ADUR DISTRICT LOCAL PLAN
AGRICULTURAL LAND CLASSIFICATION ALC MAP \& REPORT

APRIL 1993

ADUR DISTRICT LOCAL PLAN AGRICULTURAL LAND CLASSIFICATION

1
In December 1992 detaıled Agricultural Land Classification (ALC) surveys were conducted at Lancing and Sompting in West Sussex ADAS was commissioned by MAFF s Land Use Planning Unit to provide information on the quality of agricultural land affected by proposals for development in the Adur District Local Plan

A total of 332 hectares was surveyed using MAFF s revised guidelines and criteria for classifying the quality of agricultural land These guidelines allow land to be graded according to the extent to which its physical or chemical characteristics impose long term limitations on its use for agriculture

The details of the findings are given in the attached appendices and the distribution of the grades and sub-grades is shown on the attached ALC maps These have been drawn at a scale of 110000 and are accurate at this level but any enlargement may be misleading The fieldwork was conducted at a detalled level with approximately one soll observation per hectare - a combination of auger boring and soil pit descriptions

The detailed measurements of each grade are presented in the tables below and the following report describes the Lancing and Sompting areas separately

TABLE 1 Lancing, Dıstribution of Grades and Sub-grades
Grade Area (ha) Of Agrıcultural Area

2	223	168
3A	153	115
3B	951	717
Non Agric	55	100\% (132 7 ha)
Urban	03	
total	1385 ha	
TABLE 2	Sompting, Distribution of	Grades and Sub-grades
Grade	Area (ha)	\% of Agrıcultural Area
2	1015	675
3A	163	108
3B	32 1	214
4	05	0.4
Non Agric	327	
Urban	104	100\% (150 4 ha)
TOTAL	1935 ha	

2 Land at Lancing

21 Three distinct blocks of agricultural land were surveyed on the eastern edge of lancing totalling 1385 hectares an area north of the A27 (T) developed on higher slopes overlying Chalk and Quaternary

Head deposits, a central area of low lying land bounded by the A27 (T) and the coastal railway with solls developed over Alluvium deposits in the east and Quaternary Head and Raised Beach Deposits in the west a flat low lying area to the south between the railway and the coast with soils largely developed over Alluvium deposits

22 Land to the north of the A27 (T) 15 a mixture of Sub-grades $3 A$ and 3B Pits numbers 2 and 4 were located in this area and illustrate the range of soils that occur in this section Soil droughtiness is the single most limiting factor on these soils that have developed over Chalk The northern fringe of Sub-grade 3B identifies shallow soils which rest on Chalk from within 30 cm depth Even with roots penetrating 45 cm into the Chalk the low amount of available water for plants restricts these profiles to no better than Sub-grade 3B The deeper Sub-grade 3 A soils exhibit Heavy Clay Loam topsoil textures overlying Clay subsoils with Chalk occasionally present from 65 cm depth or with subsolls with high chalk stone percentages Roots again penetrate the Chalk layers but there is a significant limıtation on the degree of available water

23 Land between the A27 (T) and the railway falls into two distinct ALC grades

To the east of Marsh Barn Lane the alluvial soils are classified as Sub-Grade $3 B \quad T o$ the west of the Lane the solls are classified as Grade 2

Pit 1 is typical of the Sub-grade 3 B soils Soll wetness is the ımportant limitıng factor Clay topsoils overlie clay subsoils which exhibit clear evidence of shallow gleyıng caused by waterlogging related to slowly permeable structures in the upper subsoil These soils are therefore placed in Wetness Class IV (i e the profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most yeaxs) and suffer from a significant restriction on the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock

The Grade 2 soils in the western end are typically Medium Clay Loam topsorls overlying Heavy Clay Loam upper subsoıls and Clay lower subsoils The profiles are stone free show no evidence of significant wetness and the subsoils exhibit moderate structural conditions Soll droughtiness is the most significant physical limitation with the profiles having insufficient available water to qualify for a higher grade

24 The southern block of land is mostly Sub-grade 3B with a limated area of Sub-grade 3 A on the north-eastern fringe The solls are sımılar to the poor alluvial soils described by Pit 1 north of the railway with a significant soll wetness limitation

A limited area of better quality Sub-grade 3A land defines variable profiles wath lighter textures better structures and a less significant wetness limitation These profiles experience a soil droughtiness limitation

Table 3 Climatic Interpolations, Lancing

Grıd Reference	TQ 190060	TQ 193043
Altıtude	35	4
Accumulated Temperature (${ }^{\circ}$ days)	1502	1537
Average Annual Rainfall (mm)	793	758
Fıld Capacıty (days)	166	161
Moısture deficıt Wheat (mm)	115	121
Moısture deficit Potatoes (mm)	111	119
Clımatıc Grade	1	1

