A1
Hampshire Minerals and Waste Disposal Plan
Omission site 30 Batchley Farm, Everton
Agricultural Land Classıfication Report
June 1994

AGRICULTURAL LAND CLASSIFICATION REPORT

HAMPSHIRE MINERALS AND WASTE DISPOSAL PLAN
 OMISSION SITE 30 BATCHLEY FARM, EVERTON

1 Summary

11 ADAS was commissioned by MAFF's Land Use Planning Unit to provide information on land quality for a number of sites in Hampshire The work forms part of MAFF's statutory input to the Hampshire Minerals and Waste Disposal Plan

12 Omıssion site 30 comprises 944 hectares of land at Batchley Farm north of Everton An Agncultural Land Classıfication, (ALC) survey was carried out during May 1994 The survey was undertaken at a detailed level of approximately one borng per hectare for the agncultural area A total of 68 borings and four soll inspection pits were described in accordance with MAFF's revised guidelines and criteria for grading the quality of agncultural land (MAFF 1988) These guidelines provide a framework for classifying land according to the extent to which its physical or chemical characteristics impose a long term limitation on its use for agriculture

13 At the time of the survey the majonty of the land was in a five-year set-aside scheme The woodland mapped mostly comprises mature deciduous trees The urban marked consists of gravelly tracks and a house and garden

14 The distribution of grades and subgrades is shown on the attached ALC map and the areas and extent are given in the table below The map has been drawn at a scale of 110000 It is accurate at this scale but any enlargement would be misleading

Table 1 Distribution of Grades and Subgrades

Grade	Area(ha)	\% of Site	\% of Agricultural Land
2	48	51	73
3a	154	163	233
3b	459	486	$\underline{694}$
Urban	08	08	100% (66 1 ha)
Woodland	262	278	
Open Water	$\underline{13}$	$\underline{14}$	
Total area of site	944	100%	

15 Appendix I gives a general description of the grades subgrades and land use categones identified in the survey The main classes are described in terms of the type of limitation that can occur the typical cropping range and the expected level and consistency of yield

16 Agncultural land on the site is predominantly Subgrade 3b (moderate quality land) and Subgrade 3a (good quality land) Small areas of Grade 2 (very good quality land) also occur Soll wetness is the key limitation to agricultural land quality with varations in soil permeability giving nise to the distribution of ALC grades

Climate
21 The clımatic cnteria are considered first when classifying land as clımate can be overnding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soll conditions

22 The main parameters used in the assessment of the overall climatic limitation are average annual rainfall as a measure of overall wetness and accumulated temperature as a measure of the relative warmth of a locality

23 A detaled assessment of the prevailing climate was made by interpolation from a 5 km gridpoint dataset (Met Office 1989) The detals are given in the table below and these show that there is no overall climatic limitation affecting the site However climatic factors do interact with soil factors to influence soll wetness and soll droughtiness limitations

24 No local climatic factors such as exposure or frost risk are believed to affect the site

Table 2 Climatic Interpolations

Grid Reference	SZ290946	SZ291954	SZ283947
Alttude (m)	21	25	30
Accumulated Temperature (days) (ddays Jan-June)	1543	1538	1533
Average Annual Rainfall (mm)	818		
Field Capacity (days)	169	826	823
Moisture Deficit Wheat (mm)	111	171	170
Mosture Deficit, Potatoes (mm)	106	110	110
Overall Climatic Grade	1	105	105
		1	1

Relief
31 The site hes on a coastal plain nising from c 15 m AOD in the south-east corner of the site to c 30 m AOD in the north-west of the site Nowhere on the site does gradient or relief impose any restriction to land quality

Geology and Soil

41 British Geological Survey (1975) Sheet 330 Lymington shows the majonty of the site to be underlain by plateau gravel with an area of Osborne and Headon Beds mapped in the woodland region in the south of the site

