A1

New Forest District Local Plan Objector Site 73 Land East of Alderholt Road, Sandleheath Hampshire

Agricultural Land Classification ALC Map and Report

February 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 1508/026/97 MAFF Reference EL 15/00315 LURET Job Number 02768

AGRICULTURAL LAND CLASSIFICATION REPORT

NEW FOREST DISTRICT LOCAL PLAN OBJECTOR SITE 73 LAND EAST OF ALDERHOLT ROAD, SANDLEHEATH, HANTS

INTRODUCTION

- This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 9 hectares of land to the east of Alderholt Road Sandleheath Hampshire The survey was carried out during February 1997
- The survey was commissioned by the Ministry of Agriculture Fisheries and Food (MAFF) from its Land Use Planning Unit in Reading in connection with the New Forest District Local Plan the site is one of a number of objector sites. The results of this survey supersede any previous ALC information for this land
- Prior to the 1st April 1997 the work was conducted by members of the Resource Planning Team in the Guildford Statutory Group of ADAS. After this date the work was completed by the same team as part of the Farming and Rural Conservation Agency (FRCA) Reading. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988). A description of the ALC grades and subgrades is given in Appendix I.
- At the time of survey the agricultural land on this site was in permanent grassland. The areas of the site shown as Other Land consists of a residential dwelling and a gravel track

SUMMARY

- The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 10 000. It is accurate at this scale but any enlargement would be misleading
- The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below

Table 1 Area of grades and other land

Grade/Other land	Area (hectares)	% Total survey area	% Total site area
3a	5 8	67 4	63 0
3b	2 8	32 6	30 4
Other land	0 6		6 6
Total surveyed area	8 6	100	
Total site area	9 2		100

- The fieldwork was conducted at an average density of 1 boring every hectare A total of 10 borings and 2 soil pits were described
- The land at this site has been classified as Subgrade 3a (good quality) and Subgrade 3b (moderate quality) on the basis of soil wetness and/or soil droughtiness
- The majority of profiles are poorly drained comprising silty clay loam topsoils overlying similar upper subsoils which in many cases rest over poorly structured clay or silty clay. The depth to these clayey horizons will determine the final ALC grade the shallower the more severe the resulting soil wetness restriction. These clayey soils cause drainage to be impeded so that land utilisation is restricted.
- Occasional borings were sandy or gravelly at depth and suffered from variable degrees of soil droughtiness and wetness. The combination of soil properties and local climatic factors results in restricted profile available water giving rise to drought prone soils. In addition, the nature of the underlying geological deposits, together with the high rainfall restricts the drainage of water across the lower parts of the site and causes seasonal waterlogging to occur at moderate depths in the profile.

FACTORS INFLUENCING ALC GRADE

Climate

- Climate affects the grading of the land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)

Factor	Units	Values	Values
Grid reference	N/A	SU 123 147	SU 122 143
Altıtude	m AOD	50	35
Accumulated Temperature	day°C	1506	1523
Average Annual Rainfall	mm	881	874
Field Capacity Days	days	183	182
Moisture Deficit, Wheat	mm	105	107
Moisture Deficit, Potatoes	mm	97	100

Table 2 Climatic and altitude data

- 13 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality

The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other local climatic factors such as exposure and frost risk are not believed to have an adverse effect on the site. FCD figures are higher than average in regional terms. Due to the sites proximity to the coast the warm, moist climate may enhance the likelihood of soil wetness/workability restrictions. Despite this the site is climatically Grade 1.

Site

The agricultural land at this site lies at an altitude of 35-55m AOD. The majority of the land at the site is flat or very gently sloping with slight undulations. Nowhere does gradient or microrelief affect agricultural land quality.

