A1
WYCOMBE DISTRICT LOCAL PLAN
Loudwater and Wooburn Moor
Park and Ride
High Wycombe, Buckinghamshire
Agricultural Land Classification
ALC Map and Report
April 1999

AGRICULTURAL LAND CLASSIFICATION REPORT

WYCOMBE DISTRICT LOCAL PLAN LOUDWATER AND WOOBURN MOOR PARK AND RIDE HIGH WYCOMBE, BUCKINGHAMSHIRE

INTRODUCTION

1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 26 hectares of land at Loudwater and Wooburn Moor, south-east of High Wycombe, Buckinghamshire. The survey was carried out during April 1999.
2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA) on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with the Wycombe District Local Plan. This survey supersedes any previous ALC information for this land.
3. The work was conducted by members of the Resource Planning Team in the Eastern Region of the FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
4. At the time of survey the land-use was permanent grass and orchard. The areas of the site shown as 'Other Land' consist of woodland and scrub, residential dwellings and farmsteads.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of $1: 10,000$. It is accurate at this scale, but any enlargement would be misleading.
6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 overleaf.
7. The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. A total of 16 borings and 3 soil pits were described.
8. The majority of agricultural land has been classified as Subgrade 3b (moderate quality), with Subgrade 3a (good quality), and a very small area of Grade 4 (poor quality) making up the remainder. The land is predominantly limited by gradient with soil droughtiness and/or topsoil stoniness being equally or more restricting in places.

Table 1: Area of grades and other land

Grade/Other land	Area (hectares)	\% surveyed area	\% site area
3a	4.8	20.7	18.5
3b	17.6	75.9	67.7
4	0.8	3.4	3.1
Other Land	2.8	-	10.7
Total surveycd area	23.2	100	89.3
Total site area	26.0	-	100

9. Most of the survey area is restricted by a gradient limitation. Slopes are generally in the range of $8-10^{\circ}$ which results in a classification of Subgrade 3 b , due to the restrictions these place on the safe and efficient use of farm machinery. A small area of Grade 4 agricultural land (poor quality) has been mapped in the north-west of the site where the land is very steep ($11.5-16^{\circ}$) and therefore unsuited to arable cultivation.
10. Where gradients are not limiting, parts of the site are limited by soil droughtiness. Profiles are of three main types. The first (and most common) consist of well drained, fine silty soils, which lie over chalk deposits at shallow depths and suffer from a slight to moderate soil droughtiness restriction. The second group of soils are deeper, and consist of fine loamy or clayey soils which lie over chalky drift. Land comprising both of these soil types has been assessed as Subgrade 3a. The third soil type occurs on the higher land in the north-east of the site and comprises shallow gravelly soils which will have significantly restricted reserves of soil water. Subgrade 3 b is appropriate for this land.
11. In addition to the limitations described above, parts of the site may also be limited by topsoil stoniness. In these circumstances, the volume of topsoil stones in excess of 2 cm diameter was found to range between 11% and 15% and, as a result, Subgrade 3a is appropriate. The presence of large stones in the topsoil has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.

FACTORS INFLUENCING ALC GRADE

Climate

12. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
13. A detailed assessment of the prevailing climate was made by interpolation from the published 5 km grid point datasets (Met. Office, 1989). Due to the range in altitude on this site, (i.e. $52 \mathrm{~m}-102 \mathrm{~m}$) interpolations were performed at 5 m altitude increments (a total of 16 interpolations) to assess the degree of climatic variation across the site. Four interpolations are given in Table 2 overleaf representing the climatic and altitude range at the site.
14. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.

Table 2: Climatic and altitude data

Factor	Units	Values			
Grid reference	N/A	SU 909903	SU 910902	SU 911904	SU 912906
Altitude	m, AOD	55	75	88	102
Accumulated Temperature	day ${ }^{\circ} \mathrm{C}$ (Jan-June)	1449	1426	1411	1395
Average Annual Rainfall	mm	683	690	696	702
Field Capacity Days	days	146	147	148	149
Moisture Deficit, Wheat	mm	103	100	99	97
Moisture Deficit, Potatoes	mm	94	91	89	87
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1	Grade 1

15. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.
16. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have a significant effect on the site. The site is climatically Grade 1.