3 Land at Sompting

31 The ALC survey at Sompting covers 1935 hectares and includes the lower lying flat land in the Sompting gap between the urban areas of Sompting and worthing and includes a significant block of land north of the A27 (T) around Sompting Abbotts

The majority of the soils are developed over Head Deposits with a band of Chalk along the higher ground on the northern fringe and with a band of Raised Beach deposits and Alluvium along the southern fringe

32 Land in the extreme north of the site is classified as Sub-grade 3B with gradients locally in the range $7-11^{\circ}$ On the southern slopes adjacent to this area of Sub-grade $3 B$ there is a fringe of Sub-grade 3A soils where soll droughtiness becomes the most limiting factor Chalk $1 s$ encountered at depths below approximately 60 cm but the stony nature of the subsoil combines to significantly restrict the amount of avallable water for plants pit 1 is typical of these solls

Solls with stony subsoils also occur in the south-western edge of the northern block These soils though of heavier textures again experience a significant droughtiness limitation which restricts them to Sub-grade 3A (see Pit 2)

33 The remainder of the northern block and the bulk of the southern section form a large map unit of Grade 2 land pits 3 and 5 are typical of the variation that exists in this map unit Soll droughtiness is generally the key limitation for soils that have Medium Clay Loam topsoils overlying stone-free and freely draining Heavy Clay Loam upper and lower subsolls These profiles fall to have enough available water in the profile for shallower rooting crops such as potatoes

In the western edge of this map unit soll wetness becomes the most limiting factor Solls here are generally heavier with a sequence of Medıum Clay Loam Heavy Clay Loam and Clay in the profile the clay occurring from approximately 50 cm depth There 1 s clear evidence of gleying within the top 40 cm and when augering the subsolls appear slowly permeable The soll pit (Pit 5) however reveals that the subsoils are not poor in structure allowing these profiles to be placed in Wetness Class II (ı e the solls $1 s$ wet within 70 cm for more than 90 days but not wet within 40 cm for more than 30 days in most years) and Grade 2 The soll pit is actually
classified as Sub-grade $3 A$ due to a droughtiness limitation related to slightly stony lower subsoils In general the subsoils are not as stony and qualify for Grade 2 even on droughtiness

34 A limited area of Sub-grade 3A occurs over Beach Deposits which have given rise to solls with very stony subsoils (35-45\% stone content) which experience a significant restriction on the amount of water available in the profile and hence a droughtiness limitation

35 The southern fringe is classified as Sub-grade 3B This lower lying area has a significant wetness limitation The soils are developed over Alluvium are typically Heavy Clay Loam topsoils with Clay subsolls which are slowly permeable This area is placed in Wetness Class IV (i e the soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years) and this degree of wetness severely restricts the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock

36 The non-agricultural areas outlıned on the map include farm tracks areas overgrown by bramble and scrub allotment gardens school playing fields reed beds and sizeable field ditches

Table 4 Climatic Interpolations, Sompting

Grid Reference T	TQ165 040	TQ160 055	TQ160 054	TQ157 059
Altıtude (m)	5	30	20	70
Accumulated Temperature (${ }^{\circ}$ days)) 1537	1508	1520	1463
Average Annual Rainfall (mm)	773	805	801	824
Field Capacity (days)	164	169	168	171
Morsture Deficit Wheat (mm)	120	115	117	110
Moisture Deficit Potatoes (mm)	113	111	113	104
Overall Climatic Grade	1	1	1	1

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land on the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1

Grade 3 Good To Moderate Quality Agricultural Land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in grades 1 and 2

Sub grade 3A Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Sub grade 3B Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops leg cereals and forage crops) the yields of which are variable In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation the grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or hard uses with relatively little potential for a return to agriculture housing industry commerce education transport religious buildings cemeteries Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be re claımed using derelict land grants

Non agricultural

Soft uses where most of the land could be returned relatively easily to agriculture, including private parkland public open spaces sports fields allotments and soft surfaced areas on airports/airfields Also active mineral workings and refuse tips where restoration conditions to soft after uses may apply

Woodland

Includes commercial and non-commercial woodland

Agricultural Buildıngs

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map sclae permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

REFERENCES

* MAFF (1988) Agricultural Land Classification of England And Wales revised guidelines and criteria for grading the quality of agricultural land
* Meteorological Office (1989) Climatological Data for Agricultural Land Classification

DEFINITION OF SOIL WETNESS CLASSES

Wetness Class I

The soil profile is not wet within 70 cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70 cm depth for 3190 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but not wet within 40 cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70 cm depth for 91180 days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for 3190 days in most years

Wetness Class IV

The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80 cm depth, it is wet within 40 cm depth for $91-210$ days in most years

