A1

ADUR DISTRICT LOCAL PLAN

AGRICULTURAL LAND CLASSIFICATION
ALC MAP & REPORT

APRIL 1993

MAFF Reference EL 9129

ADAS Reference 4201/124/92

ADUR DISTRICT LOCAL PLAN AGRICULTURAL LAND CLASSIFICATION

In December 1992 detailed Agricultural Land Classification (ALC) surveys were conducted at Lancing and Sompting in West Sussex ADAS was commissioned by MAFF s Land Use Planning Unit to provide information on the quality of agricultural land affected by proposals for development in the Adur District Local Plan

A total of 332 hectares was surveyed using MAFF s revised guidelines and criteria for classifying the quality of agricultural land. These guidelines allow land to be graded according to the extent to which its physical or chemical characteristics impose long term limitations on its use for agriculture.

The details of the findings are given in the attached appendices—and the distribution of the grades and sub-grades is shown on the attached ALC maps—These have been drawn at a scale of 1 10 000 and are accurate at this level but any enlargement may be misleading. The fieldwork was conducted at a detailed level—with approximately one soil observation per hectare—a combination of auger boring and soil pit descriptions

The detailed measurements of each grade are presented in the tables below and the following report describes the Lancing and Sompting areas separately

TABLE 1 Lancing, Distribution of Grades and Sub-grades

<u>Grade</u>	Area (ha)	<pre>% of Agricultural Area</pre>
2	22 3	16 8
3A	15 3	11 5
3B	95 1	<u>71 7</u>
Non Agric	5 5	100% (132 7 ha)
Urban	0 3	
TOTAL	138 5 ha	

TABLE 2 Sompting, Distribution of Grades and Sub-grades

<u>Grade</u>	Area (ha)	% of Agricultural Area
2	101 5	67 5
3A	16 3	10 8
3B	32 1	21 4
4	0 5	<u>0 4</u>
Non Agric	32 7	
Urban	10 4	100% (150 4 ha)
TOTAL	193 5 ha	

2 Land at Lancing

2 1 Three distinct blocks of agricultural land were surveyed on the eastern edge of Lancing totalling 138 5 hectares an area north of the A27 (T) developed on higher slopes overlying Chalk and Quaternary

Head deposits, a central area of low lying land bounded by the A27 (T) and the coastal railway with soils developed over Alluvium deposits in the east and Quaternary Head and Raised Beach Deposits in the west—a flat—low lying area to the south between the railway and the coast with soils largely developed over Alluvium deposits

- 2 2 Land to the north of the A27 (T) is a mixture of Sub-grades 3A and Pits numbers 2 3 and 4 were located in this area and illustrate the range of soils that occur in this section Soil droughtiness is the single most limiting factor on these soils that have developed over Chalk The northern fringe of Sub-grade 3B identifies shallow soils which rest on Chalk from within 30 cm depth Even with roots penetrating 45 cm into the Chalk the low amount of available water for plants restricts these profiles to no better than Sub-grade 3B The deeper Sub-grade 3A soils exhibit Heavy Clay Loam topsoil textures overlying Clay subsoils with Chalk occasionally present from 65 cm depth or with subsoils with high chalk stone percentages Roots again penetrate the Chalk layers but there is a significant limitation on the degree of available water
- 2 3 Land between the A27 (T) and the railway falls into two distinct ALC grades

To the east of Marsh Barn Lane the alluvial soils are classified as Sub-Grade 3B To the west of the Lane the soils are classified as Grade 2

Pit 1 is typical of the Sub-grade 3B soils. Soil wetness is the important limiting factor. Clay topsoils overlie clay subsoils which exhibit clear evidence of shallow gleying caused by waterlogging related to slowly permeable structures in the upper subsoil. These soils are therefore placed in Wetness Class IV (i.e. the profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years) and suffer from a significant restriction on the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock.

The Grade 2 soils in the western end are typically Medium Clay Loam topsoils overlying Heavy Clay Loam upper subsoils and Clay lower subsoils. The profiles are stone free show no evidence of significant wetness and the subsoils exhibit moderate structural conditions. Soil droughtiness is the most significant physical limitation with the profiles having insufficient available water to qualify for a higher grade.

The southern block of land is mostly Sub-grade 3B with a limited area of Sub-grade 3A on the north-eastern fringe. The soils are similar to the poor alluvial soils described by Pit 1 north of the railway with a significant soil wetness limitation.

A limited area of better quality Sub-grade 3A land defines variable profiles with lighter textures better structures and a less significant wetness limitation These profiles experience a soil droughtiness limitation

Table 3 Climatic Interpolations, Lancing

Grid Reference	TQ 190060	TQ 193043
Altitude	35	4
Accumulated Temperature (° days)	1502	1537
Average Annual Rainfall (mm)	793	758
Field Capacity (days)	166	161
Moisture deficit Wheat (mm)	115	121
Moisture deficit Potatoes (mm)	111	119
Climatic Grade	1	1

3 <u>Land at Sompting</u>

3 1 The ALC survey at Sompting covers 193 5 hectares and includes the lower lying flat land in the Sompting gap between the urban areas of Sompting and Worthing and includes a significant block of land north of the A27 (T) around Sompting Abbotts

The majority of the soils are developed over Head Deposits with a band of Chalk along the higher ground on the northern fringe and with a band of Raised Beach deposits and Alluvium along the southern fringe

3 2 Land in the extreme north of the site is classified as Sub-grade 3B with gradients locally in the range 7-11° On the southern slopes adjacent to this area of Sub-grade 3B there is a fringe of Sub-grade 3A soils where soil droughtiness becomes the most limiting factor Chalk is encountered at depths below approximately 60 cm but the stony nature of the subsoil combines to significantly restrict the amount of available water for plants Pit 1 is typical of these soils

Soils with stony subsoils also occur in the south-western edge of the northern block. These soils though of heavier textures again experience a significant droughtiness limitation which restricts them to Sub-grade 3A (see Pit 2)

3 3 The remainder of the northern block and the bulk of the southern section form a large map unit of Grade 2 land Pits 3 and 5 are typical of the variation that exists in this map unit Soil droughtiness is generally the key limitation for soils that have Medium Clay Loam topsoils overlying stone-free and freely draining Heavy Clay Loam upper and lower subsoils. These profiles fail to have enough available water in the profile for shallower rooting crops such as potatoes.

In the western edge of this map unit soil wetness becomes the most limiting factor. Soils here are generally heavier with a sequence of Medium Clay Loam. Heavy Clay Loam, and Clay in the profile, the clay occurring from approximately 50 cm depth. There is clear evidence of gleying within the top 40 cm and, when augering the subsoils appear slowly permeable. The soil pit (Pit 5) however reveals that the subsoils are not poor in structure, allowing these profiles to be placed in Wetness Class II (i.e. the soils is wet within 70 cm for more than 90 days, but not wet within 40 cm for more than 30 days in most years) and Grade 2. The soil pit is actually

classified as Sub-grade 3A due to a droughtiness limitation related to slightly stony lower subsoils. In general, the subsoils are not as stony and qualify for Grade 2 even on droughtiness.

- A limited area of Sub-grade 3A occurs over Beach Deposits which have given rise to soils with very stony subsoils (35-45% stone content) which experience a significant restriction on the amount of water available in the profile and hence a droughtiness limitation
- 3 5 The southern fringe is classified as Sub-grade 3B This lower lying area has a significant wetness limitation. The soils are developed over Alluvium are typically Heavy Clay Loam topsoils with Clay subsoils which are slowly permeable. This area is placed in Wetness Class IV (i.e. the soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years) and this degree of wetness severely restricts the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock
- 3 6 The non-agricultural areas outlined on the map include farm tracks areas overgrown by bramble and scrub allotment gardens school playing fields reed beds and sizeable field ditches

Table 4 Climatic Interpolations, Sompting

Grid Reference	TQ165 040	TQ160 055	TQ160 054	TQ157 059
Altitude (m)	~ 5	30	20	70
Accumulated Temperature (° days) 1537	1508	1520	1463
Average Annual Rainfall (mm)	773	805	801	824
Field Capacity (days)	164	169	168	171
Moisture Deficit Wheat (mm)	120	115	117	110
Moisture Deficit Potatoes (mm)	113	111	113	104
Overall Climatic Grade	1	1	1	1

APPENDIX I

DESCRIPTION OF THE GRADES AND SUB-GRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land on the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.