Site

17. The altitude of the land varies considerably with the majority of the land falling from the north and east towards the south and west to the River Wye Valley. The highest land lies at about 100 m AOD and occurs in the north-east of the site. The lowest land lies at approximately 55 m AOD and occurs in the south-west of the site at the bottom of a marked dry valley feature which runs in a north-south direction from the railway line to the London Road. Land quality is limited to Subgrade 3b and occasionally Grade 4 by steep gradients in the range $7.5-16^{\circ}$ across much of the site. On the ridge tops and the lower valley slopes the land is more gently sloping with gradients measuring between $2-6^{\circ}$. Nowhere does microrelief or flood risk affect agricultural land quality.

Geology and soils

18. The most detailed published geological information (Geological Survey of England and Wales, 1948) shows higher land in the north-east corner of the site (towards White House Farm) to be underlain by Glacial Gravel (with Bunter Pebbles) over Upper Chalk. The remainder of the site (i.e. the majority) is shown to lie directly over Upper Chalk.
19. The most detailed published soils information for this area (SSEW, 1983) shows two soil types to occur across the site which correspond with the geological deposits. The

Marlow Association is mapped in the north-east of the site on the higher ground. This is described as 'Well drained fine loamy over clayey and clayey soils. Some coarse and fine loamy over clayey soils with slowly permeable layers and slight seasonal waterlogging' (SSEW, 1984). The remainder of the site is mapped as Andover I Association which is described as 'Shallow well drained soils over chalk on slopes and crests. Deeper calcareous and non-calcareous soils in valley bottoms'. (SSEW, 1984).
20. Upon detailed field examination, soils were found to be similar to the above descriptions,

AGRICULTURAL LAND CLASSIFICATION

21. The details of the classification of the site are shown on the attached ALC map and the area statistics for each grade are given in Table 1.
22. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Subgrade 3a

23. Subgrade 3a land (good quality) has been mapped on the lower slopes of the site in two isolated units which run along the south-east, and south-west, edges of the survey area. This land is limited mainly by soil droughtiness restrictions with topsoil stoniness being equally, or more restricting in places. Gradient are less than 7°, typically $3-6^{\circ}$.
24. Soil profiles within this unit most commonly comprise calcareous, medium silty clay loam topsoils which are slightly to moderately stony (containing up to 20% total flint, and/or up to 10% total chalk fragments). These sometimes lie over shallow upper subsoils which are similar in nature to the topsoils (but usually contain higher percentages of chalk fragments). At depths between 28 cm and 40 cm , chalk bedrock is encountered, The profiles are well drained (Wetness Class I). Soil Pit 2 (see Appendix II) is considered representative of this soil type. Where chalk occurs at shallow depths, there is a significant decrease in the amount of water available for crops due to the comparatively low available water capacity (AWC) of the chalk bedrock and restrictions to rooting. Pit evidence indicates rooting was confined to the uppermost 38 cm of the chalk, and this value was used in moisture balance calculations. Moisture balance calculations were adjusted for altitude at each individual auger boring. Soil droughtiness reduces the flexibility of the land by affecting the level and consistency of yields, particularly in the drier years, to such an extent that Subgrade 3a is appropriate.
25. In addition to soil droughtiness, topsoil stoniness is equally or more restricting in places. Soil inspection Pit 1 (see Appendix II) is considered representative of this soil type. The pit observation indicates that the topsoil comprises calcareous, moderately stony, heavy clay loam (which contain 18% total flints, of which $12 \%>2 \mathrm{~cm}$ and 4% $>6 \mathrm{~cm}$ diameter). This rests over relatively deep, calcareous, fine loamy and clayey drift deposits which are moderately drained. At depth, chalky drift is encountered. On the whole, it is the presence of large stones in the topsoil which limits this land to Subgrade

3a. Topsoil stoniness has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.