Wetness Class V

The soil profile is wet within 40cm depth for 211335 days in most years

Wetness Class VI

The soil profile is wet within 40 cm depth for more than 335 days in most years
(The number of days is not necessarily a continuous period In most years is defined as more than 10 out of 20 years)

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents * Soıl Abbreviations Explanatory Note
*Soll Pit Descriptions
* Database Printout Boring Level Information
* Database Prıntout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil profile and pit information obtained during ALC surveys is held on a database This has commonly used notations and abbreviations as set out below

BORING HEADERS

1 GRID REF Natıonal grad square followed by 8 figure grad reference
2 USE Land-use at the time of survey
The following abbreviations are used

ARA - arable	PAS/PGR - permanent pasture
WHT - wheat	RGR - rough grazing
BAR - barley	LEY - ley grassland
CER - cereals	CFW - coniferous woodland
OAT - Oats	DCW - deciduous woodland
MZE - malze	SCR - sCrub
OSR - Oilseed rape	HTH - heathland
BEN - field beans	BOG - bog or marsh
BRA - brassicae	FLW - fallow
POT - polatoes	PLO - ploughed
SBT - sugarbeet	SAS - set-aside
FCD - fodder crops	OTH - other
FRT - soft and top fruit	LIN - linseed
HOR/HRT - horticultural crops	

3 GRDNT Gradıent as measured by optical reading clınometer
4 GLEY/SPL Depth in centimetres (cm) to gleyed and/or slowly permeable horizons

5 AP (WHEAT/POTS)
Crop-adjusted avallable water capraty The amount of soil water (an mallimptres) held in the soll profile that is available to a growing crop (wheat and potatoes are used as reference crops)

6 MB (WHEAT/POTS)
The monsture balance for wheat and potatoes obtained by subtracting the soil moisture deficit from the crop-adjusted avaılable water capacıty

7 DRT Grade according to soil droughtiness assessed against soil morsture balances

8 II REL Mıcro-relief)
FLOOD Flood risk)
EROSN Soll erosion
EXP Exposure)
FROST Frost prone)
DIST Disturbed land)
CHEM Chemical limitation)

If any of these factors are considered significant in terms of the assessment of agricultural land quality a y will be entered in the relevant column

OC - overall climate	CH - chemical limıtations
AE - aspect	WE - wetness
FX - exposure	WK - workability
FR - frost	DR - drought
GR - gradient	ER - erosion
liR - micro-relief	WD - combined soil wetness/soll
FL - flooding	droughtiness
TX - soil texture	ST - topsoıl stonıness
DP - soil depth	

PROFILES \& PITS

1 TEXTURE Soll texture classes are denoted by the following abbreviations

```
S - sand
LS - loamy sand
SL - sandy loam
SZL - sandy silt loam
2L - silt -oam
MZCL - medrum silty clay loam
MCL - medıum clay loam
SCL - sandy clay loam
HZCL - heavy sılty clay loam
    SC - sandy clay
    2C - silty clay
    C - clay
```

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction may be indicatra by the use of prefixes

F - fine (more than $\frac{z}{3}$ of the sand less than 02 mm)
C - coarse (more than $\frac{1}{3}$ of sand greater than 06 mm)
M - medium (less than $\frac{2}{3}$ fine sand and less than $\frac{1}{3}$ coarse sand)
The sub-divisions of clay loam and silty clay loam classes according to clay content are indicated as follows

M - medrum (less than 27-clay)
H - heavy (27-35* clay)
Other possible texture classes anclude
OL - organic loam
P - peat
SP - sandy peat
LP - loamy peat
PL - peaty loam
PS - peaty sand
MZ marine light silts

```
F - few - less than 2- of matrıx or surface described
C - common - 2-2- of the matrix
M - many - 20-40- of the matrix
VM - very many - 40- + of the matrax
```

MOTTLE CONT Mottle contanusty
F - faint - indistinct mottles evident only on close examination
D - distinct - mottles are readily seen
p - prominent - mottling is conspicuous and one of the outstanding features of the horizon

PED COL Ped face colour
STONE LITH Stone lithology One of the following is used
HR - all hard rocks or stones
MSST - soft medium or coarse graıned sandstone
SI - soft weathered igneous or metamorphic
SLST - soft oolitic or dolomitic limestone
FSST - soft fine grained sandstone
ZR - soft argillaceous or silty rocks
CH - chalk
GH - gravel with non-porous (hard) stones
Gs - gravel with porous (soft) stones
Stone contents ($>2 \mathrm{~cm}, 26 \mathrm{~cm}$ and total) are given $2 n$ percentages (by volume)

7 STRUCT the degree of development size and shape of roil peds are described using the following notation

- deqree of development $W K$ - weakly developed MD - moderately developed
ST - strongly well developed
- pedsıze
- ped shape
F - fine
M - medium
C - coarse
$V C$ - very coarse
S - single grain
M - massive
$G R$ - granular
$S B / S A B$ - sub-angular blocky
$A B$ - angular blocky
$P R$ - prismatic
$P L$ - platy

