A1
Priars Oak Farm Clayton
West Sussex
Proposed Golf Course
Agricultural Land Classification
ALC Map and Report
November 1993

FRIARS OAK FARM, CLAYTON, WEST SUSSEX PROPOSED GOLF COURSE

AGRICULTURAL LAND CLASSIFICATION REPORT

1 <u>Introduction</u>

- 1 1 In June 1993 a detailed Agricultural Land Classification (ALC) survey was carried out on 45 6 hectares of land to the north of Hassocks West Sussex ADAS was commissioned by MAFF s Land Use Planning Unit to determine the quality of land affected by proposals for golf course development
- 1 2 The survey was conducted by members of the Resource Planning Team Guildford Statutory Group at an observation density of approximately one boring per hectare A total of 43 borings and three soil inspection pits were described in accordance with MAFF s revised guidelines and criteria for grading the quality of agricultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose long term limitations on its use for agriculture

At the time of survey the entire site was under grassland some fields having been cut for hay and some being grazed by cattle

1 3 The distribution of the grades and sub-grades is shown on the attached ALC map and the area and extent are given in the table below. The map has been drawn at a scale of 1 5000. It is accurate at this scale but any enlargement may be misleading. This map supersedes any previous information for the site.

Table 1 Distribution of Grades and Sub-grades

	<u>Area (ha)</u>	<pre>% of agricultural use</pre>
Grade 3a	14 96	35 8
3b	26 80	64 2
Total agrıcultural area	<u>41 76</u>	<u>100</u>
Non agricultural	1 45	
Woodland	1 40	
Urban	0 71	
Farm Buildings	<u>0 28</u>	
Total area of site	45 60 ha	

- 1 4 A general description of the grades and land-use categories identified in this survey is provided as an appendix. The grades are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield
- 1 5 The site has been graded good to moderate Subgrades 3a or 3b on the basis of soil wetness and/or droughtiness limitations. Land has been assigned to Subgrade 3b on the basis of soil wetness. The occurrence of gleyed and slowly permeable horizons at relatively shallow depth in the profile combined with a moist climatic regime (i e 181-191 field

capacity days) gives rise to a moderate wetness limitation
Subgrade 3a has been mapped where slowly permeable clay occurs deeper
in the soil profile such that the wetness limitation is less
significant. Good quality 3a land was also found in association with
better drained profiles resting on impenetrable weathered Lower
Greensand bedrock. These shallower soils are principally limited by
soil droughtiness although they may also be affected by a soil wetness
problem

2 Climate

2 1 Estimates of climatic variables relevant to the assessment of agricultural land quality were obtained by interpolation from a 5 km grid point dataset (Met Office 1989) for representative locations in the survey area

Climatic Interpolations

Grid Reference	TQ 301174	TQ 300163
Altitude (m AOD)	33	46
Accumulated Temperature		
(°days Jan-June)	1496	1482
Average Annual Rainfall (mm)	859	920
Field Capacity Days	181	191
Moisture deficit wheat (mm)	106	103
Moisture deficit potatoes (mm)	100	96

- 2 2 Climatic factors are considered first when classifying land since climate can be overriding in the sense that adverse climatic conditions may restrict land to poor quality irrespective of favourable site and soil conditions. The details in the table above show that there is no overall climatic limitation affecting this site. In addition, no local climatic factors such as exposure or frost risk affect the site.
- 2 3 However climatic factors do interact with soil factors to affect soil wetness and droughtiness limitations. At this locality average annual rainfall and field capacity days are relatively high in a regional context whilst crop adjusted moisture deficits are correspondingly low. As a consequence, the likelihood of a soil droughtiness limitation is reduced, whilst the risk of soil wetness and workability problems may be enhanced.

3 Relief

3 1 The site ranges in altitude from 33m AOD towards the northern boundary to 46m AOD along the western boundary. The highest land occurs immediately east of Clayton Wickham Farm with land falling very gently north east and south

4 Geology and Soils

4 1 British Geological Survey (1984) Sheet 318/333 Brighton and Worthing shows a number of geological deposits on the site the most extensive being Lower Greensand deposits which extend across most of the area south of Friar's Oak Cottages Most of the rest of the site is

underlain by River Terrace Deposits with a small area of Sand outcropping between these and the Lower Greensand

- 4 2 Soil Survey of England and Wales (1983) Sheet 6 Soils of South-East England shows the entire site to comprise soils of the Wickham 1 association These are described as 'seasonally waterlogged fine silty or loamy over clayey and clayey soils (SSEW 1984)
- 4 3 Detailed survey of the soils on the site confirmed the presence of loamy over clayey soils consistent with the Wickham 1 association although a number of shallower profiles were found to occur where Lower Greensand deposits outcropped close to the surface

5 Agricultural Land Classification

5 1 The site has been assigned to Subgrade 3a and 3b on the basis of soil wetness and/or droughtiness limitations. Across most of the site soil wetness is the overriding limitation to agricultural land quality soil droughtiness generally being less significant.