Subgrade 3b

26. Over 75% of the surveyed area has been mapped as Subgrade 3b (moderate quality). The main limitations within this mapping unit are gradient and soil droughtiness.
27. Land limited to Subgrade 3 b on the basis of gradient occurs extensively in the centre and the north-west of the site, with a very small section occurring in the far east of the survey area. Here, slopes measurements are generally in the range of $8-10^{\circ}$. Excessive gradients (such as these) will affect the safe and effective use of farm machinery.
28. The higher land in the north-east corner of the survey area is limited to Subgrade 3b on the basis of soil droughtiness. Here, all of the soil profiles were impenetrable (to the soil auger) at shallow depths due to high volumes of flints in the upper part of the soil profile. Soil inspection Pit 3 (see Appendix II) is considered to be representative of this soil type. The pit observation indicates that the topsoil comprises medium sandy loam which is moderately stony (containing 20% total flint, with $12 \%>2 \mathrm{~cm}, 2 \%>6 \mathrm{~cm}$ diameter). This rests over a similar, but more stony, upper subsoil which contains 69% total flint (assessed by a wet sieving method). At a moderate depth (43 cm) gravel ($>70 \%$ flint) is encountered. These soils are assessed as Wetness Class I due to their coarse textured and freely draining nature. Due to the combination of soil characteristics and the local climate regime, these soils have restricted amounts of water in the profile, such that the land suffers a moderate to severe droughtiness limitation and crop growth and yield will be adversely affected.

Grade 4

29. A small area of Grade 4 agricultural land (poor quality) has been mapped in the northwest of the site where the land is very steep ($11.5-16^{\circ}$) and unsuited for arable cultivation, due to restrictions on mechanised operations.

SOURCES OF REFERENCE

Geological Survey of England and Wales(1948) Sheet No. 255, Beaconsfield, Drift Edition, 1:63,360 scale. BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification.
Met. Office: Bracknell.
Soil Survey of England and Wales (1983) Soils of England and Wales, Sheet 6, Soils of South East England. 1:250,000 scale, and accompanying legend.
SSEW: Harpenden
Soil Survey of England and Wales (1984) Soils and their use in South-East England. SSEW: Harpenden.

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

Sample location map
Soil abbreviations - explanatory note
Soil pit descriptions
Soil boring descriptions (boring and horizon levels)

SOIL PROFLE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

1. GRID REF: national 100 km grid square and 8 figure grid reference.
2. USE: Land use at the time of survey. The following abbreviations are used.

ARA:	Arable	WHT:	Wheat	BAR: Barley
CER:	Cereals	OAT:	Oats	MZE: Maize
OSR:	Oilseed rape	BEN:	Field Beans	BRA: Brassicae
POT:	Potatoes	SBT:	Sugar Beet	FCD: Fodder Crops
LIN:	Linseed	FRT:	Soft and Top Fruit	FLW: Fallow
PGR:	Permanent PastureLEY:	Ley Grass	RGR: Rough Grazing	
SCR:	Scrub	CFW:	Coniferous Woodland	DCW: Deciduous Wood
HTH:	Heathland	BOG:	Bog or Marsh	FLW: Fallow
PLO:	Ploughed	SAS:	Set aside	OTH: Other
HRT:	Horticultural Crops			

3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP - crop adjusted MD)
7. DRT: Best grade according to soil droughtiness.
8. If any of the following factors are considered significant, ' Y ' will be entered in the relevant column.

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land CHEM: Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used.

OC:	Overall Climate	AE: Aspect	EX:	Exposure
FR:	Frost Risk	GR: Gradient	MR:	Microrelief
FL:	Flood Risk	TX: Topsoil Texture	DP	Soil Depth
CH:	Chemical	WE: Wetness	WK:	Workability
DR:	Drought	ER: Erosion Risk	WD:	Soil Wetness/Droughtiness
ST	Topsoil Stonin			

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations.