Grade 3 Good To Moderate Quality Agricultural Land

Land with moderate limitations which affect the choice of crops timing and type of cultivation harvesting or the level of yield. When more demanding crops are grown yields are generally lower or more variable than on land in grades 1 and 2

Sub grade 3A Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Sub grade 3B Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation—the grade also includes very droughty arable land.

Grade 5 Very Poor Quality Agricultural Land

Land with very severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or hard uses with relatively little potential for a return to agriculture housing industry commerce education transport religious buildings cemeteries. Also hard surfaced sports facilities permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants.

Non agricultural

Soft uses where most of the land could be returned relatively easily to agriculture, including private parkland public open spaces sports fields allotments and soft surfaced areas on airports/airfields. Also active mineral workings and refuse tips where restoration conditions to soft after uses may apply

Woodland

Includes commercial and non-commercial woodland

Agricultural Buildings

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg. polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and rivers as map sclae permits

Land Not Surveyed

Agricultural land which has not been surveyed

Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

REFERENCES

- * MAFF (1988) Agricultural Land Classification of England And Wales revised guidelines and criteria for grading the quality of agricultural land
- * Meteorological Office (1989) Climatological Data for Agricultural Land Classification

APPENDIX III

DEFINITION OF SOIL WETNESS CLASSES

Wetness Class I

The soil profile is not wet within 70cm depth for more than 30 days in most years

Wetness Class II

The soil profile is wet within 70cm depth for 31 90 days in most years or if there is no slowly permeable layer within 80cm depth it is wet within 70cm for more than 90 days but not wet within 40cm depth for more than 30 days in most years

Wetness Class III

The soil profile is wet within 70cm depth for 91 180 days in most years or if there is no slowly permeable layer within 80cm depth it is wet within 70cm for more than 180 days but only wet within 40cm depth for 31 90 days in most years

Wetness Class IV

The soil profile is wet within 70cm depth for more than 180 days but not wet within 40cm depth for more than 210 days in most years or if there is no slowly permeable layer within 80cm depth, it is wet within 40cm depth for 91-210 days in most years

Wetness Class V

The soil profile is wet within 40cm depth for 211 335 days in most years

Wetness Class VI

The soil profile is wet within 40cm depth for more than 335 days in most years

(The number of days is not necessarily a continuous period In most years is defined as more than 10 out of 20 years)

APPENDIX IV

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents * Soil Abbreviations Explanatory Note

* Soil Pit Descriptions

* Database Printout Boring Level Information

* Database Printout Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil profile and pit information obtained during ALC surveys is held on a database. This has commonly used notations and abbreviations as set out below

BORING HEADERS

- 1 GRID REF National grid square followed by 8 figure grid reference
- 2 USE Land-use at the time of survey The following abbreviations are used

```
ARA - arable
                                 PAS/PGR - permanent pasture
   WHT - wheat
                                 RGR - rough grazing
                                 LEY - ley grassland
   BAR - barley
   CER - cereals
                                 CFW - coniferous woodland
   OAT - Oats
                                 DCW - deciduous woodland
   MZE - maize
                                 SCR - scrub
   OSR - Oilseed rape
                                 HTH - heathland
   BEN - field beans
                                 BOG - bog or marsh
   BRA - brassicae
                                 FLW - fallow
   POT - polatoes
                                 PLO - ploughed
   SBT - sugarbeet
                                 SAS - set-aside
    FCD - fodder crops
                                 OTH - other
    FRT - soft and top fruit
                                 LIN - linseed
HOR/HRT - horticultural crops
```

- 3 GRDNT Gradient as measured by optical reading clinometer
- 4 GLEY/SPL Depth in centimetres (cm) to gleyed and/or slowly permeable horizons
- 5 AP (WHEAT/POTS) Crop-adjusted available water capicity The amount of soil water (in millimetres) held in the soil profile that is available to a growing crop (wheat and potatoes are used as reference crops)
- 6 MB (WHEAT/POTS) The moisture balance for wheat and potatoes obtained by subtracting the soil moisture deficit from the crop-adjusted available water capacity
- 7 DRT Grade according to soil droughtiness assessed against soil moisture balances

8	N REL FLOOD EROSN EXP FROST DIST CHEM	Micro-relief Flood risk Soil erosion Exposure Frost prone Disturbed land Chemical limitation	If any of these factors are considered significant in terms of the assessment of agricultural land quality a y will be entered in the relevant column
---	---------------------------------------	--	---

Principal limitation to agricultural land quality The following abbreviations are used

> OC - overall climate CH - chemical limitations ΛE - aspect WE - wetness FX - exposure WK - workability FR - frost DR - drought GR - gradient ER - erosion MR - micro-relief WD - combined soil wetness/soil FL - flooding droughtiness

TX - soil texture ST - topsoil stoniness DP - soil depth

PROFILES & PITS

TEXTURE Soil texture classes are denoted by the following abbreviations

> S - sand LS - loamy sand - sandy loam SZL - sandy silt loam

ZL - silt _oam

MZCL - medium silty clay loam

MCL - medium clay loam SCL - sandy clay loam

HZCL - heavy silty clay loam

- sandy clay ZC - silty clay С - clay

For the sand loamy sand sandy loam and sandy silt loam classes predominant size of sand fraction may be indicated by the use of prefixes

F - fine (more than $\frac{2}{3}$ of the sand less than 0 2 mm) C - coarse (more than $\frac{1}{2}$ of sand greater than 0 6 mm)

M - medium (less than $\frac{2}{3}$ fine sand and less than $\frac{1}{3}$ coarse sand)

The sub-divisions of clay loam and silty clay loam classes according to clay content are indicated as follows

M - medium (less than 27- clay) H - heavy (27-35° clay)

Other possible texture classes include

OL - organic loam

P - peat SP - sandy peat

LP - loamy peat

PL - peaty loam

PS - peaty sand

MZ marine light silts

- 2 MOTTLE COL Mottle colour
- 3 MOTTLE ABUN Mottle abundance
 - F few less than 2 of matrix or surface described
 - C common 2-2- of the matrix
 - M many 20-40- of the matrix
 - VM very many 40- + of the matrix
- 4 MOTTLE CONT Mottle continuity
 - F faint indistinct mottles evident only on close examination
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5 PED COL Ped face colour
- 6 STONE LITH Stone lithology One of the following is used
 - HR all hard rocks or stones
 - MSST soft medium or coarse grained sandstone
 - SI soft weathered igneous or metamorphic
 - SLST soft politic or dolomitic limestone
 - FSST soft fine grained sandstone
 - ZR soft argillaceous or silty rocks
 - CH chalk
 - GH gravel with non-porous (hard) stones
 - GS gravel with porous (soft) stones

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

- 7 STRUCT the degree of development size and shape of coil peds are described using the following notation
 - degree of development WK weakly developed
 - MD moderately developed
 - ST strongly well developed
 - <u>ped size</u> F fine
 - M medium
 - C coarse
 - VC very coarse
 - <u>ped_shape</u> S single grain
 - M massive
 - GR granular
 - SB/SAB sub-angular blocky
 - AB angular blocky
 - PR prismatic
 - PL platy

- 8 CONSIST Soil consistence is decribed using the following notation
 - L loose
 - VF very friable
 - FR friable
 - FM firm
 - VM very firm
 - EM extremely firm
 - EH extremely hard
- 9 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness
 - G good
 - M moderate
 - P poor
- 10 POR Soil porosity If a soil horizon has less than 0 5° biopores >0 5 mm a y will appear in this column
- 11 IMP If the profile is impenetrable a y will appear in this column at the appropriate horizon
- 12 SPL Slowly permeable layer If the soil horizon is slowly permeable a y will appear in this column
- 13 CALC If the soil horizon is calcareous a y will appear in this column
- 14 Other Notations
 - APW available water capacity (in mm) adjusted for wheat
 - APP available water capacity (in mm) adjusted tor potatoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

Site Name : ADUR LP - SOMPTING

Pit Number: 1P

Grid Reference: TQ16050580 Average Annual Rainfall: 801 mm

Accumulated Temperature: 1520 degree days

Field Capacity Level : 168 days

Land Use

Slope and Aspect : 05 degrees S

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	MOTTLES	STRUCTURE
0- 25	MCL	10YR43 00	8	8		
25- 40	MCL	10YR54 00	0	10		
40- 60	MCL	00ZZ00 00	0	50		
60- 85	CH	00ZZ00 00	0	0		