Subgrade 3a

5 2 Approximately 36% of the total agricultural area surveyed has been assigned to this grade good quality agricultural land overriding limitation to land quality across both mapping units is that of soil wetness although small areas east of Clayton Wickham Farm are also limited by soil droughtiness Profiles typically comprise medium clay loam or medium silty clay loam topsoils which are non-calcareous and free of stones These overlie medium or more usually heavy clay loam or heavy silty clay loam gleyed upper subsoils which pass to slowly permeable clay or occasionally sandy clay in the lower subsoil Although most profiles are deep and relatively stone free a few pass to very stony horizons below about These subsoils are typically impenetrable (to soil auger) between 62 and 70 cm depth due to 70% medium sandstone fragments by volume Much of the land graded 3a is imperfectly drained due to the presence of slowly permeable clay horizons at 55-65 cm depth with such drainage characteristics equate to Wetness Class III, which in an area which is relatively wet (ie 181-191 field capacity days) give rise to good quality Subgrade 3a land Small parts of the land within the southern most 3a mapping unit are additionally limited by soil droughtiness due to only moderate soil depth over Sandstone Reserves of available water for crop growth are slightly restricted such that land cannot be graded higher than Subgrade 3a

Subgrade 3b

The majority of the site has been assessed as being of moderate quality Subgrade 3b land. It is principally limited by severe soil wetness and workability restrictions. Profiles comprise medium clay loam or silty clay loam topsoils which are non-calcareous and generally free of stones. These overlie heavy clay loam or pass directly to clay in the subsoil. Gleying is evident below 35 and 50 cm depth. Wetness Class IV is thereby appropriate and due to poor drainage status, the land cannot be graded higher than Subgrade 3b.

A wetness and workability limitation such as this will have adverse effects on crop germination root development and growth and will restrict the opportunity for cultivations and trafficking

ADAS Ref 4206/072/93 MAFF Ref EL 42/352 Resource Planning Team Guildford Statutory Group ADAS Reading

SOURCES OF REFERENCE

- British Geological Survey (1984) Sheet 318/333 Brighton and Worthing
- MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land
- Meteorological Office (1989) Climatic datasets for Agricultural Land Classification
- Soil Survey of England and Wales (1983) Sheet 6 Soils of South-East England
- Soil Survey of England and Wales (1984) Bulletin 15 Soils and their use in South-East England

DESCRIPTION OF THE GRADES AND SUB-GRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land on the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1

Grade 3 Good To Moderate Quality Agricultural Land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in grades 1 and 2

Sub-grade 3A Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Sub-grade 3B Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation—the grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built up or 'hard' uses with relatively little potential for a return to agriculture housing industry commerce education transport, religious buildings cemeteries. Also hard-surfaced sports facilities permanent caravan sites and vacant land, all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces, sports fields allotments and soft-surfaced areas on airports/airfields. Also active mineral workings and refuse tips where restoration conditions to 'soft' after-uses may apply

Woodland

Includes commercial and non-commercial woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately. Otherwise the most extensive cover type will be shown

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents * Soil Abbreviations Explanatory Note

- * Soil Pit Descriptions
- * Database Printout Boring Level Information
- * Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a database. This has commonly used notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national grid square and 8 figure grid reference
- 2 USE Land use at the time of survey. The following abbreviations are used.
- ARA Arable WHT Wheat BAR Barley CER Cereals OAT Oats MZE Maize OSR Oilseed rape

 BEN Field Beans BRA Brassicae POT Potatoes SBT Sugar Beet FCD Fodder Crops LIN Linseed

 FRT Soft and Top Fruit HRT Horticultural Crops PGR Permanent Pasture LEY Ley Grass RGR Rough Grazing

 SCR Scrub CFW Coniferous Woodland DCW Decidious Woodland HTH Heathland BOG Bog or Marsh

