STR POR IMP	SDI CALC
	BCI III	TEXTORE	COLOOK		ABOIN	CONT	001.	GLLI	~2	-0	CT 111 1		SIK FOR IMP	SFL UALU
46	0-30	hc]	10YR42 52						0	0	1	0		
	30-70	c	05Y 71 00	10YR68	3 00 M	1	DOMINOO	00 Y		0		0	Р	Y
47	0-28	fszl	10YR42 00						0	0	I	0		
	28-40	mcl	10YR53 00	10YR56	5 00 C			Y	0	0	I	0	M	
	40-70	hc1	05Y 71 00	10YR56	8 68 M			Y	0	0	I	0	м	
	70–120	scl	25Y 71 72	10YR68	3 00 M			Ŷ	0	0		0	м	
40	a aa		100010 00							-		-		
48	0-33	hc]	10YR42 00	1000000				00 V	0	0		0		
	3370	c	05Y 63 71	IUYKO	5 UU M	,	DOMINOO	UU Y	U	0		0	Р	Y
49	032	mc]	25Y 42 00						0	0	цр	2		
	32-70	C	05Y 72 62	10VR68	N 00 8			Y	ō	ō		0	Ρ	Y
	02 .0	•						•	·	Ť			,	•
50	0-30	hc]	25Y 42 00						0	0	1	D		
	30-40	hc]	25Y 63 00	10YR66	5 00 C			Y	0	0	I	D	м	
	40-70	с	05Y 71 00	10YR68	3 OO M			Ŷ	0	0	I	מ	Р	Y
51	0-25	mcl	10YR42 00						0	0		0		
	25–70	c	05Y 71 00	10YR68	B 00 M			Y	0	0	(ס	Р	Ŷ
		_							_	_		_		
52	0-27	nncl	10YR42 00							0) -		
	27-38	mcl	25Y 53 62			(DOMNOO			0		2	M	
	38-70	с	05Y 72 71	TUYKE	SUUM			Ŷ	U	0	l)	Р	Y
53	0-25	mzcl	10YR52 00	107858	. nn c			Ŷ	n	0)		
	25-30	hcl	10YR53 00					Ŷ		Ō))		
	30-70	c	10YR63 00					Ŷ	-	0		5		Y
														•
54	0-20	mcl	10YR52 00	10YR58	00 F				0	0	()		
	20-30	hc1	10YR63 00	10YR58	00 C			Y	0	0	()	М	
	30-70	¢	10YR63 00	10yr68	00 C			Y	0	0	()	P	Y
55	0-25		10YR52 00					Ŷ)		
	25-70	с	10YR63 00	10YR58	00 C			Ŷ	0	0	()	Р	Y
56	0.00		10/052 00						~	~		`		
50	0–20 20–45	mzc] hzc]	10YR52 00 10YR64 00		00 0			v	0	0)	м	
	45-70	C	10YR63 00 2						0)	P	Y
		U						•	Ť	Ť	,	,	F	r
57	0-20	mzcl	10YR52 00	10YR58	00 C			Ŷ	0	0	()		
	20-40	mcl	10YR64 00						0)	M	
	40-60	scl	25Y 74 00					Ŷ)	M	
	60-100	с	10YR63 00	10YR71	68 C			Y	0	0)	P	Y
58	0-30	hc1	10YR43 00						0		(
	30-70	c	25Y 62 61	10YR58	68 M			Y	0	0	()	Ρ	Y

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

page 6

				N	<u>и</u>)тті с	e					STONES		STRUCT/	CUDC		
SAMPLE	DEPTH	TEXTURE	COLOUR											SUBS STR POR IMP		
	021 111		GOLOOK	UUL	ADON	00111	0064			- <u>C</u>		101	0000131	JIK FOR 1mg	JFL UALU	
59	0-30	hc1	10YR43 00							0	0	0				
	30-70	c	25Y 61 62	10YR58	3 68 M	1			Y	0	0	0		Ρ	Y	
60	0-27	hc1	10YR43 00							0		0				
	27-37	hc1	10YR53 00						-	-	•	0		М		
	37-70	c	25Y 62 61	10YR56	3 68 M	(Domnoo	00	Y	0	0	0		Р	Y	
61	0-30	mcl	10YR42 52	100046	. E6 C				Y	0	0	0				
01	30-70	c	25Y 61 62				DOMNOO					0		Ρ	Y	
		-						••	•	Ū	•	Ť		•	,	
62	0-28	hc1	25Y 42 00	10YR56	i 00 C				Y	0	0	0				
	28-70	c	25Y 61 62	10YR58	00 M				Y	0	0	0		Ρ	Y	
63	0-30	hc]	25Y 42 00							0		0				
	30-70	с	25Y 61 62	10YR58	68 M				Y	0	0	0		Ρ	Ŷ	
64	030	mc1	10YR43 44							•	•	~				
04	30-48	mcl	101R43 44	107256	. nn c		DOMNOO	00	v	0 0		0 0		м		
	48-80	C	25Y 52 51				DOMNOO		-	0	-	ō		M	Y	
		-						••	•	•	•	Ť		••	•	
65	0-27	mcl	10YR43 00							0	0	0				
	27-50	mcl	25Y 62 00	10YR58	00 C			•	Y	0	0	0		м		
	5080	c	25Y 52 00	10YR58	00 M	C	omnoo	00	Y	0	0	0		M	Y	
		_								_						
66	0-25	mc]	10YR43 00	10/050				~~	~	0	_	0				
	25-45 45-90	mc] c	10YR54 00 25Y 52 62				OMNOO			0 0	-	0 0		M M	v	SLIGHTLY GLEYED
	45-56	C	251 52 02	TOTKJO	00 14				r	U	Ŷ	v		M	Y	
67	0-30	mc]	10YR43 00							0	0	0				
	30-70	c	25Y 53 62	10YR58	68 M			,	Y	0	0	0		Ρ	Ý	
68	0-25		10YR43 44							0		0				
	25-38		10YR53 00							0		0		M		
	38-70	c	25Y 62 61	TUYR58	00 M	U	OMNOO	00	Y	0	0	0		Р	Y	
69	0-28	mcl	10YR43 44							0	n	0				
	28-45		10YR53 00	10YR56	00 C			۱	Y	0	-	õ		м		
	45-80		25Y 62 61			0	00MN00			0	-	0		P	Y	
70	0-28	mcl	10YR43 44							0	0	0				
	28-52		10YR63 62				IOMNOO			0	0	0		М		
	52-80	С	25Y 53 62	10YR58	00 M	0	IOMNOO	00 Y	Ý	0	0	D		м	Y	
71	0-33	mcl	10YR42 43							0	^	0				
			25Y 53 00	107858	00 м	n	OMNOO	00 \			0 HR	2		Р	Y	
	••	-			UU 11	Ŭ		~~	•	÷	V THX	-		1.	T	
72	0-30	mcl	10YR42 43							0	0	0				
	30-48	hc1	10YR53 00	10YR56	00 C	0	OMNOO	00 N	r	0	0	0		м		
	48-80	c	25Y 53 62	10YR58	00 M	0	omnoo	00 N	1	0	0	0		м	Y	