Wetness Grade : 1

Wetness Class : I

Gleying

: cm

SPL

: No SPL

Drought Grade: 3A

APW: 102mm MBW: -8 mm

APP: 099mm MBP: -5 mm

FINAL ALC GRADE : 3A

MAIN LIMITATION: Droughtiness

Site Name	ADUR LE	P - SOMPTI	NG	Pit N	· 2P			
Grid Refe	rence TQʻ	15680534	Accumula Field Ca Land Use	Annual Rai ted Temper pacity Lev d Aspect	1520 degree days			
HORIZON 0- 30 30- 42 42- 65 65-120	TEXTURE HCL HCL C C	COLOUR 10YR42 0 10YR42 0 10YR54 0 10YR64 0	00 4 00 0 00 0	2	TONE 6 23 23	MOTTLES	STRUCTURE	
Wetness G	irade 2		Wetness Gleying SPL	Class	I No	cm SPL		

APW 103mm MBW -13 mm APP 101mm MBP

11 mm

FINAL ALC GRADE 3A

Drought Grade 3A

MAIN LIMITATION Droughtiness

Site Name ADUR LP - SOMPTING Pit Number 3P

Grid Reference TQ16590467 Average Annual Rainfall 801 mm

Accumulated Temperature 1520 degree days

Field Capacity Level 168 days
Land Use Bare Soil
Slope and Aspect degrees

STONES >2 TOT STONE MOTTLES STRUCTURE HORIZON TEXTURE COLOUR 0 25 MCL 10YR42 00 0 1 25 68 75YR54 00 0 MCSAB HCL 0 68 120 10YR54 00 0 HCL 0

Wetness Grade 1 Wetness Class I Gleying 000 cm

SPL No SPL

Drought Grade 2 APW 155mm MBW 35 mm APP 117mm MBP 3 mm

FINAL ALC GRADE 2

MAIN LIMITATION Droughtiness

Site Name : ADUR LP - SOMPTING

Pit Number: 4P

Grid Reference: TQ16550415 Average Annual Rainfall: 801 mm

Accumulated Temperature: 1520 degree days

Field Capacity Level : 168 days

Land Use

: Arable

Slope and Aspect

: degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	MOTTLES	STRUCTURE
0- 25	MCL	10YR42 00	0	1		
25- 70	HCL	10YR43 00	0	35		
70-120	С	10YR54 00	0	45		

Wetness Grade : 1

Wetness Class

: I

Gleying SPL

:000 cm : No SPL

Drought Grade : 3A

APW: 108mm MBW: -12 mm

APP: 093mm MBP: -21 mm

FINAL ALC GRADE : 3A

MAIN LIMITATION: Droughtiness

Site Name ADUR LP - SOMPTING Pit Number 5P

Grid Reference TQ16080467 Average Annual Rainfall 801 mm

Accumulated Temperature 1520 degree days Field Capacity Level 168 days

Field Capacity Level 168 days
Land Use Cereals

Slope and Aspect degrees

HORI	ZON	TEXTURE	COLOUR	STONES	2	TOT STONE	MOTTLES	STRUCTURE
0	24	MCL	10YR42 0D	0		0		
24	50	HCL	10YR53 00	0		0	С	MDCSAB
50	80	С	10YR63 00	0		8	М	MDCSAB
80-	90	С	10YR63 73	0		15	М	

Wetness Grade 2 Wetness Class II

Gleying 024 cm SPL No SPL

Orought Grade 3A APW 114mm MBW -6 mm

APP 114mm MBP 0 mm

FINAL ALC GRADE 2

MAIN LIMITATION Wetness

					MOTTLES		PED			-S	TONES-		STRUCT	/ :	SUBS	s			
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN								CONSIS				IMP	SPL	CALC
1	0~32	mcl	10YR42 00						٥	٥	HR	5							v
•	32-75	hc1	10YR54 00						0		HR	3			М				Y
	75-80	C	75YR56 00						0		HR	5			M				Y
	75-00	Č	7511150 00						٠	٠	TIK	•			М				r
1P	0-25	mc1	10YR43 00						8	0	HR	8							Υ
	25-40	mcl	10YR54 00						0	0	HR	10			M				Υ
	40-60	mc1	00ZZ00 00						0	0	CH	50			М				Υ
	60-85	ch	00ZZ00 00						0	0		0			M				Y
2	0-30	me1	10YR33 00						5	a	HR	6							γ
_	30-50	hc1	10YR44 00						0		HR	5			М				Ÿ
	50-85	c	10YR44 00						0		HR	8			M				Ϋ́
		_							•			_			••				•
2P	0-30	hc1	10YR42 00						4	0	HR	6							
	30-42	hc1	10YR42 00						0	0	HR	23		FR	М				γ
	42-65	С	10YR54 00						0	0	HR	23		FR	М				γ
	65–120	C	10YR64 00						0	0	HR	30			М				Y
3P	0-25	mcl	10YR42 00						0	0	HR	1							
	25-68	hc1	75YR54 00						0	0			MCSAB	FR	М	Υ			
	68-120	hc1	10YR54 00						0	0		0			М				
4P	0-25	mcl	10YR42 00						0	0	HR	1							
	25-70	hc1	10YR43 00						0	0	HR	35			M				
	70-120	С	10YR54 00						0	0	HR	45			M				
5	0-28	mzcl	10YR53 00						0	0	HR	2							Υ
•	28-45	mzc1	10YR64 00						0		HR	2			М				Ÿ
	45-75	hzc1	10YR54 00						0		HR	2			М				Ý
	75- 9 5	С	10YR54 56						0	0	HR	5			М				Y
	95-120	hc1	10YR64 00						0	0	СН	25			M				Υ
5P	0-24	mc]	10YR42 00						0	0		0							
J	24-50	hc1	10YR53 00	75VR5/	5 00 C			γ					MDCSAB	FD	м				
	50-80	c	10YR63 00			16	OYR61		0		HR		MDCSAB						
	80-90	C	10YR63 73			.,		Y	0			15	, ibooks	1 1	M				Y
6	0-30	mzcl	10YR53 00						0		HR	3							Y
	30-70	hc1	10YR54 00						0		HR	3			M				Υ
	70-95	mcl	10YR54 56						0		HR	3			M				Y
	95–120	hc1	10YR54 56						0	υ	HR	5			М				Y
10P	0-25	mcl	10YR43 00						8	0	HR	8							Y
	25-40	mc]	10YR54 00						0	0		10			М				Υ
	40-60	mcl	00ZZ00 00						0		CH	50			M				Y
	60-120	ch	00ZZ00 00						0	0		0			М				Υ
11	0-28	mzc1	10YR53 00						0	0	HR	6							Υ
	28-45	mzc1	10YR74 00						0	0	CH	50			М				Y
	45-85	ch	00CH00 00						0	0		2			M				Υ