8 CONSIST Soll consistence is decribed using the following notation

9 SU日S STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness

G - good
M ~ moderate
P - poor

10 POR Soll porosity If a soll horizon has less than 0 5\% bropores $>05 \mathrm{~mm} a \mathrm{y}$ will appear 2 n this column

11 IMP If the profile is impenetrable a y will appear in this column at the appropriate horizon

12 SPL Slowly permeable layer If the soll horizon is slowly permeable a y will appear in this column

13 CALC If the soll horizon is calcareous a y will appear in this column

14 Other Notations
APW - available water capacıty (in mm) adjusted for wheat APP - avaılable water capacıty (2 n mm) adjusted tor potatoes
MBW - morsture balance wheat
MBP - mossture balance potatoes

SOIL PIT DESCRIPTION

62	TQ17100560 CER	SE	01	000	1	1	000	0	000	0	
63	TQ17200560 CER	SE	02	000	000	1	2	080	-36	080	-32
64	TQ15700550 CER	S	03		1	2	000	0	000	0	
65	TQ15800550 CER	S	05		1	2	123	7	114	2	2
67	TQ16000550 PGR	S	05	000	1	1	104	-12	116	4	$3 A$
69	TQ16200550 CER	S	03		1	1	098	-18	109	-3	$3 A$
70	TQ16300550 ARA	S	02	000	1	1	115	-1	113	1	$3 A$
71	TQ16400550 ARA	S	02	000	1	1	151	35	114	2	2
72	TQ15700540 ARA	S	05	000	1	1	097	-19	113	1	$3 A$

73 TQ15800540 CER S

75 TQ16700550 PGR S
76 TQ16200540 PGR S
77 TQ16300540 PAS S
78 TQ16400540 PGR S
79 TQ16500540 PAS S

80 TQ 6600540 PGR S 81 TQ16700540 PGR S 86 TQ16200530 PGR S 87 TQ16300530 PGR S
88 TQ16400530 PGR S

02	000	1	1	112	-8	114	-2	$3 A$
02	000	1	1	124	4	116	0	$3 A$
		1	1	144	24	115	-1	2
02	000	1	1	113	-7	115	-1	$3 A$
		1	1	082	-38	082	-34	$3 B$
02	000	1	1	117	-3	114	-2	$3 A$
	000	1	1	173	-7	115	-1	$3 A$
02	000	1	1	066	-54	066	50	4
02	000	1	1	112	-8	114	-2	$3 A$
02	000	1	1	103	-17	114	-2	$3 A$

DR	2	IMP
$D R$	2	$I M P$
$D R$	2	
$D R$	2	$I M P$
$D R$	2	

89 TQ16600530 PAS
90 TQ16700530 PGR S
91 TQ15700520 ARA s
96 TQ16200520 PGR S
97 TQ16300520 PGR S
98 TQ16400520 PGR S
100 TQ15900510 PAS
101 TQ16000510 PAS
103 TQ16200510 CER
104 TQ16300510 CER
105 TQ16400510 CER
106 TQ15800500 PAS
107 TQ15900500 PAS
108 TQ16000500 OSR
110 TQ16200500 CER
112 TQ16400500 CER
112A TQ16400500 CER
113 TQ15800490 PAS
114 TQ15900490 PAS
115 TQ16000490 ARA
116 TQ16100490 ARA
117 TQ16200490 ARA

- --MOTTLES----- PED ----STONES---- STRUCT/ SUBS
SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC
$34 \quad 0-30 \mathrm{mcl}$ 10YR53 00 $30-35 \mathrm{mcl}$ OOZZOO 00 35-85 ch 00ZZOO 00
$36 \quad 0-28 \mathrm{mcl} \quad$ 10YR32 00 $28-58 \mathrm{mcl} 10 \mathrm{YR} 5300$ 58-75 mel 10YR74 00 75-120 ch 00ZZ00 00

41 0-28 mzcl 10 YR42 00 28-35 hel 10YR43 54 35-60 c 10YR54 56 60-95 mzc1 10YR74 64 $95-120 \mathrm{macl} 10 \mathrm{YR74} 00$

42 0-26 hzel 10YR53 00 26-120 c 10 YR56 00

43 0-28 mcl 10YR53 00
28-45 hel 10YR54 00
45-79 c 10YR44 54
7990 hzcl 10YR54 00
90-120 mzcl 10YR64 74

44 0-28 mzcl 10YR42 43
28-48 hcl 10YR54 00
48-75 hzcl 10YR64 63
$75-90$ hzcl 10YR74 00