 FLW Fallow PLO Ploughed SAS Set aside OTH Other
- 3 GRDNT Gradient as measured by a hand-held optical clinometer
- 4 GLEY/SPL Depth in cm to gleying or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop-adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance
- 7 DRT Best grade according to soil droughtmess
- 8 If any of the following factors are considered significant an entry of Y will be entered in the relevant column

MREL Microrelief limitation FLOOD Flood risk EROSN Soil erosion risk EXP Exposure limitation FROST Frost DIST Disturbed land CHEM Chemical limitation

9 LIMIT The main limitation to land quality. The following abbreviations are used

OC Overall Climate AE Aspect EX Exposure FR Frost Risk GR Gradient MR Microrelief FL Flood Risk TX Topsoil Texture DP Soil Depth CH Chemical WE Wetness WK Workability DR Drought ER Soil Erosion Risk WD Combined Soil Wetness/Droughtiness ST Topsoil Stonmess

Soil Pits and Auger Borings

1 TEXTURE soil texture classes are denoted by the following abbreviations

S Sand LS Loamy Sand SL Sandy Loam SZL Sandy Silt Loam CL Clay Loam ZCL Silty Clay Loam
SCL Sandy Clay Loam C Clay SC Sandy Clay ZC Silty Clay OL Organic Loam P Peat SP Sandy Peat
LP Loamy Peat PL Peaty Loam PS Peaty Sand MZ Marine Light Silts

For the sand loamy sand sandy loam and sandy salt loam classes the predominant size of sand fraction will be indicated by the use of prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content

M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described
- F few <2% C common 2 20% M many 20-40 VM very many 40%+
- 4 MOTTLE CONT Mottle contrast
- F famt indistinct mottles evident only on close inspection. D distinct mottles are readily seen
- P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour
- 6 STONE LITH One of the following is used

HR all hard rocks and stones MSST soft medium or coarse gramed sandstone
SI soft weathered igneous or metamorphic SLST soft coolitic or dolimitic limestone
FSST soft fine grained sandstone ZR soft argillaceous or silty rocks CH chalk
GH gravel with non porous (hard) stones GS gravel with porous (soft) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

7 STRUCT the degree of development size and shape of soil peds are described using the following notation

degree of development WK weakly developed MD moderately developed ST strongly developed

ped size F fine M medium C coarse VC very coarse

ped shape S single grain M massive GR granular AB angular blocky SAB sub-angular blocky PR prismatic PL platy

- 8 CONSIST Soil consistence is described using the following notation
- L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard
- 9 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness
- G good M moderate P poor
- 10 POR Soil porosity If a soil horizon has less than 0.5% biopores > 0.5 mm a Y will appear in this column
- 11 IMP If the profile is impenetrable a Y will appear in this column at the appropriate horizon
- 12 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 13 CALC If the soil horizon is calcareous a Y will appear in this column
- 14 Other notations

APW available water capacity (in mm) adjusted for wheat
APP available water capacity (in mm) adjusted for potatoes
MBW moisture balance wheat

MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name FRIARS OAK FM	HASSOCKS	Pit Number	1P
-------------------------	----------	------------	----

Grid Reference TQ29901640 Average Annual Rainfall 905 mm

Accumulated Temperature 1489 degree days

Field Capacity Level 188 days

Land Use

Slope and Aspect 01 degrees SE

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	MOTTLES	STRUCTURE
0- 23	MCL	10YR43 00	0	0		
23- 45	MCL	10YR43 53	0	5	С	MDCSAB
45- 73	HCL	10YR43 53	0	30	С	MDCOPL
73-120	HCL	10YR53 00	0	70	С	

Wetness Grade 2 Wetness Class I
Gleying 073 cm
SPL No SPL

Drought Grade 3A APW 109mm MBW 5 mm
APP 098mm MBP 1 mm

FINAL ALC GRADE 3A

MAIN LIMITATION Droughtiness

SOIL PIT DESCRIPTION

Site Name FRIARS OAK FM HASSOCKS Pit Number 2P

Grid Reference TQ30001710 Average Annual Rainfall 905 mm

Accumulated Temperature 1489 degree days

Field Capacity Level 188 days

Land Use

Slope and Aspect degrees SE

HORIZON TEXTURE COLOUR STONES >2 TOT STONE MOTTLES STRUCTURE 0- 23 MZCL 10YR42 00 0 0 23- 56 HZCL 10YR53 00 0 0 C STCSAB 56- 83 ZC 10YR61 00 0 0 STOOAB M