program ALC012 LIST OF BORINGS HEADERS 06/10/93 ADUR LP SOMPTING

Sampi			SPECT					VESS						REL	EROS		ROST	CHEM	ALC	
VO	GRID REF	USE		GRONT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD)	EXP	DIST	LIMIT		COMMENTS
62	TQ17100560	CER	SE	01	000		1	1	000	0	000	0						DR	3A	IMP35
63	TQ17200560	CER	SE	02	000	000	1	2	080	-36	080	-32	3B					DR	3B	IMP50-3A
64	TQ15700550	CER	S	03			1	2	000	0	000	0						DR	ЗА	
65	TQ15800550	CER	S	05			1	2	123	7	114	2	2					DR	2	Grade 2 work
67	TQ16000550	PGR	s	05	000		1	1	104	-12	116	4	3A					DR	2	IMP Q
69	TQ16200550	CER	s	03			1	ι	098	-18	109	-3	3A					DR	2	
70	TQ16300550	ARA	S	02	000		1	1	115	-1	113	1	3 A					DR	2	IMP Q
71	TQ16400550	ARA	S	02	000		1	1	151	35	114	2	2					DR	2	
72	TQ15700540	ARA	S	05	000		1	1	097	-19	113	1	3A					DR	3A	IMPX3 Q
73	TQ15800540	CER	S	02			1	1	121	5	113	1	2					DR	2	
75	TQ16700550	PGR	S	02	000		1	1	112	-8	114	-2	3A					DR	2	IMP
76	TQ16200540	PGR	S	02	000		1	1	124	4	116	0	3A					DR	2	IMP
77	TQ16300540	PAS	s				1	1	144	24	115	-1	2					DR	2	
78	TQ16400540	PGR	S	02	000		1	1	113	-7	115	-1	3A					DR	2	IMP
79	TQ16500540	PAS	S				1	1	082	-38	082	-34	38					DR	2	
80	TQ 6600540	PGR	s	02	000		1	1	117	-3	114	-2	3A					DR	2	IMP
81	TQ16700540	PGR	S		000		7	7	113	-7	115	-7	3A					DR	2	IMP
86	TQ16200530	PGR	s	02	000		1	1	066	-54	066	50	4					DR	3B	IMPX3 Q
87	TQ16300530	PGR	S	02	000		1	1	112	-8	114	-2	ЗА					DR	2	IMP Q
88	TQ16400530	PGR	S	02	000		1	1	103	-17	114	-2	ЗА					DR	2	IMP Q
89	TQ16600530	PAS					1	1	143	23	113	-3	2					DR	2	
90	TQ16700530	PGR	S		000		1	1	068	-52	068	48	4					DR	38	IMPX3 Q
91	TQ15700520	ARA	S	04	000		1	1	153	37	116	4	2					DR	2	
96	TQ16200520	PGR	S		000		1	1	116	-4	116	0	3A					DR	2	IMP
97	TQ16300520	PGR	S		000		1	1	153	33	115	-1	2					DR	2	
98	TQ16400520	PGR	s		000		1	1	152	32	115	-1	2					DR	2	
100	TQ15900510	PAS			32		2	2	115	- 5	115	-1	3A					MD	2	
101	TQ16000510	PAS			60		1	1	000	0	000	0	2					DR	2	
103	TQ16200510	CER					1	1	107	-13	115	-1	3A					DR	2	
104	TQ16300510	CER					2	2	000	0	000	0	2					DR	2	
105	TQ16400510	CER					2	2	000	0	000	0	2					DR	2	
106	TQ15800500	PAS					1	1	000	0	000	0					Y	DR	38	Disturbed
107	TQ15900500) PAS					1	1	000	0	000	0					Υ	DR	38	Disturbed
108	TQ16000500	OSR			30	30	2	2	134	14	111	-5	2					WE	2	
110	TQ16200500) CER					1	1	112	-8	116	0	ЗА					DR	2	
112	TQ16400500) CER					1	1	098	-22	113	-3	3B					DR	2	
112	TQ16400500	CER					1	1	137	17	113	-3	2					DR	2	
113	TQ15800490	PAS					1	1	000	0	000	0					Y	DR	3B	Disturbed
114	TQ15900490				35		2	2	000	0	000	0						WE	2	
115	тQ16000490						1	1	156	36	118	2	2					DR	2	NO GLEY
116	TQ16100490) ARA			000		1	1	141	21	117	1	2					DR	2	NO GLEY
	TQ16200490				080		1	1	126		115							DR	2	NO GLEY
							-			_		-	-						-	

				 MOTTLES	:	PED			_87	MES.		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	ABUN	CONT								STR POR IMP SPL	CALC		
	DE		55250X	 	••••			-								
34	0-30	mcl	10YR53 00					0	0	HR	3			Y		
	30-35	mcl	00ZZ00 00					0	0	CH	80		M	Y		
	35-85	ch	00ZZ00 00					0	0		0		M	Y	Rooting to 8	35
36	0-28	mcl	10YR32 00					0	0	CH	2			Y		
	28-58	mcl	10YR53 00					0		CH	5		М	Y		
	58-75	mc1	10YR74 00					0		СН	10		М	Y		
	75–120	ch	00ZZ00 00					0	0		0		M	Y		
41	0.00	3	10/040 00						^		•			v		
41	0-28	mzcl	10YR42 00							HR HR	3		м	Y Y		
	28-35 35-60	hcl c	10YR43 54 10YR54 56					0		HR	5 5		M M	Ÿ		
	60-95	mzcl	10YR74 64					0		CH	35		M	Ÿ		
	95-120	mzcl	10YR74 00					0		CH CH	50		,. М	Y		
	30 100	пцот	1011174 00						·	٠	-		••	•		
42	0-26	hzcl	10YR53 00					0	0	HR	5			γ		
	26-120		10YR56 00		C	OOMNOO	00			HR	3		М	Υ		
43	0-28	mc1	10YR53 00					0	0	HR	3			Υ		
	28-45	hc1	10YR54 00					0	0	HR	2		M	Y		
	45-79	С	10YR44 54					0	0	HR	3		М	Y		
	79 90	hzcl	10YR54 00					0	0	CH	20		М	Y		
	90-120	mzcl	10YR64 74					0	0	CH	35		М	Y		
		_						_			_					
44	0-28	mzcl	10YR42 43							HR	5		M	Y		
	28-48	hc1	10YR54 00					0		HR	8		M	Y Y		
	48-75 75-90	hzcl hzcl	10YR64 63 10YR74 00					0		CH CH	35 40		M M	Y		
	75-30	11201	1011/4 00					·	۰	۵ı.	70		••	1		
45	0-28	mzcl	10YR42 00					0	٥	HR	6			Υ		
, •	28-55	hzcl	10YR43 44					0		HR	5		м	Υ		
	55-78	С	10YR44 00					0	0	СН	8		M	Υ		
	78-120	hzc1	10YR64 74					0	0	CH	30		M	Υ		
46	0-28	hzc1	10YR42 00					8	0	HR	14			Y		
	28-35	hzcl	10YR43 54					0		HR	8		М	Y		
	35-45	hzcl	10YR74 64					0	0	CH	35		М	Y		
47	0-26	mzcl	10YR42 00							HR	10			Y		
	26 35	С	10YR44 00					0	Ü	HR	20		М	Υ		
40	0.05		10/042 00					-	^	un	-					
48	0-25 25-50	hcl	10YR42 00					5 0		HR CH	7 20		м			
	25-50 50-70	hcl hcl	10YR54 00 10YR64 00							ᅄ	50		M M			
	70-90	ch	00CH00 00					0	0	G,	0		M			
	70-30	C11	300100 00					J	,		J		••			
49	0-30	hc1	10YR42 00					2	0	HR	5					
	30-80	hc1	10YR54 00					0		CH	1		М			
	80-85	hc1	10YR64 00					0		СН	20		М			

SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS- M REL EROSN FROST CHEM ALC NO GRID REF USE GRONT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS 2 172 TQ16300420 PL0 060 1 1 149 29 117 1 2 DR NO SPL 000 1 1 120 0 117 1 3A DR 2 IMP 173 TQ16400420 PL0 137 17 114 000 1 1 -2 2 DR 2 NO GLEY 174 TQ16500420 ARA 000 1 1 020 2 2 104 -16 114 -2 3A OR 2 IMP Q 175 TQ16600420 ARA 112 -8 094 -22 3A 0R 3A WT 65CM 180 TQ16400410 CER 065 -55 065 -51 4 000 1 1 DR 3B IMP X 3 181 TQ16500410 ARA 025 2 2 088 -32 092 -24 38 DR 3A IMP Q 182 TQ16600410 ARA 000 020 4 3B 184 TO16300400 PGR 077 -43 080 -36 38 WE 3B SPL 000 010 4 3B 077 -43 083 -33 38 WE 3B SPL 185 T016400400 PGR 025 1 110 -10 112 -4 3A 3A WT 60CM 2 DR 186 TQ16500400 PGR 0 035 4 000 0 000 0 WE 187 TQ16600400 PAS 3B 38 189 T016300390 PGR 000 020 4 3B 079 -41 082 -34 3B WE 3B SPL 0 0 5 IGNORE 2504 TQ