Geology and soils

- 17 The published geological information (BGS 1976) shows the majority of the survey area to be underlain by London Clay with the possibility of alluvium occurring along the southern boundary of the site
- The most recently published soil information (SSEW 1983) shows the Wickham 3 association to be mapped across the entire survey area. These soils are described as slowly permeable seasonally waterlogged fine loamy over clayey and coarse loamy over clayey soils and similar more permeable soil with slight waterlogging. Some deep coarse loamy soils affected by groundwater. Landslips with irregular terrain locally (SSEW 1983).
- 19 Upon detailed field examination soils generally consistent with the above description were found to exist across the site although occasional soils which were coarser textured were observed in places

AGRICULTURAL LAND CLASSIFICATION

- The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1
- The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Subgrade 3a

- Two areas of very good quality agricultural land have been mapped to the extreme north and extreme south of the survey area. The land is affected mainly by wetness with soil droughtiness being equally or more restricting on occasions. Generally soils within this mapping unit fall into two variants.
- The first group of soils are affected by soil wetness caused by slowly permeable subsoil horizons occurring at moderate depths giving rise to workability restrictions affecting the timing of cultivations and trafficking. The majority of profiles within this unit comprise stoneless or very slightly stony (0-2% total flints by volume) medium silty clay loam topsoils over stoneless or slightly stony (0-4% total flints by volume) heavy clay loam or heavy silty clay loam subsoils. The soils are either gleyed or slightly gleyed between 0 and 45cm depth. Poorly

structured slowly permeable clay or silty clay horizons occur at depths between 55 and 82cm. These act to impede soil drainage such that a wetness class of II or III has been assigned to these soils accordingly. Given the precvailing climatic conditions, these soils equate to Subgrade 3a. Soil pit 2 is representative of these soil types. Occasional borings of slightly better quality are also found within this mapping unit but were too limited in extent to be mapped seperately.

These profiles consist of very slightly stony (3-4% v/v flints) medium silty clay loam topsoils over medium clay loam subsoils which become slightly to moderately stony at depth (2-20% v/v flints). The borings become impenetrable to the auger between 45 and 65cm depth. Pit 1 is representative of these soil types. The pit observation shows that medium sandy loam occurs at depth containing approximately 60% total flints. The profile was waterlogged at the time of survey with the water level resting at approximately 45cm depth. Generally, the subsoils are gleyed between 30 and 50 cm depth which is evidence of this seasonal waterlogging. It was observed that the land could be drained adequately so the soils have been assigned to wetness class I. On the whole, the combination of soil texture and flinty subsoils with the prevailing climate restricts the water available to crops such that there is a slight risk of drought stress to the plants in most years restricting the land to Subgrade 3a on the basis of soil droughtiness.

Subgrade 3b

Moderate quality agricultural land has been mapped in the central area of the site Within this unit profiles encountered had impeded drainage arising from the occurrence of slowly permeable clay horizons at shallow depths (less than 40cm). The profiles consist of stoneless or very slightly stony (0.2% total flints) medium silty clay loam topsoils which are often gleyed sometimes lying over heavy silty clay loam upper subsoil horizons with similar characteristics to the topsoils. Profiles pass to slowly permeable clay at shallow depth. This has the effect of slowing water flow through the profile to the extent that air is excluded from the soil by water for long periods leading to anaerobic conditions poor root development, and plant growth. Excessive soil wetness also leads to a reduction in the opportunities for cultivation and/or grazing such that within the prevailing local climatic regime, wetness class IV. Subgrade 3b is appropriate for this land.

Sharron Cauldwell Resource Planning Team FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No 314 Ringwood 1 50 000 scale (Drift Edition) BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 scale SSEW Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England. Bulletin 15 SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below

Boring Header Information

- 1 GRID REF national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	OTH	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
HTH	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 GRDNT Gradient as estimated or measured by a hand held optical clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 DRT Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant, 'Y' will be entered in the relevant column

MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil erosion risk
EXP	Exposure limitation	FROST	Frost prone	DIST	Disturbed land
CHEM	Chemical limitation				

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	ΑE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				_

Soil Pits and Auger Borings

TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	C	Clay
SC	Sandy Clav	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- F Fine (more than 66% of the sand less than 0 2mm)
- M Medium (less than 66% fine sand and less than 33% coarse sand)
- C Coarse (more than 33% of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27% clay) H Heavy (27 35% clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2% C common 2 20% M many 20-40% VM very many 40% +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- > PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column. If slightly gleyed, an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

HR	all hard rocks and stones	FSST	soft fine grained sandstone
ZR	soft, argillaceous or silty rocks	CH	chalk
MSST	soft medium grained sandstone	GS	gravel with porous (soft) stones
SI	soft weathered	GH	gravel with non porous (hard)
	igneous/metamorphic rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderately developed
Ped size	F C	fine coarse	M	medium
Ped shape	S GR SAB PL	single grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 CONSIST Soil consistence is described using the following notation