45 0-28 mzcl 10YR42 00
28-55 hzcl $10 Y R 4344$
55-78 c 10YR44 00
$78-120 \mathrm{hzc} 1 \quad 10 \mathrm{YR} 6474$
$46 \quad 0-28$ hzcl 10 YR42 00
28-35 hzcl 10YR43 54
35-45 hzcl 10YR74 64

47 0-26 mzc1 10YR4200
2635 c 10YR44 00

48 0-25 hcl 10YR42 00
25-50 he1 10YR54 00
50-70 hel 10YR64 00
70-90 ch 00CH00 00
$49 \quad 0-30$ hel 10 YR42 00
30-80 hel $10 Y R 5400$
80-85 hel 10YR64 00

0 OHR 3
0 OCH 80
000
$\begin{array}{llr}0 & 0 & C H \\ 0 & 0 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 10\end{array}$

0 OHR 3
00 HR 5
00 HR 5
0 O CH 35
0 OCH 50

0 OHR 5

00 HR 3
0 OHR 2
0 OHR 3
$0 \quad 0 \mathrm{CH} 20$
00 CH 35

0 O HR 5
0 O HR 8
$0 \quad 0 \mathrm{CH} 35$
0 OCH 40

0 OHR 6
0 O HR 5
00 CH 8
00 CH 30

80 HR 14
0 O HR 8
0 OCH 35

0 O HR 10
00 HR 20

50 HR 7
$0 \quad 0 \mathrm{CH} 20$
00 CH 50
000

20 HR 5
$0 \quad 0 \mathrm{CH} \quad 1$
0 OCH 20

Rooting to 85

SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS- M.REL EROSN FROST CHEM ALC No. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS

1	TQ16800610	CER	NE	02	000	1	1	111	-5 114	2	3A
1 P	TQ16050580	STU	S	05		1	1	102	-8 099	-5	3A
2	TQ16900610	CER	NE	02	000	1	1	107	-9 111	-1	3A
2 P	TQ15680534	CER	S	04		1	2	103	-13 101	-11	3A
3P	TQ16590467	PLO			000	1	1	155	35117	3	2
	TQ16550415	ARA			000	1	1	108	-12093	-21	3A
5	TQ16800600	CER	NE	03	000	1	1	152	36122	10	1
5P	TQ16080467	CER			024	2	2	114	-6 114	0	3A
6	TQ16900600	CER	NE	06	000	1	1	154	38118	6	2

DR	$3 A$	IMP80
DR	3A	Near boring 20
DR	3A	IMP85-2
DR	3A	Near boring 64
DR	2	Near boring 20
DR	$3 A$	
DR	1	
WE	2	PROB 2DR
DR	2	NO CH

11	TQ16500590	STU	S	03	000	1	1	102		098	-6	3A	DR	3A	ROOT 85
12	TQ16600590	STU	SE	03	000	1	1	095	-15	098	-6	3A	DR	3A	ROOT 75
12A	TQ16600590	STU	SE	03	000	1	1	090	-20	096	-8	3B	DR	38	ROOT 70
13	TQ16700590	CER	E	03	000	1	1	096	-20	098	-14	3 B	DR	3B	ROOT 75
14	TQ16800590	CER	N	04	000	1	1	124		113	1	2	DR	2	ROOT 100
15	TQ16900590	CER	NE	07	000	1	1	091	-25	093	-19	3 B	DR	3B	SLOPE
20	TQ16100580	STU	S	06		1	1	086	-24	092	-12	3 A	DR	3A	
25	TQ16600580	CER	S	04	000	1	1	106	-10	102	-10	3A	DR	3A	ROOT 85
26	TQ16700580	CER	SE	04	000	1	1	089	-27	092	-20	3B	DR	3B	R00T75
27	TQ16800580	CER	SE	03	000	1	1	107	-9	103	-9	3 A	DR	3A	ROOT 85
28	TQ16900580	CER	E	03	000	1	1	089	-27	095	-17	3 B	DR	3B	ROOT 70
29	TQ17000580	PGR	NE	04	000	1	1	104	-12	103	-9	3A	DR	3A	ROOT 80
30	TQ17100580	PGR	E	03	000	1	1	149	33	116	4	2	DR	2	
33	TQ15800570	CER	S	05		1	1	144	28	116	4	2	DR	2	
34	TQ15900570	CER	S	05		1	1	087	-29	093	-19	3 A	DR	3A	
36	TQ16100570	PAS	S	04		1	1	140	24	116	4	2	DR	2	
41	TQ16600570	CER	S	03	000	1	1	145	29	115	3	2	DR	2	
42	TQ16700570	CER	SE	02	000	1	2	139	23	115	3	2	DR	2	MN 65
43	TQ16800570	CER	SE	02	000	1	1	143	27		3	2	DR	2	
44	TQ16900570	CER	SE	03	000	1	1	119		112	0	3 A	DR	3A	PROB 2DR
45	TQ17000570	CER	SE	02	000	1	1	147	31	117	5	2	DR	2	
46	TQ17100570	CER	E	02	000000	1	2	072	-44	072	-40	38	DR	4	IMP45-3A
47	TQ17200570	CER	E	02	000	1	1	056	-60	056	-56	4	DR	4	IMP35-3A
48	TQ15700560	ARA	S	05	000	1	2	110	-6	105	-7	3A	DR	3A	Q ROOTS
49	TQ15800560	ARA	S	05	000	1	2	118		115	3	3A	WK	2	IMP Q
50	TQ15900560	ARA	S	05	000	1	1	101	-15		0	3 A	DR	2	IMP Q
51	TQ16000560	PGR	S	05	000	1	1	043	-73	043	-69	4	DR	3B	IMPX4 Q
57	TQ16600560	CER	S	02	000	1	2	105	-11		-1	3A	DR	3A	IMP 80
58	TQ16700560	CER	S	03	000	1	1	088	-28	095	-17	3B	DR	3B	IMP60-3A
59	TQ16800560	CER	S	02	000	1	1	147	31	120	8	2	DR	2	
60	TQ16900560	CER	S	02	000	1	1	141			0	2	DR	2	
61	TQ17000560	CER	SE	01	000	1	1	105	-11	117	5	3 A	DR	3A	IMP 2DR