Wetness Grade 3A Wetness Class III

Gleying 023 cm SPL 056 cm

Drought Grade APW 000mm MBW 0 mm

APP 000mm MBP 0 mm

FINAL ALC GRADE 3A
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

Site Name FRIARS OAK FM HASSOCKS Pit Number 3P

Grid Reference TQ30101680 Average Annual Rainfall 905 mm

Accumulated Temperature 1489 degree days

188 days Field Capacity Level

Land Use

Slope and Aspect degrees SE

STONES >2 TOT STONE MOTTLES STRUCTURE HORIZON TEXTURE COLOUR MCL 10YR41 00 0- 23 0

23- 75 С 10YR52 00 0 0 С STCOAB

Wetness Grade 3B Wetness Class I۷

> Gleying 023 cm SPL 023 cm

APW Drought Grade 000mm MBW 0 mm

APP 000mm 0 mm MBP

FINAL ALC GRADE MAIN LIMITATION Wetness

SAMPI	_E	A	SPECT			WET	NESS	-WH	EAT-	-P0	TS-	М	REL	EROSN	FR	DST	CHEM	ALC		
NO	GRID REF	USE		GRDNT	GLEY SPI	L CLASS	GRADE	AP	MB	ΑP	MB	DRT	FL000		EXP	DIST	LIMIT		CON	MENTS
1	TQ30001720	HAY			028 050	4	3B	126		117	20	2					WE	3B	SPL	50
1P	TQ29901640		SE	01	073	1	2	109		098	1	ЗА					DR	3A		
2	TQ30001710				055 055	3	ЗА	119		117	20	2					WE	ЗА	SPL	55
2P	TQ30001710		SE		023 056	3	ЗА	000		000	0						WE	3A		
3	TQ30101710	HAY			025 025	4	3B	087	-17	098	1	ЗА					WE	3B	SPL	25
									_		_									
_	TQ30101680		SE		023 023	4	3B	000		000	0	_					WE	3B		
4	TQ30201710				025 058	3	3A	120		119	22	2					WE	3A	SPL	
5	TQ30301710		_		028 065	3	3A	135		123	26	1					WE	3A	SPL	65
6	TQ29901700		£		025 025	4	3B	000		000	0	24					WE	3B	CDI	
₽ 7	TQ30001700	HAY			028 038	4	3B	103	-1	108	11	3A					WE	38	SPL	38
	T020101700	CLASS			020 045		20	000	-	110	12	24						20	CDI	45
8	TQ30101700				029 045 030 060	4	38	098		110	13 18	3A 2					WE	3B	SPL SPL	
9	TQ30201700 TQ30301700				030 060	3 3	3A 3A	117 140		115 115	18	1					WE WE	3A 3A	SPL	
10	TQ29901690		r	01	029 055	_	3A	000		000	0	'					WE	3A	SPL	60
11 12	TQ30001690			01	028 028	_	3B	000		000	0						WE	3B		
_ 12	1020001030	11941	_		020 020	7	Ju	000	ŭ	000	•						ML.	30		
13	TQ30101690	HAY			050 065	3	3A	119	15	117	20	2					WE	ЗА	SPL	65
14	TQ30201690				028 045		38	111		109	12	2					WE	3B	SPL	
15	TQ29901680		É	01	032 032		38	000		000	0	_					WE	38		,,,
16	TQ30001680		-	•	028 028		3B	000		000	Ō						WE	3B		
17	TQ30101680		E		032 032		3B	000		000	0						WE	38		
•			_			•			_											
18	TQ30201680	HAY			028 050	4	38	114	10	112	15	2					WE	38	SPL	50
19	TQ29901670	PGR			030 045	4	3B	106	2	111	14	ЗА					WE	38	SPL	45
20	TQ30001670	PGR			030 045	4	3B	106	2	111	14	3A					WE	3B	SPL	45
21	TQ30101670	PGR			025 045	4	3B	112	8	110	13	2					WE	3B	SPL	45
22	TQ30201669	PGR			0 045	4	3B	098	-6	109	12	3A					WE	3B	SPL	45
23	TQ29801660	PGR			030 048	4	3B	113	9	111	14	2					WE	3B	SPL	48
24	TQ29901660	PGR			028 046	4	3B	112	8	110	13	2					WE	3B	SPL	46
25	TQ30001660	PGR	SE	01	035 055	3	3A	120	16	118	21	2					WE	3A	SPL	55
26	TQ30101660	PGR			028 065		ЗА	120	16	118	21	2					WE	ЗА	SPL	65
27	TQ30201660	PGR			020 047	4	38	111	7	109	12	2					WE	38		
28	TQ29801650			01	035 035	4	3B	103		108		3 A					WE	3B	SPL	35
29	TQ29901650		NE	01		1	2	152		118	21	1					MK	2		
30	TQ30001650			01	028 060		3A	138		115		1					WE	ЗА	SPL	
31	TQ30101650				026 060		3A	123		114	17						WE	3A	SPL,	60
32	TQ29801640	PAS	5	01	045	2	ЗА	103	-1	115	18	ЗА					WE	ЗА		
	T000000		0.5		020	_	•		_			•								
33	TQ29901640			01	030	2	3A	103		114	17	3A					WE	3A	IMP	
34	TQ30001640		SE	01	029	2	3A	000		000	0						WE	3A	IMP	62
35	TQ30101640		SE	01	025 038		3B	000		000	0	24					WE	3B	CD.	
36	TQ30201638		c	01	055 055		3A 3B	106		111		ЗА					WE	3A	SPL	55
37	TQ29801630	PAS	J	01	028 045	4	3B	000	U	000	0						WE	3B		
38	TQ29901630	PAS	s	01	035	2	3A	000		000	0						WE	ЗА		
39	TQ30001630			01	036 070		3A	000		000	0						WE	3A		
	. 4					-	<u>-</u> ,	200		230	•						NL	<u>-</u>		