SAMP	LE	А	SPECT			WE	rness	–WH	IEAT-	-P0	TS-	ı	M. REL	EROSN	FRO	OST	CHEM	ALC	
NO.	GRID REF	USE		GRDNT	GLEY SF			AP	MB		МВ	DRT	FLOOD	E)		DIST	LIMIT		COMMENTS
1	TQ16800610	CER	NE	02	000	1	1	111	-5	114	2	ЗА					DR	ЗА	IMP80
1P	TQ16050580	STU	S	05		1	1	102	-8	099	-5	3A					DR	3A	Near boring 20
2	TQ16900610	CER	NE	02	000	1	1	107	-9	111	-1	ЗА					DR	3A	IMP85-2
2P	TQ15680534	CER	S	04		1	2	103	-13	101	-11	3A					DR	3A	Near boring 64
3P	TQ16590467	PL0			000	7	1	155	35	117	3	2					DR	2	Near boring 20
4P	TQ16550415	ARA			000	1	1	108	-12	093	-21	3A					DR	3A	
5	TQ16800600	CER	NE	03	000	1	1	152		122	10	1					DR	1	
	TQ16080467				024	2	2	114		114	0	3 A					WE	2	PROB 2DR
6	TQ16900600	CER	NE	06	000	1	1	154	38	118	6	2					DR	2	NO CH
	·																		
	T04 5 T00 T00		_			_	_			000	_								D007 07
11	TQ16500590			03	000	1	1	102		098	-6	3A					DR	3A	ROOT 85
12	TQ16600590			03	000	1	1	095	-15		-6	3A					DR	3A	ROOT 75
_	TQ16600590			03	000	1	1	090		096	-8	38					DR	38	ROOT 70
13	TQ16700590			03	000	1	1	096	-20		-14	38					DR	38	ROOT 75
14	TQ16800590	CER	N	04	000	1	1	124	8	113	1	2					DR	2	ROOT 100
15	TQ16900590	CED	NE	07	000	1	1	091	_25	093	-19	3B					DR	3B	SLOPE
20	TQ16100580			06	000	1	1	086		092	-12	3A					DR	3A	SLOPE
25	TQ16600580			04	000	1	1	106	-10		-10	3A					DR	3A	ROOT 85
26	TQ16700580			04	000	1	1	089		092	-20	3B					DR	3B	R00T75
27	TQ16800580			03	000	1	1	107		103	- <u>2</u> 0	3A					DR	3A	R00T 85
21	1010000000	CLK	JL.	03	000	•	•	10,	-3	103	-3	JA					DR	JA	K001 03
28	TQ16900580	CER	F	03	000	1	1	089	-27	095	-17	3B					DR	3B	ROOT 70
29	TQ17000580			04	000	1	1	104	-12		-9	3A					DR	3A	ROOT 80
30	TQ17100580			03	000	1	1	149		116	4	2					DR	2	11007 00
33	TQ15800570			05	000	1	1	144		116	4	2					DR	2	
34	TQ15900570			05		1	1	087		093	-19						DR	3A	
			_			•	•										•,-		
36	TQ16100570	PAS	S	04		1	1	140	24	116	4	2					DR	2	
41	TQ16600570	CER	S	03	000	1	1	145	29	115	3	2					DR	2	
42	TQ16700570	CER	SE	02	000	1	2	139	23	115	3	2					DR	2	MN 65
43	TQ16800570	CER	SE	02	000	1	1	143	27	115	3	2					DR	2	
	TQ16900570			03	000	1	1	119	3	112	0	ЗА					DR	ЗА	PROB 2DR
45	TQ17000570	CER	SE	02	000	1	1	147	31	117	5	2					DR	2	
46	TQ17100570	CER	Ε	02	000 000	1	2	072	-44	072	-40	38					DR	4	IMP45-3A
47	TQ17200570	CER	Ε	02	000	1	1	056	-60	056	-56	4					DR	4	IMP35-3A
48	TQ15700560	ARA	S	05	000	1	2	110	-6	105	-7	3A					DR	ЗА	Q ROOTS
49	TQ15800560	ARA	S	05	000	1	2	118	2	115	3	ЗА					WK	2	IMP Q
50	TQ15900560	ARA	S	05	000	1	1	101	-15	112	0	ЗА					DR	2	IMP Q
51	TQ16000560			05	000	1	1		-73		-69	4					DR	3B	IMPX4 Q
	TQ16600560			02	000	1	2		~11		-1	3A					DR	3A	IMP 80
	TQ16700560			03	000	1	1		-28		-17	3B					DR	3B	IMP60-3A
59	TQ16800560	CER	S	02	000	1	1	147	31	120	8	2					DR	2	
			_																
	TQ16900560			02	000	1	1	141		112		2					DR	2	
61	TQ17000560	CER	SE	01	000	1	1	105	-11	117	5	ЗА					DR	ЗА	IMP 2DR

----STONES---- STRUCT/ SUBS ----MOTTLES---- PED COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 0-34 10YR53 00 0 0 CH 10 12 mzcl 0 0 34-75 ch 00CH00 00 n М Υ 0-32 10YR53 00 0 0 CH 10 12A mzcl γ 00CH00 00 0 0 0 Υ 32-70 М ch 13 0-35 10YR53 00 0 0 HR 5 mzcl 00CH00 00 0 0 0 35-75 М Υ ch 0 0 HR 14 0-28 10YR53 00 5 28-60 hzc1 10YR63 00 0 0 CH 10 М 60-100 ch 00CH00 00 0 0 0 М 0 0 CH 0-28 mzcl 10YR53 00 10 28-32 10YR53 00 0 0 CH 80 mzc1 М 32-75 00CH00 00 0 0 0 М ch 0-20 mzcl 10YR53 00 0 0 HR 2 20-25 10YR54 00 0 0 CH 5 М Υ mzc l 25-35 0 0 CH mzcl 00ZZ00 00 80 М γ 35-85 00ZZ00 00 0 0 0 М Y Rooting to 85 0-26 10YR53 00 0 0 HR 25 3 mzcl 10YR54 64 0 0 CH 26-45 hc1 10 М 45-85 00CH00 00 0 0 HR 2 Υ 10YR53 00 0 0 HR 26 0-27 5 mzcl 0 0 27-75 00CH00 00 ٥ Y ch М 0-25 10YR53 00 0 0 HR 27 mzcl 3 25-40 10YR53 54 0 0 CH 3 Y hzcl М 0 0 CH 50 40-45 hc] 10YR53 00 М Y 45-85 00CH00 00 0 0 0 ch 0-32 10YR53 00 0 0 HR 28 mzcl 6 Υ 32-70 ch 00CH00 00 0 0 0 М Y 0 0 CH 0-25 10YR53 00 Υ 29 mzcl 3 25-40 hzc1 10YR54 00 0 0 CH 10 Y 40-45 mzcl 10YR64 00 0 0 CH 50 М γ 00CH00 00 0 0 0 45-80 ٧ ch М 0-26 10YR42 00 0 0 HR 3 γ 30 mzcl 26-58 10YR43 00 0 0 HR 8 ٧ hzc1 М 0 0 CH 10YR64 74 35 58-120 mzcl М Υ 0-28 10YR43 00 0 0 HR 3 Υ 33 mcl 28-70 10YR54 00 0 0 0 Υ hc1 М 70-80 10YR54 00 0 0 CH 10 М Υ hcl

0 0 CH

0 0

20

0

М

М

Y

10YR74 00

00ZZ00 00

80-90

90-120 ch

hc1

				 MOTTLES		PED		S	TONES	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR								•	STR POR IMP SPL	CALC	
													0, 120	
34	0-30	mc1	10YR53 00				0	0	HR	3			γ	
	30-35	mcl	00ZZ00 00						CH	80		М	Υ	
	35-85	ch	00ZZ00 00					0		0		M	Υ	Rooting to 85
36	0-28	mc?	10YR32 00				0	0	СН	2			Υ	
	28-58	mc1	10YR53 00				0	0	СН	5		М	Υ	
	58-75	mc1	10YR74 00				0	0	CH	10		М	γ	
	75-120	ch	00ZZ00 00				0	0	ł	0		М	Υ	
41	0-28	mzcl	10YR42 00				0	0	HR	3			Υ	
	28-35	hc1	10YR43 54				0	0	HR	5		М	Υ	
	35-60	С	10YR54 56				0	0	HR	5		M	Y	
	60-95	mzcl	10YR74 64				0	0	CH	35		M	γ	
	95-120	mzc1	10YR74 00				0	0	CH	50		M	Υ	
42	0-26	hzcl	10YR53 00				0	0	HR	5			Υ	
	26-120	С	10YR56 00		C	OMNOO (0 00	0	HR	3		М	Υ	
43	0-28	mc]	10YR53 00				0	0	HR	3			Υ	
	28-45	hc1	10YR54 00				0	0	HR	2		M	γ	
	45-79	С	10YR44 54				0	0	HR	3		M	Υ	
	79-90	hzc1	10YR54 00				0	0	CH	20		M	Υ	
	90-120	mzc1	10YR64 74				0	0	CH	35		М	Υ	
44	0-28	mzcl	10YR42 43				0	0	HR	5			Υ	
	28-48	hcl	10YR54 00				0	0	HR	8		М	γ	
	48-75	hzc1	10YR64 63				0	0	CH	35		M	Υ	
	75-90	hzcl	10YR74 00				0	0	CH	40		М	Υ	
45	0-28	mzcl	10YR42 00				0	0	HR	6			Υ	
	28-55	hzc1	10YR43 44				0	0	HR	5		M	Υ	
	55-78	С	10YR44 00				0	0	CH	8		M	Υ	
	78-120	hzc1	10YR64 74				0	0	CH	30		М	Y	
46	0-28	hzcl	10YR42 00				8		HR	14			Υ	
	28-35	hzcl	10YR43 54				0	0	HR	8		М	Y	
	35-45	hzcl	10YR74 64				0	0	CH	35		М	Y	
47	0-26	mzcl	10YR42 00				0		HR	10			Υ	
	26-35	C	10YR44 00				0	0	HR	20		M	Υ	
48	0-25	hc1	10YR42 00				5		HR	7				
	25-50	hc1	10YR54 00				0		CH	20		M		
	50-70	hc1	10YR64 00				0		СН	50		М		
	70-90	ch	00CH00 00				0	0		0		M		
	_													
49	0-30	hc1	10YR42 00				2		HR	5				
	30-80	hc1	10YR54 00				0		CH	1		M		
	80-85	hc1	10YR64 00				0	0	CH	20		M		