----MOTTLES------ PED ----STONES---- STRUCT/ SUBS
SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

34	0-30	mc1	10YR53 00
	30-35	mc 1	00270000
	35-85	ch	00ZZ00 00
36	0-28	mc]	10YR32 00
	28-58	mc]	10YR53 00
	58-75	mc 1	10YR74 00
	75-120	ch	00ZZO0 00

41 0-28 mzci 10 YR42 00 28-35 hct 10 YR 4354 35-60 c 10YR54 56 60-95 mzci 10YR74 64 $95-120 \mathrm{mzc} 1$ 10YR74 00
42 0-26 hzcl 10 YR53 00 26-120 c 10 YR56 00
43 0-28 mcl 10YR53 00
28-45 hel 10YR54 00
45-79 c 10YR44 54
79-90 hzcl 10 YR54 00 $90-120 \mathrm{mzc} 1 \quad 10 \mathrm{YR} 6474$
44 0-28 mzcl 10YR42 43
28-48 het 10YR54 00
48-75 hzcl 10YR64 63 75-90 hzcl 10YR74 00
45 0-28 mzcl 10YR42 00 28-55 hzcl 10YR43 44 55-78 c 10YR44 00 78-120 hzcl 10YR64 74

46 0-28 hzc 10 YR42 00 28-35 hzc 10 YR43 54 35-45 hzcl 10YR74 64
47 0-26 mzcl 10YR42 00 26-35 c 10YR44 00
48 0-25 hel 10 YR42 00
25-50 hel 10YR54 00
50-70 hel 10YR64 00 70-90 ch 00CHOO 00

49	$0-30$	hel	10YR42 00
	$30-80$	hel	10YR54 00

0	0 HR	3		Y	
0	0 CH	80	M	Y	
0	0	0	M	Y	Rooting to 85
0	OCH	2		Y	
0	0 CH	5	M	Y	
0	OCH	10	M	Y	
0	0	0	M	Y	
0	0 HR	3		Y	
0	0 HR	5	M	Y	
0	0 HR	5	M	Y	
0	0 CH	35	M	Y	
0	0 CH	50	M	Y	
0	0 HR	5		Y	
0	0 HR	3	M	Y	
0	0 HR	3		Y	
0	0 HR	2	M	Y	
0	0 HR	3	M	Y	
0	O CH	20	M	Y	
0	OCH	35	M	Y	
0	0 HR	5		Y	
0	0 HR	8	M	Y	
0	OCH	35	M	Y	
0	0 CH	40	M	Y	
0	0 HR	6		Y	
0	0 HR	5	M	Y	
0	$\bigcirc \mathrm{OH}$	8	M	Y	
0	0 CH	30	M	Y	
8	0 HR	14		Y	
0	0 HR	8	M	Y	
0	0 CH	35	M	Y	
0	0 HR	10		Y	
0	0 HR	20	M	Y	
5	0 HR	7			
0	0 CH	20	M		
0	0 CH	50	M		
0	0	0	M		
2	0 HR	5			
0	0 CH	1	M		
0	0 CH	20	M		

SAMPLE	DEPTH	TEXTURE	COLOUR
50	0-25	mcl	10YR42 00
	25-30	hel	10YR54 00
	30-70	hel	10YR64 00
51	025	mcl	10YR42 00
57	0-28	hzel	10YR42 00
	28-75	c	$75 Y \mathrm{R} 5600$
	7580	mzcl	10YR64 74