program ALC012

LIST OF BORINGS HEADERS 23/11/93 FRIARS OAK FM HASSOCKS

page 2

SAMP	LE	ASPECT				WETI	NESS	-WH	EAT-	-P0	TS-	М	REL	EROSN	FROS	Г	CHEM	ALC	
Ю	GRID REF	USE	GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	E	KP I	DIST	LIMIT		COMMENTS
40	TQ30101630	PGR		024	044	4	3B	104	0	109	12	3A					WE	3B	SPL 44
42	TQ29801620	PGR		020	050	4	38	105	1	110	13	3A					WE	3B	SPL 50
43	TQ29901620	PGR		020	040	4	3B	137	33	107	10	2					WE	3B	Q SPL
44	TQ30001620	PGR		023	034	4	3B	085	-19	090	-7	3A					WE	3B	SPL 34

					10TTLES		PED			S	TONES		STRUCT/	SUBS	3					
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	TOT	CONSIST	STR	POR	IMP S	PL CA	LC		
1	0-28	mzcl	10YR42 00						0	0		0								
	28-50	hzc1	10YR53 52	10YR56	5 00 C		00MN00	00 Y	0	0		0		М						
	50-100	С	25Y 62 00	10YR56	5 00 M		00MN00	00 Y	0	0		0		P			Y			
1P	0-23	mcl	10YR43 00						0	0		0								
	23-45	mcl	10YR43 53	10YR5	8 68 C				0	0	MSST	5	MDCSAB F	M M						
	45-73	hc1	10YR43 53	10YR5	8 68 C				0	0	MSST	30	MDCOPL F	M P						
	73–120	hcl	10YR53 00	10YR5	8 68 C			Y	0	0	MSST	70		P						
2	0-30	mcl	10YR42 00						0	0		0								
	30-55	mc]	10YR64 00	10YR6	5 00 F				0	0		0		М						
	55-90	С	25Y 53 51	10YR56	5 00 M		00MN00	00 Y	0	0		0		P			Y			
2P	0-23	mzcl	10YR42 00						0	0		0								
	23-56	hzcl	10YR53 00	75YR5	B 00 C		OOMNOO	00 Y	0	0		0	STCSAB I	M M	Υ					
	56-83	zc	10YR61 00	75YR5	B 00 M			Y	0	0		0	STCOAB I	MP	Y		Y			
3	0-25	mcl	10YR32 42						a	0		0								
J	25-70	c	25Y 51 00		6 00 M		00MN00	00 Y				10		P			Y			
3P	0-23	mcl	10YR41 00						0	0		0								
	23-75	С	10YR52 00	10YR5	B 00 C			Y	0	0		0	STCOAB F	MP	Y		Y			
4	0-25	mzcl	10YR52 00						0	0		0								
	25-58	hzc1	10YR53 52	10YR6	6 00 C			Y	0	0		0		М						
	58-90	С	25Y 52 00	10YR5	6 00 M		OOMNOO	00 Y	0	0		0		Р			Y			
5	0-28	mzcl	10YR42 00						0	0		0								
	28-65	hzc1	10YR53 52	10YR5	6 00 C			Y	0	0		0		M						
	65-90	c	10YR53 52	10YR5	6 00 M		00MN00	00 Y	0	0		0		P			Y			
	90-105	sc	10YR53 52	10YR5	6 00 M		00MN00	00 Y	0	0	HR	5		Þ			Y	Iwt	105+	flints
6	0-25	mcl	10YR43 00	10YR5	6 00 F				0	0		0								
	25-80	zc	25 Y63 00	75YR5	8 00 C		10YR71	00 Y	0	0		0		М			Y			
7	0-28	mcl	10YR42 00						-	0		0								
	28-38	hc1	10YR52 53					Υ		0		0		М						
	38-75	C	10YR53 52				00MN00			0		0		Р			Υ			
	75-80	C	10YR53 52	75YR5	6 00 M		00MN00	00 Y	0	0	HR	10		P			Y	Imp	p 80+ 1	flints
8	0-29	mc1	10YR42 00						0	0	1	0								
	29-45	hc1	25Y 52 00				00MN00			0	ı	0		M						
	45-65	C	25Y 52 00				00MN00			0		0		P			Y			