S:	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C:	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: Fine (more than 66% of the sand less than 0.2 mm)
M: Medium (less than 66% fine sand and less than 33% coarse sand)
C: Coarse (more than 33% of the sand larger than 0.6 mm)
The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27\% clay) H: Heavy ($\mathbf{2 7 - 3 5 \%}$ clay)
2. MOTTLE COL: Mottle colour using Munsell notation.
3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described.

$$
\text { F: few }<2 \% \quad \text { C: common } 2-20 \% \quad \text { M: many } 20-40 \% \quad \text { VM: very many } 40 \%+
$$

4. MOTTLE CONT: Mottle contrast

F: faint - indistinct mottles, evident only on close inspection
D: distinct - mottles are readily seen
P: prominent - mottling is conspicuous and one of the outstanding features of the horizon
5. PED. COL: Ped face colour using Munsell notation.
6. GLEY: If the soil horizon is gleyed a ' Y ' will appear in this column. If slightly gleyed, an 'S' will appear.
7. STONE LITH: Stone Lithology - One of the following is used.

HR: all hard rocks and stones SLST: soft oolitic or dolimitic limestone
CH: chalk FSST: soft, fine grained sandstone
ZR: soft, argillaceous, or silty rocks GH: gravel with non-porous (hard) stones
MSST: soft, medium grained sandstone GS: gravel with porous (soft) stones
SI: soft weathered igneous/metamorphic rock
Stone contents ($>2 \mathrm{~cm},>6 \mathrm{~cm}$ and total) are given in percentages (by volume).
8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:
degree of development WK: weakly developed ST: strongly developed
ped size
ped shape
S : single grain
GR: granular
SAB: sub-angular blocky PL: platy

MD: moderately developed

M: medium
VC: very coarse
M: massive
AB: angular blocky
PR: prismatic
9. CONSIST: Soil consistence is described using the following notation:

L: loose VF: very friable FR: friable \quad FM: firm \quad VM: very firm EM: extremely firm EH: extremely hard
10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: \mathbf{G} : good \mathbf{M} : moderate \mathbf{P} : poor
11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores $>0.5 \mathrm{~mm}$, a ' Y ' will appear in this column.
12. IMP: If the profile is impenetrable to rooting a ' Y ' will appear in this column at the appropiate horizon.
13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a ' Y ' will appear in this column.
14. CALC: If the soil horizon is calcareous, $\mathrm{a}^{\prime} \mathrm{Y}$ ' will appear in this column.
15. Other notations

APW: available water capacity (in mm) adjusted for wheat
APP: available water capacity (in mm) adjusted for potatoes
MBW: moisture balance, wheat
MBP: moisture balance, potatoes

SAMPLE		ASPECT					--WETNESS--		-WHEAT-		-POTS-		M. REL		EROSN F	FROST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	$A P$	MB	AP	MB	DRT	FLOOD	Exp	DIST	LIMIT		COMMENTS
1	SU90709070	PGR	S	6			1	1	91	-8	95	6	3A				DR	3 A	135 CH SEE 29
2	SU91209060	PGR					1	1	82	-21	87	-7	3B			Y	DR	38	Q DISTURBED
3	SU91309060	RGR					1	1	49	-54	51	-43	4				DR	38	I30 SEE 3P
4	SU90909050	PGR	W	2			1	1	87	-15	90	-4	3A				DR	3A	CH 35 SEE $2 P$
5	SU91209050	PGR	S	3			1	1	47	-56	49	-45	4				DR	3 B	I30 SEE 3P
6	SU91309050	PGR					1	1	46	-57	48	-46	4				OR	3 B	130 SEE 3P
7	SU90879040	PGR	W	2			1	1	97	-6	98	4	3A				DR	3 A	CH 40 SEE $2 P$
8	SU91109040	LEY	SW	5			1	1	34	-69	35	-59	4				DR	3B	120 SEE 3P
9	SU91209040	PGR	SW	4			1	1	46	-57	47	-47	4				DR	38	I30 SEE 3P
10	SU90889030	PGR	W	3			1	1	78	-25	83	-11	3B				DR	38	CH 28 SEE 2P
11	SU91029030	LEY	SW	5			1	1	43	-60	43	-51	4				OR	38	I23 SEE 3P
12	SU91109030	FRT	SW	5			1	2	46	-54	46	-44	4				DR	3B	I30 SEE 3P
13	SU91189028	FRT	SW	4			1	2	82	-17	88	-1	3 A				ST	3 A	SEE 1P
14	SU91009020	FRT	SW	6			1	1	90	-13	90	-4	3A				DR	3 A	CH 40 SEE $2 P$
15	SU91109020	FRT	SW	5			1	1	75	-25	81	-10	38				DR	3A	CH 30 SEE $2 P$
16	SU91209020	FRT	SW	4			1	1	80	-20	86	-5	3A				DR	3A	BORDERLINE 38
1 P	SU91189028	FRT	SW	3	20		2	2	115	16	89	0	2				ST	3A	
2P	SU91109020	FRT	SW	5			1	1	82	-18	82	-9	3A				DR	3A	
3P	SU91209050	PGR	SE	3			1	1	57	-41	54	-37	38				DR	3B	$3 A / 38 \mathrm{~T} / \mathrm{S} \mathrm{ST}$