42 The published soll survey map Sols of South East England (SSEW, 1983 1250000) maps approxımately two-thirds of the site extendıng eastwards from the western site boundary as the Efford 1 association These solls are described as well drained fine loamy soils often over gravel associated with sımilar permeable solls variably affected by groundwater (SSEW 1983) The remainder of the site is mapped as the Shabbington association, described as deep fine loamy and fine loamy over sandy solls variably affected by groundwater Some slowly permeable seasonally waterlogged fine loamy over clayey solls (SSEW 1983)

43 Detailed field examination generally found deep profiles which range from being moderately well drained to poorly drained

5 Agricultural Land Classıfication

51 Table 1 provides the details of the area measurements for each grade and the distribution of each grade is shown on the attached ALC map

52 The location of the soll observation points are shown on the attached sample point map

Grade 2

53 Very good quality agncultural land is equally lumited by shght soll wetness and droughtiness restrictions Profiles generally comprise medium clay loam topsoils over subsoils of varying texture (medium/heavy clay loams sandy clay loams clay and occasionally medium sandy loams at depth) In the west of the site profiles extend to depth, but in the east proved impenetrable to an auger at c 80 cm depth Subsolls are generally very slightly stony to moderately stony typically contanning c 2-20\% total flints v / v The interaction between these textures and profile stone contents at this site imparts a slight reduction in profile available water Such land may have slightly reduced yield potential as a result This land is restricted by soil wetness and consequently may be subject to minor restrictions on the flexibility of cropping, stocking and cultivations Profiles are moderately well drained (Wetness Class II) where there is gleying or slight gleying below and occasionally within, the topson This slight impedance to dranage is caused by slowly permeable clays at c $75-90 \mathrm{~cm}$ depth This mapping unit is typified by Pit 4

Subgrade 3a

54 Good quality land is restricted by soil droughtıness or soll wetness These profiles typically comprise medium clay loam topsoils and upper subsoils At c $50-60 \mathrm{~cm}$ these pass into slowly permeable heavy clay loams or clays which etther extend to depth or pass into permeable sandy textured lower subsoils (medium sandy loams sandy clay loams) Many of these profiles proved impenetrable to an auger at c 70-100 cm depth The slowly permeable heavy clay loams and clays cause imperfect drainage (Wetness Class III) resultıng in gleying, and occasionally slight gleying below and within the topsoil The interaction between these dranage charactenstics and the medium clay loam topsoils at this site means that this land can be graded no better than 3a because of potential restrictions in terms of
cropping, stockıng and cultıvations Such solls are typified by Pit 2 The remaining 3a land is primarily limited by soll droughtiness Profiles typically comprise medium clay loam topsolls over loamy subsouls Topsolls are very slightly to slightly stony (c $0-8 \%$ flints $>2 \mathrm{~cm} \mathrm{v} / \mathrm{v} \quad 1-12 \%$ total flints v / v) whereas subsoils tend to be slightly stoner (c $5-30 \%$ total flınts v / v) These profiles all proved impenetrable to an auger at $\mathrm{c} 40-50 \mathrm{~cm}$ depth because of underlying gravelly deposits The interaction between soll textures and profile stone contents at this site means that the amount of profile available water is reduced Consequently, this land is likely to have lowered levels and consistency of crop yrelds such that the land is graded 3a

Subgrade 3b

55 Moderate quality land is restricted by sıgnificant soll wetness and workability limitations The land is poorly draned due to slowly permeable heavy clay loams and clays at shallow depths Medium clay loam topsolls are either directly underlain by these slowly permeable heavy textured solls or have permeable medium clay loam upper subsoils which pass into these slowly permeable horizons within 45 cm Lower subsolls compnise soils of varying texture, with permeable horizons of sandy clay loams medium sandy loams and medium clay loams often found laminated with slowly permeable heavy clay loams and clays Profiles are elther gleyed from the surface or below the topsoll (Wetness Class IV) Subsolls range from being stoneless to moderately stony contaning c 0-30\% total flints v / v Subsoils tend to become stomer with depth, and many proved impenetrable to an auger at c $55-105 \mathrm{~cm}$ depth Such profiles are typified by Pits 1 and 3 The interaction between the medium clay loam topsolls and poor drainage characteristics at this site means that this land is subject to signuficantly restricted flexibility of cropping stocking and cultivations Within this mapping unit there are small areas not large enough to constitute a separate mapping unit of poorer quality land