	65-70	sc	25Y 52 00	10YR5	5 66 M		OOMNOO	00 Y	0	0	HR	10		Р			Y	Im	p 70+ s	stones
9	0-30	mcl	10YR42 00						0	0		0								
	30-60	hcl	25Y 63 62	10YR6	6 00 M			Υ	0	0		0		М						
	60-90	c	25Y 52 51	10YR5	6 00 M		00MN00	00 Y	0	0)	0		P			Y			

COMPLETE LIST OF PROFILES 23/11/93 FRIARS OAK FM HASSOCKS

				MC	TTLES	S	PED				-ST	ONES	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL A	ABUN	CONT	COL	GL	EY.	>2	>6	LITH TOT	CONSIST	STR POR	IMP SPI	CALC
10	0-30	mc)	10YR42 00							0	0	0				
	30-60	hcl	10YR53 52	10YR66	00 C				Y	0	0	0		M		
	60-90	С	25Y 62 00	10YR56	00 M	C	OOMNOO	00	Y	0	0	0		þ	Y	
	90-120	sc	25YZ62 00	10YR56	00 M	C	OOMNOO	00	Υ	0	0	HR 5		P	Y	
11	0-29	mcl	10YR42 00							0	0	0				
	29-45	mcl	10YR53 00	75YR56	58 C	1	10YR71	00	Y	0	0	0		М		
	45-55	hzcl	10YR53 00	75YR58	00 C	1	10YR71	00	Y	0	0	0		М		
	55-85	zc	10YR71 72	75YR58	00 M				Y	0	0	0		M	Y	
12	0-28	mc1	10YR33 00							0	0	0				
	28-75	ZC	25 Y53 00	75YR58	00 C	•	10YR71	00	Y	0	0	0		М	Y	
		_								_		•				
13	0-30	mcl	10YR42 00							_	0	0				
	30-50	mc1	10YR53 52								0	0		M		
	50-65 65-90	hc1	10YR53 52			,	3046100		Y	_	0	0		M P	Υ	
	63-90	С	10YR52 00	IUTKOO	UU M	•	OOMNOO	UU	T	v	0	U		F	T	
14	0-28	mc1	10YR42 00							0	0	HR 2				
17	28-45	hc1	101R52 50	107056	00 C		OOMMOO	በብ	v	_	0	D D		М		
	45-90	c c	10YR53 52				DOMNOO			_	0	0		P	Υ	
	43-30	•	101K33 32	1011130	00 11	`	JUI #100	•	•	Ů	٠	·		•	•	
15	0-32	mc1	10YR43 00							0	0	0				
	32-80	c	10YR53 00	107858	00 C		10YR71	00	Y	_	_	HR 2		м	γ	Y
		•							-	Ī	•				·	·
16	0-28	mcl	10YR43 00							0	0	0				
	28-70	c	25 Y62 00	75YR68	00 M		10YR71	00	Y	0	0	0		М	Υ	
17	0-32	mcl	10YR33 00							0	0	0				
	32-80	c	10YR53 00	75YR56	58 C	•	10YR71	00	Y	0	0	0		M	Y	
18	0-28	mcl	10YR42 00							0	0	0				
	28-50	hcl	10YR53 52	10YR56	00 C				Y	0	0	0		M		
	50-90	С	25Y 53 52	10YR56	00 M	(OOMNOO	00	Y	0	0	0		Р	Y	
19	0-30	wcj	10YR42 00							0	0					
	30-45	wcj	10YR63 00						Y		0			М		
	45–80	С	25Y 62 00	10YR66	00 M	(OOMNOO	00	Y	0	0	0		P	Y	
20	0.20	-	10/040 00	104055								•				
20	0-30	mcl	10YR42 00								0					
	30-45	hcl	10YR53 52				OOMNOO				0			M		
	45–80	-	10YR53 52	TUYK56	UŲ M	l	OOMNOO	UU	Y	U	0	0		Р	Υ	
21	0-25	~~ 1	100040 00							^	0	n				
& I	0-25 25-45	mcl hcl	10YR42 00 10YR53 52		00.0				Y		0			м		
	45-90	ncı c	25Y 62 53				COMNOO	ന	-	_	0	=		M P	Y	
	75-30	-	231 02 33	JUINJU	00 11	,		50	T	U	U	U		r	,	
22	0-30	mcl	10YR42 00	10YR46	56 C				Y	n	0	0				
	30-45	hcl	10YR52 00				OOMNOO	00	-		0			м		
	45-70	c	10YR53 62				COMNOO				_	HR 5		P	Y	
		-	,		11	Ì		J .	•	~	•			•	•	