- -- -- -------

				 MOTTLES	S	PEĐ			-ST	ONES		STRUCT/	SUBS						
SAMPLE	DEPTH	TEXTURE	COLOUR	ABUN		COL	GLEY					CONSIST		IMP SP	L CALC				
50	0-25	mcl	10YR42 00						0		5								
	25-30	hc1	10YR54 00						0 1		2		M						
	30-70	hc1	10YR64 00					0	0	CH	10		М						
51	0 25	mcl	10YR42 00					0	0 1	HR	5								
57	0-28	hzcl	10YR42 00					0	0 1	HR	6				Υ				
	28-75	c	75YR56 00						0		10		М		Y				
	75 80	mzcl	10YR64 74						0		30		м		Y				
50		_	40						_										
58	0-28	mc1	10YR42 00						0		4				Y				
	28 60	C	10YR56 00					0	0	HR	10		М		Y				
59	0 27	mzcl	10YR42 00					0	0	HR	4				Y				
	27 65	hzc1	10YR44 54					0	0	HR	3		M		Y				
	65 96	c	10YR44 54					0	0	HR	6		M		Y				
	96 120	mzcl	10YR64 74					0	0	CH	30		М		Y				
60	0 26	mzcl	10YR42 00					0	0	HR	6								
	26-50	hcl	10YR42 43						0		7		М						
	50 79	c	75YR56 00			00MN00	00		0		7		М						
	79-120	hzcl	10YR64 74						0		35		M		Υ				
	0.00	- 3	107040 00																
61	0-28	mzcl	10YR42 00						0		4								
	28-50	mzcl	10YR43 00						0		3		M						
	50-65	hc1	10YR43 44						0		10		M						
	65–70	c	10YR44 00					U	0	нк	10		М						
62	0 28	mc1	10YR42 00					7	0	HR	12								
	28 35	hzcl	10YR44 00					0	0	HR	20		M						
63	0 28	hzcl	10YR42 00					٨	0	MD	7								
05	28 50	hc1	10YR42 43						0		15		м						
	20 30	1101	1011142 45					Ŭ	Ů				••						
64	0 30	hcl	10YR42 00					7			10				Y				
	30 35	hcl	10YR44 00					0	0	HR	20		M		Y	Imp 3	35 – s	tones	
65	0 29	hc1	10YR42 00					0	0	HR	3				Y				
	29-55	hc1	10YR43 00						0		3		м		Y				
	55-95	c	10YR44 00	F				0	0	HR	3		М		Y				
	95-100	c	10YR74 00					0	0	HR	10		M		Y	Imp 1	00 -	flints	
67	0-30	hcl	10YR42 00					0	0	uр	2								
0,	30-70	hcl	10YR54 00						0		2		м						
	30-70	(K)	1017-					U	J	, 117,	۷		п						
69	0-27	mcl	10YR42 00					3	0	HR	5								
	27-70	hc1	10YR54 00					0	0	HR	10		М		Y	Imp 7	70 - s	tones	

----MOTTLES---- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 0 0 HR 70 10YR42 00 4 0-25 mc1 0 0 HR 25-40 hc1 10YR43 00 2 М 10YR54 00 0 0 HR М 40-85 hel 5 2 0 HR 71 0-25 mc1 10YR42 00 5 0 0 HR 10YR54 00 М 25-120 hc1 2 10YR42 00 2 0 HR 72 0-25 സരി 5 0 0 HR М 25-50 10YR43 00 2 hcl 10YR44 00 0 0 HR 50-70 5 М 3 0 HR 73 0-30 mcl 10YR42 00 3 30-70 10YR43 00 0 0 HR М hcl 5 70-95 10YR44 00 0 0 HR 5 М Imp 95 - stones C O O HR 75 0-20 mc1 10YR32 00 2 0 0 HR 20-30 mcl 10YR42 00 2 М 30-50 10YR54 00 0 0 HR 2 М mcl 50-80 10YR54 00 0 0 HR М 2 hc1 76 0-30 mc1 10YR32 00 0 0 HR 2 0 0 HR 30-60 mc1 10YR42 00 2 М 10YR44 00 0 0 HR 60-90 2 М hc1 0-30 mc1 10YR43 00 0 0 0 30-80 10YR44 00 0 0 HR 5 М hcl 80-120 c 10YR54 00 0 0 HR 5 М 0-25 10YR42 00 0 0 HR 2 mc1 25-60 10YR43 00 0 0 HR 2 М mc1 0 0 HR 60-80 10YR54 00 2 М hc1 0-30 mc1 0 0 HR 79 10YR43 00 5 Imp 50 - stones 0 0 HR 30-50 10YR44 00 М hel 5 0-20 10YR32 00 0 0 HR 2 80 mcl 0 0 HR М 20-40 10YR42 00 2 mcl 40 70 0 0 HR mc1 10YR43 00 2 М 70-85 hel 10YR54 00 0 0 HR 2 М 0-25 10YR42 00 0 0 HR 81 mcl 2 25-50 10YR43 00 0 0 HR 2 mc1 50-80 10YR54 00 0 0 HR 2 М hc1 5 86 0-30 mc1 10YR42 00 0 0 HR 0 0 HR 30-40 10YR42 00 10 mc1 87 0 25 mcl 10YR43 00 0 0 HR 2 25 50 10YR42 00 0 0 HR 5 М hc1 10YR54 00 0 0 HR 2 М 50 80 hc1

48-65 c

0-25 mc1

25-50 mc1

105

75YR54 00

10YR42 00

10YR43 00

Imp 65 - stones

Imp 50 - stones

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS COL ABUN CONT COL GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH TEXTURE COLOUR 0 0 HR RR 0-30 10YR42 00 2 mc1 0 0 HR 30-60 mc1 10YR43 00 5 М 10YR54 00 0 0 HR 60-70 hc1 O O HR 89 0-32 mcl 10YR43 00 2 32-50 10YR44 00 O O HR 5 hc1 50-90 10YR44 00 O O HR 10 М c 10YR64 00 0 0 CH 5 М Chalky drift 90-120 hc1 0-25 mc1 0 0 HR 10YR42 00 2 25-40 mc1 10YR43 00 0 0 HR 2 М 0 0 HR 0-30 mc1 10YR42 00 2 O O HR 30-45 hc1 10YR43 00 2 0 0 HR М 45-120 hc1 10YR44 00 2 0-32 mc1 10YR32 00 0 0 HR 2 32-70 mcl 0 0 HR 2 М 10YR42 00 0 0 HR 70-85 10YR54 00 2 М 97 0-25 10YR42 00 0 0 HR 2 mc1 0 0 HR 2 М 25-50 10YR44 00 hc1 00MN00 00 0 0 HR 50 80 hc1 10YR54 00 2 10YR54 00 0 0 CH 80-120 hc1 0 0 HR 98 0-25 10YR42 00 2 നമി 0 0 HR 25-60 hç1 10YR43 00 2 0 0 HR 60-120 hc1 10YR54 00 2 100 10YR32 00 0 0 HR 5 0-32 mc1 32-70 hc1 10YR62 00 75YR58 00 C 10YR71 00 Y 0 0 HR 2 70-82 10YR62 00 75YR58 00 C 10YR71 00 Y 0 0 HR 2 М Imp 82 - stones hc1 0 0 101 0-30 mcl 10YR32 00 0 30-60 mc1 10YR52 00 0 0 0 М 10YR61 00 75YR58 00 C Y 0 0 0 М Imp 78 - gravel 60-78 С 103 0-30 10YR42 00 2 0 HR 3 mc1 0 0 HR 30-50 10YR53 00 3 М hc1 0 0 HR Imp 80 - stones 50-80 10YR54 00 3 М С 2 0 HR 104 0-27 10YR42 00 3 mc1 27-48 hc1 10YR43 00 O O HR 3 м