COMPLETE LIST OF PROFILES 18/12/95 E SUSSEX SP PLUMPTON GRN

---- MOTTLES----- PED -----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 73 0-25 10YR43 00 mcl 0 0 0 25-37 25Y 62 72 10YR68 00 C 00MN00 00 Y mcl 0 0 ۵ М 37-80 25Y 63 62 10YR58 00 M 00MN00 00 Y С 0 0 0 М Y 74 0-22 С 10YR52 00 10YR56 00 M ¥ 0 0 Ô 22-60 05Y 61 00 75YR68 00 M 0 0 C Ð Y Δ v 75 0-25 hc1 10YR53 00 10YR56 00 C Y 0 0 Ω 25-60 с 25Y 52 00 10YR58 00 M 00MN00 00 Y 0 0 0 Ρ Y 76 0-25 hc1 10YR53 00 10YR56 00 C 0 0 Y 0 25-45 10YR53 00 10YR56 00 M с 00MN00 00 Y 0 0 0 Ρ 45-65 05Y 61 00 75YR68 00 M 00MN00 00 Y 0 0 С ٥ Ρ v 77 0-28 mc1 10YR43 00 0 0 HR 3 28-52 hc1 10YR53 00 10YR58 51 M 00MN00 00 Y 0 0 ۵ м 52-70 10YR53 00 10YR58 52 M 00MIN00 00 Y 0 0 HR С 3 M Y 78 0-28 mc1 10YR43 00 0 0 HR 2 28-45 hc1 10YR53 00 10YR56 00 C Y 0 0 Ω м 45-80 10YR53 00 10YR58 52 M 00MIN00 00 Y С 0 0 0 Μ Y 0-28 79 mc] 10YR43 00 0 0 0 28-55 10YR54 00 10YR56 00 C mc1 S 0 0 Û М SLIGHTLY GLEYED 55-80 С 10YR53 00 10YR58 52 M 00MN00 00 Y ۵ 0 0 м Y 0-25 80 hc1 10YR51 00 75YR46 00 M Y 0 0 Ω 25-45 25Y 51 53 75YR56 00 M С Υ 0 0 Ω Ρ Υ 45-70 С 05Y 61 00 75YR68 00 M 00MN00 00 Y 0 0 0 Ρ Y 81 0-28 10YR43 00 mcl O O HR 2 28-60 10YR53 52 10YR56 00 C 00MN00 00 Y 0 0 С 0 Μ Y 0-25 82 mcl 10YR42 00 10YR56 00 C Y 0 0 ۵ 25-45 10YR63 00 75YR58 00 C hc1 00MIN00 00 Y 0 0 Ω М Y 45-70 С 25Y 52 00 75YR58 00 M 00MN00 00 Y 0 0 ۵ Ρ Y 83 0-28 mc1 10YR42 00 10YR56 00 C Y 0 0 HR 2 28-60 zc 05Y 61 00 75YR56 00 M 00MN00 00 Y 0 0 0 Ρ Y 84 0-20 10YR51 42 75YR46 00 C hzc1 0 0 Y ۵ 00MIN00 00 Y 20-60 05Y 61 00 75YR58 00 M ZC 0 0 P ۵ Y 85 0-25 mc] 10YR42 00 10YR56 00 C 0 0 HR 2 Y 25-40 25Y 61 00 75YR56 58 M 00MN00 00 Y С 0 O HR P 2 Y 40-60 С 25Y 61 00 75YR56 58 M 00MIN00 00 Y 0 0 HR 5 Ρ Y 86 0-25 mcl 10YR43 00 0 0 HR 2 25-35 С 10YR53 00 10YR58 00 M COMINOD OC Y 0 0 0 М Y 35-60 zc 05Y 61 00 75YR58 53 M 0 0 0 Y P ۷

page 7