----MDTTLES--..-- PED ----STONES---- STRUCT/ SUBS
COL ABLN CONT COL. GLEY >2>6 LITH TOT CONSIST STR POR IMP SPL CALC

1	0-25	MZCL	10YR3132
	25-35	MZCL	10YR41
	35-73	CH	10YR81
2	0-35	MSL	10YR32
	35-57	MCL	10YR31
3	0-30	MCL	10 YR 42
4	0-20	MZCL	$10 \mathrm{YR42}$
	20-35	MZCl .	10YRS2
	35-73	CH	10YR81
5	0-30	MSL	10YR4232
6	0-30	MSL	10YR42
7	0-30	MZCL	10YR4252
	30-40	MZCL	10YR5262
	40-78	CH	10YR81
8	0-20	MCL	10YR4243
9	0-30	MSL	10YR32
10	0-18	MCL	$10 \mathrm{YR42}$
	18-28	MCL	$10 \mathrm{YR43}$
	28-66	CH	10YR81
11	0-23	MZCL	$10 \mathrm{YR42}$
12	0-25	HCL	$10 \mathrm{YR42}$
	25-30	C	10YR5642
13	0-24	HCL	10YR4232
	24-50	C	10YR4278
	50-60	C	10 YR 58
14	0-25	MCL	10 YR 42
	25-40	HCL	10YR43
	40-78	CH	10YR81
15	0-15	MCL	$10 Y \mathrm{R} 42$
	15-30	MCL	$10 \mathrm{YR43}$
	30-68	CH	10YR81
16	0-22	MCL	10 YR 42
	22-32	MCL	10YR43
	32-70	CH	10YR81

0	0	CH	10		Y
0	0 CH	30	M	Y	
0	0	0	P	Y	

122 HR 18

82 HR 15
00 CH 30
000

123 HR 15
$\begin{array}{lll}0 & 0 \mathrm{CH} & 50 \\ 0 & 0 & 0\end{array}$

82 HR 10
00 CH 60
000

0 OHR 15 M IMP FLINTS

IMP FLINTS

IMP FLINTS

IMP FLINTS

IMP FLINTS

IMP FLINTS

5	0 CH	5		Y
5	0 CH	40	M	Y
0	0	0	M	Y

$0 \quad 0 \mathrm{CH} \quad 10$

113 HR 15

$M \quad$| | Y |
| :--- | :--- |
| | Y |

123 HR 20
00 HR 5
00 CH 20
$0 \mathrm{OCH} \quad 10$
0 OCH 60
000

123 HR 18

133 HR 20
$0 \quad 0 \mathrm{CH} \quad 10$
$0 \quad 0 \mathrm{CH} \quad 50$
000
M
M
Y
Y

0 OHR 15

112 HR 20

0 OHR 15
M

M		
M	Y	IMP FLINTS

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS

COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

1P $\quad 0-20 \quad$ HCL \quad 10YR3132

$20-38$	C	10 YR53
$38-82$	C	$10 Y R 5363$

124 HR 18
75YR58 C F Y
Y
$\begin{array}{lll}0 & \mathrm{CH} & 30 \\ 0 & \mathrm{CH} & 65\end{array}$
MOCAB FM M
MDCSAB FM M
y POROUS
Y VARIABLE
Y CHALK RUBBLE

11	3	$H R$	20		Y
0	0	CH	50	M	Y
0	0	$H R$	10	P	Y

122 HR 20
0 OHR 69
000
LOOSE