0 0 HR

3 0 HR

0 0 HR

5

5

10

М

- -- - - - - -

					MOTTLES				-	S	TONES	-	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL	GLEY	>2	>6	LITH	TOT	CONSIST	STR POR IMP SPL CALC		
106	0 25	ol	10YR32 00						0	0		0			Imp 25	gravel
107	0 30	ρl	10YR21 00						0	0		0				
	30 40	gh	00ZZ00 00							0		0		М	Imp 40	gravel
108	0 30	hcl	10YR32 00								HR	1				
	30 50	C	25 Y52 00				25 Y60			0		0		M		
	50 120	C	10YR62 00	TOTR	38 UU M		10YR61	VU 1	U	0		0		М	Many Mn c	ones
110	0 29	mc1	10YR42 00						0	0	HR	2				
	29 48	hc1	10YR53 00						0	0	HR	2		М		
	48 80	c	10YR54 00						0	0		0		М		
	80 85	c	10YR54 00		F				0	0		0		М	Imp 85	stones
112	0 28	mcl	10YR53 00						0	n	HR	5				
,,,	28 45	hc1	10YR54 00						0		HR	5		м		
	45 70	c	10YR54 00								HR	2		M	Imp 70	stones
11 7	0 28	wc J	10YR53 OG								HR	5				
	28 45	hc1	10YR54 00								HR	5		М		
	45 120	С	10YR54 00						0	0	HR	2		М	Assume to	120
113	0 25	ocl	10YR22 00						0	0		0				
	25 32	hc1	10YR31 00							0		0		М	Imp 32 -	gravel
114	0 25	mzcl	10YR32 00							0		0				
	25 35	hcl	10YR53 00							0		0		M 		
	35 55	hc1	10YR62 00				10YR61				HR	2		M		
	55 120	С	10YR62 00	IUTK	36 UU C		10YR61	UU Y	U	U	HR	2		М		
115	0 35	mc 1	10YR42 00						0	0	HR	2				
	35 42	hol	10YR54 00						0	0		0		м		
	42 120	hc1	10YR54 00	000C	00 00 M		00MN00	00	0	0		0		М		
115	0 25	mcl	10YR42 DO						n	0		0				
	25 50	c	10YR44 00						Q	0		0		м		
	50 80	¢	10YR54 00						0	0		0		м		
	80 120	С	10YR54 00	0000	00 00 C				0	0		0		м		
	0.00		100040 00						_	_		_				
117	0 28	mcl	10YR42 00								HR	2				
	28 60 60 80	hc1 c	10YR44 00 10YR44 00								HR	2		M		
	80 100		25Y 63 00	0000	00 00 0			Y		0	HR	2		M M		
	20 100	-	20. 00 00	5500				,	Ū	J		J		•1		
118	0 32	mc1	10YR42 00						2	0	HR	5				
	32 80	hcl	10YR54 00						0	0	HR	5		М		
	80 90	hc1	10YR54 00						0	0	HR	10		М	Imp 90 -	stones

					10TTLES		PED				-STC	WES_		STRUCT/	SHRS	
SAMPLE	NEPTH	TEXTURE	COLOUR	COL			COL	GI I						· ·	STR POR IMP SPL CALC	
GT LL	JE,	, contains	00200	UUL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00	000			_		,,,		CONCIO:	OWN TON THE ONE WILLS	
119	0-29	mcl	10YR53 00							2	0 F	łR	5			
	29-60	hc1	10YR54 00							0	0 H	lR .	5		М	
	60-75	С	10YR54 00							0	0 H	iR	2		М	Imp 75 - stones
120	0-30	oc1	10YR22 00							0	0		0			
	30-42	ρl	10YR32 00							0	0		0		М	Imp 42 - stones
121	0-25	mzcl	10YR42 00							0			0			
	25-45	hcl	10YR53 00								0 H		5		М	
	45-70	С	10YR53 00				10YR62				0 H		5		М	
	70-120	С	10YR71 00	10YR56	00 C			,	Y	0	0 F	łR	5		М	
		_								_	_		_			
122	0-28	mcl	10YR42 00								0		0			
	28-50	hc1	10YR53 00							-	0		0		M	
	50-120	hc1	10YR53 00	UUUCUU) 00 C		COMNOO	00	Y	0	Ü		0		М	
123	0.25	1	100042 00							^	0 F	מנ	2			
123	0-25 25-50	mcl hcl	10YR42 00 10YR44 00								0	1K	2		M	
	50-120		101R44 56	nnacar	1 00 0						0 F	1D	5		M	
	30-120	•	101834 30	000000	, 00 0					•	٠.	ik	3		**	
124	0-25	mcl	10YR42 00							0	0 F	iR	2			
	25-80	hcl	10YR54 00								0 F		2		М	
	80-90	c	10YR54 00	000000	00 C		00MN00	00			0 F		5		М	
125	0-25	mc1	10YR42 00							0	0 F	łR	2			
	25-50	hc1	10YR54 00							0	0 F	łR	5		M	
127	0-25	mcl	10YR42 00							0	0 F	łR	2			
	25-45	hc1	10YR44 00								0 F		2		M	
	45-80	С	10YR44 00								0 H	łR	2		M	
	80-120	С	10YR44 00	000000	00 F					0	0		0		М	
		_								_	_		_			
128	0-32	mcl	10YR32 00	354556			4011064				0		0			- u
	32-60	hc1	10YR63 00				10YR61				0 H		5		M	Few Mn concs
	60-120	С	10YR52 00	/5YK58	S UU M		10YR61	00	Y	U	0 н	ıĸ	5		М	
129	0-28	1	10YR42 00							0	0		0			
123	28-40	mcl hcl	101R42 00							0	0		0		M	
	40-58	C	10YR54 00							-	0		0		m M	Few Mn concs
	58-62	c	10YR53 00	75VD58	י חח ר			,	Y		0 н	ID.	5		 M	Imp 62 - stones
	JU-02	Ü	101733 00	/ J 1 N JC					•	J	5 5		,		••	Imp oz - stores
130	0-32	mcl	10YR42 00							0	0		0			
	32-50	hc1	10YR53 00	75YR58	00 C		10YR61	00 1	Y				0		М	
	50-120		10YR53 00				10YR61			0			0		M	
131	0-25	mcl	10YR42 00							0	0 H	iR	2			
	25-50	mc1	25Y 52 00							0	0 н	IR	5		M	

					MOTTI EC		DED			6.	CALEC		CTDUCT /	CHBC								
CAMDIC	DEDTU	TEVTURE	COLOUR		MOTTLES ABUN	CONT		CL EV					STRUCT/ CONSIST		. та	40.50		u.c				
SAMPLE	DEPTH	TEXTURE	COLOUR	WL	ADUN	CONT	CUL	GLE	7 72	>0	LIIA	101	CONSIST	SIK PUI	r II	TP JP	LU	4LC				
132	0-25	mcl	10YR42 00						0	0	HR	2										
	25-50	mcl	10YR54 00						0	0		0		М								
	50-60	hcl	10YR54 00	00000	0 00 F				0	0		0		M								
	60-90	С	10YR54 00						0	0		0		М								
133	0-25	mc1	10YR42 00						0	0	HR	2										
	25-40	hc1	10YR54 00						0	0		0		M								
	40-120	С	10YR54 00			(00/11/00	00	0	0		0		M								
135	0-25	mc1	10YR42 00						0	0	HR	2										
	25~65	hc1	10YR54 00						0	0	HR	2		M								
	65-120	c	10YR54 00						0	0	HR	2		M								
136	0 25	mcl	10YR42 00						0		HR	2										
	25 50	mc1	10YR44 00						0		HR	2		M								
	50 80	hc1	10YR54 00						0		HR	2		M								
	80 95	C	10YR54 00						0	0	HR	5		М								
		_							_	_		_										
138	0-25	mc]	10YR42 00								HR	2										
	25-50	hc1	10YR53 00						0		HR	2		M								
	50-60	С	10YR56 00						U	U	HR	5		М								
120	0.05		100042.00						^	^	ub	2										
139	0-25	mcl	10YR42 00				0014100	00			HR	2										
	25-60	С	10YR54 00				OOMNOO		0	0		0		M								
	60 70	c	10YR54 00	00000	0 00 0		00MN00			0		0		M								
	70 120	С	10YR54 00	JULCU	0 00 0	'	OUMNOO	00	v	0		U		М								
140	0 28	mcl	10YR42 00						o	0	HR	2										
140	28 65	hc1	10YR54 00						o	0		0		М								
	65 120	c	10YR54 00	00000	0 00 C	i	00MN00	00		0		0		M								
	00 .20	•	1011107 00						•	-		-		,,								
142	0-25	mc1	10YR42 00						0	0	HR	2										
	25 60	hc]	10YR44 00						0	0		0		M								
	60-120		10YR54 00			1	00MN00	00	0	0	HR	2		М								
144	0-35	oc1	10YR22 00						0	0		0							Imp 3	35 -	bras	hy
145	0-25	mcl	10YR42 00						0	0		0										
	25-60	hc1	10YR53 00	00000	0 00 C			Υ	0	0		0		M								
	60-90	С	10YR52 00	00000	0 00 C			Y	0	0		0		PΥ		Y	<i>f</i>					
146	0-25	mc1	10YR42 00							0		0										
	25-60	hc1	10YR44 00							0		0		M								
	60-85	С	10YR54 00				00MM00	00	0	0		0		М								
147	0-25	mc1	10YR42 00					•			HR	2										
	25-60	hc1	10YR54 00				00MN00			0		0		M								
	60-80	С	10YR54 00	000C0	บ UD F	1	00MN00	UÜ	0	0	HR	5		М								