ADAS Ref 1508/106/94
MAFF Ref EL15/107

Resource Plannıng Team Guldford Statutory Group ADAS Reading

SOURCES OF REFERENCE

Bntish Geological Survey (1975) Sheet No 330 Lymington, 1 50,000 (drif edition)
MAFF (1988) Agricultural Land Classification of England and Wales Revised guidelines and critena for grading the quality of agricultural land

Meteorological Office (1989) Climatological Data for Agncultural Land Classıfication
Soll Survey of England and Wales (1983) Sheet 6 Soils of South-East England and accompanying legend

APPENDIX I

DESCRIPTION OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft frut salad crops and winter harvested vegetables Yields are high and less vanable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agncultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more varnable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown, yields are generally lower or more vanable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to hugh yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is manly suited to grass with occasional arable crops (eg cereals and forage crops) the yields of which are vanable In moist clımates yrelds of grass may be moderate to hugh but there may be difficulties in utilisation The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

Urban

Built-up or 'hard' uses with relatively little potential for a return to agnculture including housing industry commerce education transport relıgous buildings cemetries Also hardsurfaced sports facilties permanent caravan sites and vacant land all types of derelict land including mineral workings which are only likely to be reclaimed using derelict land grants

Non-agricultural

'Soft' uses where most of the land could be returned relatively easily to agriculture including private parkland public open spaces sports fields allotments and soft surfaced areas on arports Also active mineral workings and refuse tips where restoration conditions to 'soft after-uses may apply

Woodland

Includes commercial and non commercial woodland A distinction may be made as necessary between farm and non-farm woodland

Agricultural Buildıngs

Includes the normal range of agricultural buildings as well as other relatively permanent structures such as glasshouses Temporary structures (eg polythene tunnels erected for lambing) may be ignored

Open Water

Includes lakes ponds and nivers as map scale permits

Land Not Surveyed

Agricultural land which has not been surveyed
Where the land use includes more than one of the above eg buildings in large grounds and where map scale permits the cover types may be shown separately Otherwise the most extensive cover type will be shown

APPENDIX II

FIELD ASSESSMENT OF SOIL WETNESS CLASS

SOIL WETNESS CLASSIFICATION

Soil wetness is classified according to the depth and duration of waterlogging in the soil profile Six soil wetness classes are identified and are defined in the table below

Definition of Soll Wetness Classes

Wetness Class Duration of Waterlogging

I The soil profile is not wet within 70 cm depth for more than 30 days in most years ${ }^{2}$

II The soil profile is wet within 70 cm depth for $31-90$ days in most years or if there is no slowly permeable layer within 80 cm depth it is wet within 70 cm for more than 90 days but only wet within 40 cm depth for 30 days in most years

II The soll profile is wet within 70 cm depth for 91180 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 70 cm for more than 180 days but only wet within 40 cm depth for between 3190 days in most years

IV The soil profile is wet within 70 cm depth for more than 180 days but not wet within 40 cm depth for more than 210 days in most years or if there is no slowly permeable layer present within 80 cm depth it is wet within 40 cm depth for 91-210 days in most years

V

VI The soil profile is wet within 40 cm depth for more than 335 days in most years

Sorls can be allocated to a wetness class on the basis of quantitative data recorded over a period of many years or by the interpretation of soil profile characteristics site and climatic factors Adequate quantitative data will rarely be avallable for ALC surveys and therefore the interpretative method of field assessment is used to identify soil wetness class in the field The method adopted here is common to ADAS and the SSLRC