$58 \quad 0-28 \quad \mathrm{mcl} \quad 10 \mathrm{YR42} 00$ 2860 c 10YR56 00

59027 mzcl 10 YR42 00 2765 hzcl 10YR44 54 6596 c 10YR44 54 96120 mzcl 10YR64 74

60026 mzcl 10YR42 00 26-50 hel 10 YR42 43 5079 c 75 YR56 00 $79-120 \mathrm{hzcl}$ 10YR64 74

61 0-28 mizcl 10YR42 00 $28-50 \mathrm{mzcl} 10 Y \mathrm{Y} 4300$ $50-65$ hel $10 Y R 4344$ 65-70 e 10 YR44 00
$62028 \mathrm{mcl} \quad 10 Y R 4200$ 2835 hzcl 10YR44 00
63028 hzcl 10 YR42 00
2850 hel 10 YR42 43

64030 hel 10YR42 00 3035 hel 10 YR 4400
$65029 \mathrm{hcl} 10 \mathrm{YR42} 00$ 29-55 hel 10 YR43 00 55-95 c 10 YR 4400 95-100 e 10YR74 00
$67 \quad 0-30$ hcl 10 YR42 00

30-70 hel 10YR54 00
$69 \quad 0-27 \mathrm{mcl} \quad 10 \mathrm{YR420}$
27-70 hel 10YR54 00

- --MOTTLES----- PED ----STONES---- STRUCT/ SUBS

COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

	3	0 HR	5			
	0	0 HR	2	M		
	0	0 CH	10	M		
	0	0 HR	5			
	0	0 HR	6		Y	
	0	0 HR	10	M	Y	
	0	$\bigcirc \mathrm{CH}$	30	M	Y	
	0	0 HR	4		Y	
	0	0 HR	10	M	Y	
	0	0 HR	4		Y	
	0	0 HR	3	M	Y	
	0	0 HR	6	M	Y	
	0	$\bigcirc \mathrm{CH}$	30	M	Y	
	0	0 HR	6			
	0	0 HR	7	M		
OOMNOO 00	0	0 HR	7	M		
	0	0 CH	35	M	Y	
	0	0 HR	4			
	0	0 HR	3	M		
	0	0 HR	10	M		
	0	0 HR	10	M		
	7	0 HR	12			
	0	0 HR	20	M		
	0	0 HR	7			
	0	0 HR	15	M		
	7	0 HR	10		Y	
	0	0 HR	20	M	Y	Imp 35 - stones
	0	0 HR	3		Y	
	0	0 HR	3	M	Y	
	0	0 HR	3	M	Y	
	0	0 HR	10	M	Y	Imp 100 - flints
	0	0 HR	2			
	0	0 HR	2	M		
	3	0 HR	5			
	0	0 HR	10	M	Y	Imp 70 - stones

0 HR 4
0 O HR $10 \quad M$
0 O HR 10 M
70 HR 12
0 HR 20
Y Imp 70 - stones


```
MOTTLES-- -- PED - STONES - STRUCT/ SUBS
```

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

106	0	25	-1	10YR32	00			0	0	0		Imp 25 gravel
107	0	30	¢ 1	10YR21	00			0	0	0		
	30	40	gh	00ZZ00	00			0	0	0	M	Imp 40 gravel
108	0	30	hel	10YR32	00			0	0 HR	1		
	30	50	c	25 Y52	00 10YR58 00 C	25 Y60 00	Y	0	0	0	M	
	50	120	c	10YR62	00 IOYR58 00 M	10YR61 00	Y	0	0	0	M	Many Mn concs
110	0	29	$m \mathrm{ml}$	10YR42	00			0	0 HR	2		
	29	48	nel	10 Prs3	00			0	0 HR	2	M	
	48	80	c	10YR54	00			0	0	0	M	
	80	85	c	10YR54	$00 \quad F$			0	0	0	M	Imp 85 stones
112	0	28	mcl	10 YR 53	00			0	$\bigcirc \mathrm{HR}$	5		
	28	45	hel	10YR54	00			0	0 HR	5	M	
	45	70	c	10YR54	00			0	0 HR	2	M	Imp 70 stones
111	0	28	$\pi \times 1$	10YR53	00			0	0 HR	5		
	28	45	hel	10YR54	00			0	0 HR	5	M	
	45	120	c	10YR54	00			0	0 HR	2	M	Assume to 120
113	0	25	$\infty 1$	$10 Y \mathrm{R} 22$	00			0	0	0		
	25	32	hel	10YR31	00			0	0	0	M	Imp 32 - gravel
114	0	25	mzCl	10YR32	00			0	0	0		
	25	35	hel	10YR53	00			0	0	0	M	
	35	55	hel	10YR62	00 IOYR58 00 C	10YR61 00	Y	0	0 HR	2	M	
	55	120	c	10YR62	00 10YR58 00 C	10YR61 00	Y	0	0 HR	2	M	
115	0	35	mc 1	10YR42	00			0	0 HR	2		
	35	42	hel	10YR54	00			0	0	0	M	
	42	120	hel	10YR54	$00000 \mathrm{C00} 00 \mathrm{M}$	OOMNOO 00		0	0	0	M	
116	0	25	mcl	10YR42	00			0	0	0		
	25	50	c	10YR44	00			0	0	0	M	
	50	80	c	10YR54	00			0	0	0	M	
	80	120	c	10 YR 54	0000060000 C			0	0	0	M	
117	0	28	mcl	$10 \mathrm{YR42}$	00			0	0 HR	2		
	28	60	hel	10YR44	00			0	0 HR	2	M	
	60	80	c	10YR44	00			0	0 HR	2	M	
	80	100	c	25Y 63	0000000000 C		Y	0	0	0	M	
118	0	32	mcl	10YR42	00			2	0 HR	5		
	32	80	hel	10YR54	00			0	0 HR	5	M	
	80	90	hel	10YR54	00			0	0 HR	10	M	Imp 90-stones