n				M	OTTLES	;	PED			-S	TONES	;	STRUCT/	SUBS						
SAMPLE	DEPTH	TEXTURE	COLOUR	COL /	ABUN	CONT	COL	GLE	Y >2	>6	LITH	TOT (CONSIST	STR P	OR :	IMP S	SPL CAI	.c		
23	0-30	mc1	10YR42 00						0	0		0								
	30-40	hcl	10YR53 62	10YR66	00 M	(OOMMOO	00 Y	0	0		0		М						
	40-48	С	10YR53 62	10YR66	00 M	(OOMNOO	00 Y	0	0		0		М						
	48-90	С	05Y 61 00	10YR56	00 M			Y	0	0		0		Р			Y			
24	0-28	mcl	10YR42 00						0	0	HR	1								
	28-46	hcl	10YR62 00	10YR56	00 C			Y	0	0		0		M						
	46-90	С	10YR62 00	10YR56	00 M	(OOMNOO	00 Y	0	0		0		Р			Y			
25	0-35	mzcl	10YR42 00						0	0		0								
_	35-55	hc1	10YR62 00	10YR58	00 M		OOMNOO			0	HR	1		M						
	55-90	С	10YR62 00	10YR58	00 M	(00MN00	00 Y	0	0		0		Р			Y			
26	0-28	mzcl	10YR42 00						0	0	HR	1								
R	28-65	mc1	10YR74 00	75YR56	00 C	(00MN00	00 Y	0	0	HR	1		M						
	65–90	С	10YR62 00	10YR58	00 M			Y	0	0		0		Р			Υ			
27	0-20	mcì	10YR42 00						0	0	HR	1								
	20-47	hc1	10YR53 00	10YR56	00 C			Y	0	0	ı	0		М						
	47-70	c	10YR62 63	10YR56	00 M		OOMNOO	00 Y	0	0	ı	0		P			Y			
	70-90	С	10YR62 00	10YR56	00 M			١	/ 0	0	I	0		P			Y			
28	0-30	mcl	10YR42 00)					0	0)	0								
	30-35	hc1	10YR53 54						0	0	j	0		M						
ì	35-80	С	25Y 71 63	10YR56	66 M			١	/ 0	0	1	0		P			Y			
29	0-30	mcl	10YR42 00)					0	0)	0								
	30-100	hc1	10YR54 56	25Y 72	00 F				0	0	į	O		M						
	100-120	С	10YR54 56	25Y 72	00 C		00MN00	00	0	0)	0		М						
30	0-28	mc1	10YR42 00	1					0	0	1	0								
	28-40	mcl	10YR53 00							0)	0		М						
	40-60	hc1	10YR53 52				OOMNOO			0		0		М						
	60-120	С	10YR53 52	10YR56	00 M		00MN00	00 \	7 0	O	1	0		Р			Y			
31	0-26	mcl	10YR42 52	10YR56	00 F				0	0	j	0								
	26-60	mcl	10YR63 62					١		0		0		М						
_	60-100	c	10YR52 00	10YR56	i 00 M		00MN00	00 \	′ 0	C	1	0		P			Y			
32	0-30	scl	10YR42 00						0	0	ì	0								
	30-45	mc]	10YR43 00							0		0		М						
	45–70	hel	10YR53 00	75YR58	00 C		10YR51	00 \	1 0	C	i	0		М				Imp 7	10+ ms	st
33	0-30	mcl	10YR43 00)					0	C	j	0								
_	30-45	mcl	10YR53 00	10YR58	00 C		10YR71			0)	0		M						
	45-70	hc1	10YR53 00	10YR58	3 00 C		10YR71	۷ 00	' 0	C	HR	10		M				Imp 7	70+ ms	st
34	0-29	mcl	10YR43 00)					0	C)	0								
	29-62	hcl	10YR53 00	10YR58	3 00 C		10YR51	74 `	Y 0	C)	0		M				Imp (62+ ms	st