L loose VF very friable FR friable FM firm VM very firm EM extremely firm EH extremely hard

- 10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor
- 11 POR Soil porosity If a soil horizon has less than 0.5% biopores >0.5 mm a 'Y' will appear in this column
- 12 IMP If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a 'Y' will appear in this column
- 15 Other notations

APW available water capacity (in mm) adjusted for wheat APP available water capacity (in mm) adjusted for potatoes MRW moisture balance, wheat

MBW moisture balance wheat MBP moisture balance potatoes

SOIL PIT DESCRIPTION

Site Name NEW FOREST LP SITE 73

Pit Number

1P

Grid Reference SU12201430

Average Annual Rainfall Accumulated Temperature 874 mm

Field Capacity Level

1523 degree days

Land Use

183 days

Slope and Aspect

Rough Grazing 02 degrees SW

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MZCL	10YR43 00	0	4	HR					
30- 45	MCL	10YR43 44	0	6	HR	F	MDCSAB	FR	М	
45- 60	MCL	10YR53 00	0	20	HR	M	MDMSAB	FR	M	
60-100	MSL	10YR53 00	0	60	HR	M			М	

Wetness Grade 2

Wetness Class

I

Gleying SPL

APW

045 cm cm

Drought Grade 3A

111mm MBW 4 mm

APP 104mm MBP

4 mm

FINAL ALC GRADE 3

MAIN LIMITATION Droughtiness

SOIL PIT DESCRIPTION

Site Name NEW FOREST LP SITE 73

Pit Number 2P

Grid Reference SU12321460

874 mm Average Annual Rainfall 1523 degree days

Accumulated Temperature

Field Capacity Level

183 days

Land Use

Permanent Grass

Slope and Aspect

02 degrees S

HORIZON	TEXTURE	COLOUR	STONES >2	TOT STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 25	MZCL	10YR44 00	0	1	HR	С				
25- 45	MZCL	25Y 63 62	0	0		С	MDCSAB	FR	M	
45- 60	MZCL	10YR53 00	0	0		M	MDCSAB	FM	M	
60-120	ZC	25Y 61 62	0	0		M	MDCAB	FM	P	

Wetness Grade 3A Wetness Class III Gleying SPL 060 cm

Drought Grade 1 APW MBW 142mm 35 mm APP MBP 19 mm 119mm

FINAL ALC GRADE **3**A MAIN LIMITATION Wetness program ALCO12

LIST OF BORINGS HEADERS 21/07/97 NEW FOREST LP SITE 73

page 1

SAMP	ıF		ASPECT				WFT	NESS	_1414	EAT~	_D^	T\$_	м	REL	EROSN	FROST	CHEM	ALC	
NO	GRID REF	USE	-0, 20,	GRDNT	GLEY	' SPL	CLASS	_		MB	AP	MB	DRT	FL00D		(P DIST			COMMENTS
1	SU12301470	PGR	s	02		055	3	3A	000	0	000	0					WE	ЗА	SL GL38 SEE 2P
1P	SU12201430	RGR	SW	02	045		1	2	111	4	104	4	3A				DR	3A	WET
2	SU12381465	PGR	S	02	030	078	2	2	180	73	141	41	1				WE	2	ALMOST 3A
2P	SU12321460	PGR	S	02	0	060	3	3A	142	35	119	19	1				WE	ЗА	PIT TO 800M
3	SU12321460	PGR	S	02	0	065	3	3A	000	0	000	0					WE	3A	SEE PIT 2
4	SU12401460	PGR	S	03		045	3	ЗА	000	0	000	0					WE	ЗА	SL GL32 SEE 2P
5	SU12201450	PGR			0	040	4	3B	000	0	000	0					WE	3B	SEE PIT 2
6	SU12301450	PGR			0	038	4	3B	000	0	000	0					WE	3B	SEE PIT 2
7	SU12101440	RGR	S	02	0	082	2	3A	146	44	120	20	1				WE	3A	SEE PIT 2
8	SU12201440	PGR	S	01	0	080	2	3A	133	26	120	20	2				WE	ЗА	SEE PIT 2
9	SU12101320	RGR	s	02	035		2	3A	079	-23	079	-21	3B				WD	3A	145 SEE PIT 1
10	SU12201430	RGR	S	02	050		1	2	097	-5	105	5	3A				DR	ЗА	I60 SEE PIT 1
ł																			