----MOTTLES---- PED ----STONES---- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 148 0-25 mc1 10YR42 00 0 0 HR 2 25-50 hc1 10YR54 00 0 0 Λ М 50-60 с 10YR54 00 0 0 0 60-75 c 10YR54 00 00MN00 00 0 0 HR 5 0-25 mc1 149 10YR42 00 0 0 HR 2 25-50 hc1 10YR44 00 0 0 HR 50-120 hc1 10YR54 00 0 0 HR 2 М 0-25 mc1 150 10YR42 00 0 0 HR 2 25-80 hc1 10YR54 00 0 0 HR 2 80-120 hc1 10YR54 00 000C00 00 C 00MN00 00 0 OHR 2 152 0-30 p1 10YR22 00 0 0 HR 30-65 oc1 10YR21 00 75YR46 00 C Y 0 0 HR 2 Imp 65 - stones 154 0-25 mc1 10YR42 00 0 0 0 25-50 hc1 10YR52 00 000C00 00 M Y 0 0 0 М 50-60 10YR52 00 000C00 00 M C 0 0 0 М 60-80 c 10YR52 00 000C00 00 M Y 0 0 Λ P Y 156 0-25 mc1 10YR42 00 0 0 0 25-42 mc1 10YR53 00 0 0 ۵ М Y 0 0 10YR52 00 000C00 00 C 42-120 hc1 0 M 157 0-25 mc1 10YR42 00 0 0 0 25-60 hc1 10YR44 00 0 O HR 2 М 60-90 c 10YR54 00 0 0 HR 5 158 0-25 mc1 10YR42 00 0 0 HR 2 25-60 hc1 10YR54 00 0 0 HR 2 60-120 c 10YR54 00 000C00 00 C 0 0 HR 2 159 0-25 mc1 10YR43 00 0 0 0 25-38 hc1 75YR54 00 0 0 0 38-50 c 75YR56 00 0 0 HR 5 М 50-60 с 75YR56 00 0 0 HR 10 М Imp 60 - stones 160 0-32 mc1 10YR43 00 0 0 0 32-40 10YR53 00 10YR58 00 C 10YR62 00 Y 0 0 HR hc? 5 М 10YR61 00 Y 0 0 HR 10 40-62 hc1 10YR62 00 10YR58 00 M М Imp 62 - stones 161 0-27 hc1 10YR41 00 75YR46 00 C Y 0 0 0 Y 0 0 27-120 c 05 Y71 00 10YR58 00 M 0 Р Υ Watertable 50+ 162 0-30 mc1 10YR42 00 0 0 0 30-50 с 25Y 52 00 000C00 00 C Y 0 0 HR 2 М 50-120 с 25Y 52 00 000C00 00 C Y 0 0 HR 5 М

182

0.25 mc1

25-60 ms1

10YR42 00

10YR42 00 000C00 00 C

--- MOTTLES ---- PED ----STONES --- STRUCT/ SUBS SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY 2 6 LITH TOT CONSIST STR POR IMP SPL CALC 166 0.28 mc1 10YR42 00 0 0 HR 2 28-60 hc1 10YR54 00 0 0 HR 2 М 60-120 c 10YR54 00 0 0 HR 2 М 167 0-28 mc1 10YR42 00 0 0 HR 1 28 75 hc1 10YR54 00 0 0 0 М 75-120 c 10YR54 00 00 00MN00 0 0 HR М 2 168 0 32 с 10YR62 00 75YR56 00 C 10YR51 00 Y 0 0 32-120 c 05 Y71 00 10YR58 00 M Y 0 0 0 М Peaty loam lenses 170 0-30 mc1 10Y842 00 0 0 0 30-50 mc1 10YR53 00 0 0 0 50-75 hcl 10YR53 00 000C00 00 M 00MN00 00 Y 0 0 0 М 75-90 sc1 10YR56 00 000C00 00 C 0 0 0 М 171 0.30 mc1 10YR42 00 0 0 0 30 40 hc1 10YR53 00 0 0 0 40 80 hc1 10YR53 00 000C00 00 C 00MN00 00 Y 0 0 HR М 2 80 120 c 10YR56 00 000C00 00 C 0 0 Υ 0 М 172 0 25 mc1 10YR42 00 0 0 0 25 60 10YR54 00 hc1 0 0 0 М 60 90 10YR53 00 000C00 00 C 0 0 М hel Υ Ω 90 120 c 10YR53 00 000C00 00 C Y 0 0 М 0 173 0 25 mcl 10YR42 00 0 0 0 25 50 hc1 10YR44 00 0 0 0 М 50-70 10YR54 00 hcl 0 0 0 М 70 90 c 10YR46 00 000C00 00 F 0 0 HR 5 10YR42 00 174 0 25 mc1 0 0 HR 2 25 50 hc1 10YR54 00 0 0 HR 2 М 50 120 c 10YR54 00 000C00 00 C 0 0 HR 5 10YR43 00 175 0 28 O O HR 2 mc1 28 60 hc1 10YR54 00 0 0 HR 5 М 60 75 c 10YR54 00 0 0 HR 5 0-20 mc1 10YR42 00 180 0 0 HR 4 Y 0 0 HR 25Y 62 00 000C00 00 C М 20-50 mc1 5 50 120 1ms 10YR56 00 000C00 00 C Y 0 0 HR 5 181 0.28 mc1 10YR42 00 O O HR 5 28-40 mc1 10YR44 00 0 0 HR 10

0 0 HR

Y 0 0 HR

2

М

10

				M	OTTLES		PED			s	TONES-	-	STRUCT/	SUBS	3			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT	CONSIST	STR	POR	IMP	SPL	CALC
184	0-20	С	10YR32 00	000000	00 C			γ	0	0		0						
	20-55	С	25Y 52 00	000C00	M 00			Υ	0	0		0		P	Y		Y	
185	0-10	hc1	10YR32 00	000000	00 C			γ	0	0		0						
	10-60	С	25Y 52 00	000000	00 M			Y	0	0		0		P	Y		Y	
186	0-25	mszl	10YR42 00						0	0	HR	2						
	25-80	mc1	10YR52 00	000000	00 C			Υ	0		HR	10		M				
187	0-35	hc1	10YR42 00	75YR58	00 C	1:	0YR71	00 Y	0	0		0						
	35-55	С	10YR52 00	75YR58	00 M	10	OYR61	00 Y	0	0		0		м			γ	
	55-120	С	05 Y61 00	75YR58	00 M			Y	0	0		0		M			Y	
189	0-20	hcl	10YR32 00	000000	00 C			Υ	0	0		0						
	20-55	С	25Y 52 00	000000	00 M			Y	0	0		0		P	γ		Y	
2504	0-26	mzcl	10YR53 00						0	0	HR	3						Y
	26-45	hc1	10YR54 64						0		СН	10		М				Ý
	45-85	ch	00CH00 00						0	0	HR	2		м				v