COMPLETE LIST OF PROFILES 23/11/93 FRIARS OAK FM HASSOCKS

----MOTTLES----- PED -----STONES----- STRUCT/ SUBS

R COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

					OTTLC3		PEU			J	UNES-		SIROCIT	3003		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL .	ABUN	CONT	COL	GLEY	>2	>6	LITH	TOT	CONSIST	STR POR	IMP SPL	CALC
35	0-25	mcl	10YR42 00							0		0				
	25-38	hcl	10YR52 00	75YR58	00 C	C	OOMNOO	00 Y	0	0		0		M		
	38-85	c	25 Y53 00	75YR56	00 M	1	0YR71	00 Y	0	0		0		М	Y	
36	0-20	mcl	10YR42 00						0	0	HR	1				
	20-55	mcl	10YR54 00						0	0		0		М		
	55-80	С	10YR62 00	10YR56	00 M			Y	0	0		0		P	Y	
37	0-28	scl	10YR43 00		F				0	0		0				
	28-45	hc1	10YR53 00	10YR76	78 C	•	10YR51	72 Y	0	0		0		M		
	45-70	С	10YR53 00	10YR76	78 C	•	10YR51	00 Y	0	0	MSST	5		M	Y	
	70-85	sc1	10YR53 00	10YR78	00 C	•	10YR51	00 Y	0	0	MSST	10		M	Y	
38	0-35	mcl	10YR43 00						0	0		0				
	35-55	hc1	10YR53 00	10YR58	76 C		10YR71	51 Y	0	0	MSST	5		M		
	55-85	scl	10YR52 00	10YR58	00 C		10YR51	71 Y	0	0	MSST	5		M		
39	0-36	mc1	10YR43 00						0	0		0				
	36-70	hcl	10YR53 00	10YR58	68 C		10YR71	51 Y	0	0		0		М		
	70-90	С	10YR53 00	10YR58	00 C	•	10YR71	51 Y	0	0		0		Р	Y	
40	0-24	mcl	10YR42 00						0	O	HR	1				
	24-44	hc1	25Y 63 00	10YR56	00 C			Y	Đ	0		0		M		
	44-80	c	25Y 63 00	10YR56	M 00			Y	0	0		0		₽	Y	
42	0-20	mcl	10YR42 00						0	0	HR	1				
	20-50	mcl	10YR62 00	10YR56	00 C			Υ	0	0		0		M		
	50-80	С	25Y 72 00	75YR68	00 M			Υ	0	0		0		P	Y	
43	0-20	mc]	10YR42 00						0	0	HR	1				
	20-40	mcl	10YR62 00	10YR56	00 C			Y	0	0		0		M		
	40-120	scl	05Y 61 00	75YR56	00 M			Υ	0	0		0		P	Υ	
44	0-23	wcl	10YR42 43						0	0	HR	1				
	23-34	mcl	10YR63 00					Υ	0	0	HR	1		М		
	34-60	hc1	10YR62 00	75YR56	00 M	(OOMNOO	00 Y	0	0		0		P	Y	