Imp flints

----MOTTLES---- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 0 0 0-30 10YR42 00 mzcl 10YR43 00 10YR58 00 F 0 0 0 30-38 hzcl 10YR46 56 75YR58 00 C 10YR61 00 S 0 0 0 38-55 zc 10YR61 00 S 0 0 10YR54 00 75YR58 00 C 0 Υ 55-80 0 0 HR 1P 0-30 mzcl 10YR43 00 10YR43 44 75YR58 00 F 0 0 HR 6 MDCSAB FR M 30-45 mc1 10YR53 00 75YR58 00 M OOMNOO OO Y O O HR 20 MDMSAB FR M 45-60 നമി 00MN00 00 Y 0 0 HR 60-100 ms1 10YR53 00 75YR58 00 M 60 10YR42 00 10YR56 00 F 0 0 0 0-30 fsz1 10YR53 00 10YR58 00 C 0 0 0 30-40 fsz1 0 0 40-70 fs1 10YR53 00 10YR58 00 C 10YR53 00 10YR58 00 C 0 0 0 70-78 sc1 0 0 78-100 c 10YR71 00 75YR58 68 M 0 10YR71 00 75YR58 00 M 0 0 0 sandy 100-120 fs1 10YR44 00 75YR46 00 C 0 0 HR 0-25 mzc1 1 25-45 mzcl 25Y 63 62 10YR58 00 C Υ 0 0 0 MDCSAB FR M 10YR53 00 25Y 62 00 M 00MN00 00 Y 0 0 0 MDCSAB FM M 45-60 mzc1 25Y 61 62 75YR58 00 M 00MN00 00 Y 0 0 O MDCAB FM P Y 60-120 zc 0 0 0-30 mzcl 10YR52 00 10YR58 00 C Υ 0 10YR53 00 75YR46 00 C 10YR61 00 Y 0 0 0 М 30-65 hzc1 10YR61 00 Y 0 0 10YR53 00 75YR58 00 C 0 65-80 ZC 10YR43 00 10YR58 00 F 0 0 0-32 mzcl 10YR54 00 10YR58 00 C S 0 0 32-45 0 hzcl 10YR56 00 75YR58 00 C 10YR62 00 S 0 0 45-70 0 zc 0 0 25 Y53 00 75YR56 00 C 0-30 mzcl 0 0 HR 2 25 Y53 63 10YR56 00 M 30-40 hzcl 40-70 25 Y61 63 10YR58 00 C Y 0 0 HR 10 10YR52 54 10YR58 00 C Y 0 0 HR 2 0-38 mzc1 0 0 HR 10YR61 66 75YR58 00 M 2 38-60 0-36 10YR42 00 10YR46 00 C 0 0 HR 2 mzcl 10YR42 63 10YR56 00 C 00MN00 00 Y 0 0 HR 1 М 36-45 mc1 00MN00 00 Y 0 0 HR 10YR61 62 75YR58 00 M 45-82 hc1 25Y 61 62 75YR58 00 M 00MN00 00 Y 0 0 82-120 c 0 0 HR 10YR53 00 10YR56 00 C 0-30 mzc1 0 0 25 Y62 63 10YR56 00 M Υ 30-45 hc1 25 Y71 00 10YR56 00 M Υ 0 0 0 45-80 c 0 0 80-110 c 25 Y71 00 10YR58 00 M

0 0 HR

Y 0 0 HR 15

2

М

00MN00 00 Y 0 0 HR

10YR42 00 10YR46 00 F

10YR42 53 10YR56 58 C

10YR42 53 10YR56 58 C

0-35 mzc1

40-45 mc1

mc1

35-40

program ALCO11 COMPLETE LIST OF PROFILES 11/06/97 NEW FOREST LP SITE 73

page 2

----MOTTLES---- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

0-30 mzcl 10YR42 00 0 HR 3
30-50 mcl 10YR52 00 0 HR 5 M
50-65 mcl 10YR53 00 10YR58 00 C 00MN00 00 Y 0 0 HR 10 M

Imp flints