---MOTTLES----- PED ---STONES---- STRUCT/ SUBS
SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

119 | $0-29$ | mcl | 10 YR53 00 | |
| ---: | :--- | :--- | :--- |
| | $29-60$ | hcl | 10 YR54 00 |
| | $60-75$ | c | 10YR54 00 |

$120 \quad 0-30$ cc1 10YR22 00 30-42 pl 10YR32 00

121 0-25 mzci $10 Y R 4200$
25-45 hel 10YR53 00
45-70 c 10YR53 00 75YR56 00 C
$70-120$ c 10YR71 00 10YR56 00 C

		0	$0 H R$	5
$10 Y R 6200 Y$	0	$0 H R$	5	
Y	0	$0 H R$	5	

M
M
M

122 0-28 mcl 10 YR42 00
28-50 hal 10YR53 00
50-120 hel $10 Y R 5300000 C 0000 \mathrm{C}$
OONNOO OO Y 0
$0 \quad 0$ HR 2

0	0	0	M

0 OHR 5

	0	$0 H R$	2	
	0	$0 H R$	2	M
$00 M N 0000$	0	$0 H R$	5	M

125 0-25 mcl $10 Y R 4200$
25-50 hel 10YR54 00

127 0-25 mcl 10YR42 00
25-45 hel 10YR44 00
45-80 c 10YR44 00 80-120 c 10 YR 4400000 COO 00 F

10YR32 00
32-60 hel 10YR63 00 75YR56 46 C

0	0	0

10YR61 $00 \mathrm{Y} \quad 0 \quad 0$ HR $5 \quad M$
10YR61 $00 \mathrm{Y} \quad 0 \quad 0$ HR $5 \quad M$

129 0-28 mcl 10YR42 00
28-40 hel 10 YR53 00
40-58 c 10YR54 00 58-62 c $\quad 10$ YR53 00 75YR58 00 C

	0	0	0
0	0	0	
	0	0	0
\mathbf{Y}	0	$0 H R$	5

130 0-32 mcl 10YR42 00

		0	0	0	
10YR61 00 Y	0	0	0	M	
10YR61 00 Y	0	0	0	M	

M
M
M
Few Mn concs Imp 62 - stones
Few Mn concs

M

 MM M

				----MOTTLES-----					---STONES---- STRUCT/			SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL ABUN	CONT	COL.		LEY	>2	>6 LI	TOT CONSIST	STR		SPL	CALC
184	0-20	c	10YR32 00	00000000 C				Y	0	0	0				
	20-55	c	$25 Y 5200$	000C00 00 M				Y	0	0	0	P	Y	Y	
185	0-10	hel	10YR32 00	00000000 C				Y	0	0	0				
	10-60	c	$25 Y 5200$	00000000 M				Y	0	0	0	P	Y	Y	
186	0-25	msz 1	10YR42 00						0	0 HR	2				
	25-80.	mcl	10YR52 00	000000 00 C				Y	0	0 HR	10	M			
187	0-35	hel	10YR42 00	75YR58 00 C		10YR71 0	00	Y	0	0	0				
	35-55	c	10YR52 00	75YR58 00 M		10YR61	00	Y	0	0	0	M		Y	
	55-120	c	05 Y61 00	75YR58 00 M				Y	0	0	0	M		Y	
189	$0-20$	hel	10YR32 00	00000000 C				Y	0	0	0				
	20-55	c	$25 Y 5200$	000c00 00 M				Y	0	0	0	P	Y	Y	
2504	0-26	mzel	10YR53 00						0	0 HR	3				Y
	26-45	hel	10YR54 64						0	0 CH	10	M			Y
	45-85	ch	00 CHOO 00						0	0 HR	2	M			Y