[^0]
APPENDIX III

SOIL PIT AND SOIL BORING DESCRIPTIONS

Contents

Soil Abbreviations - Explanatory Note

Soll Pit Descriptions

Database Printout - Boring Level Information
Database Printout - Horizon Level Information

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boning information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

1 GRID REF national 100 km grid square and 8 figure gnd reference
2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Ollseed rape	BEN	Field Beans	BRA	Brassicae
POT	Potatoes	SBT	Sugar Beet	FCD	Fodder Crops
LIN	Linseed	FRT	Soft and Top Fruit	FLW	Fallow
PGR	Permanent PastureLEY	Ley Grass	RGR	Rough Grazing	
SCR	Scrub	CFW	Coniferous Woodland DCW	Deciduous Wood	
HTH	Heathland	BOG	Bog or Marsh	FLW	Fallow
PLO	Ploughed	SAS	Set aside	OTH	Other

HRT Hortıcultural Crops
3 GRDNT Gradıent as estımated or measured by a hand-held optical clinometer
4 GLEY/SPL Depth in centımetres (cm) to gleying and/or slowly permeable layers
AP (WHEAT/POTS) Crop adjusted avalable water capacity
6 MB (WHEAT/POTS) Morsture Balance (Crop adjusted AP crop adjusted MD)
7 DRT Best grade according to soil droughtiness
8 If any of the following factors are considered significant ' Y ' will be entered in the relevant column

MREL Microrelief himitation FLOOD Flood nsk EROSN Soil erosion risk EXP Exposure limitation FROST Frost prone DIST Disturbed land CHEM Chemical limitation

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	EX	Exposure
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Rısk	TX	Topsoil Texture	DP	Soil Depth
CH	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soll Wetness/Droughtiness

ST Topsoil Stoniness

1 TEXTURE soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam C	Clay	
SC	Sandy Clay	ZC	Silty Clay	OL	Organc Loam
P	Peat	SP	Sandy Peat	LP	Loamy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

F Fine (more than 66% of the sand less than 02 mm)
M Medium (less than 66% fine sand and less than 33% coarse sand)
C Coarse (more than 33% of the sand larger than 06 mm)
The clay loam and silty clay loam classes will be sub divided according to the clay content M Medium ($<27 \%$ clay) H Heavy (2735% clay)

2 MOTTLE COL Mottle colour using Munsell notation
3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few $<2 \%$ C common 2-20\% M many 20-40\% VM very many $40 \%+$
4 MOTTLE CONT Mottle contrast

F faint - indistinct mottles evident only on close inspection
D distinct mottles are readily seen
\mathbf{P} prominent - mottling is conspicuous and one of the outstanding features of the horizon

5 PED COL Ped face colour using Munsell notation
6 GLEY If the soil honzon is gleyed a Y will appear in this column If slightly gleyed an S will appear

7 STONE LITH Stone Lithology - One of the following is used

HR	all hard rocks and stones	SLST	soft oolitic or dolimitic limestone
CH	chalk	FSST	soft fine grained sandstone
ZR	soft argillaceous or silty rocks GH	gravel with non porous (hard) stones	
MSST	soft medium grained sandstone GS	gravel with porous (soft) stones	
SI	soft weathered igneous/metamorphic rock		

Stone contents ($>2 \mathrm{~cm}>6 \mathrm{~cm}$ and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation
degree of development WK weakly developed MD moderately developed ST strongly developed
ped size
ped shape
F fine
C coarse
S single grain GR granular SAB sub-angular blocky PL platy

M medium
VC very coarse
M massive
AB angular blocky
PR prismatic

9 CONSIST Soil consistence is described using the following notation
L loose VF very frable $F R$ frable FM firm VM very firm EM extremely firm EH extremely hard

10 SUBS STR Subsoll structural condition recorded for the purpose of calculating profile droughtıness \mathbf{G} good \mathbf{M} moderate \mathbf{P} poor

11 POR Sorl porosity If a soll horizon has less than 05% biopores $>05 \mathrm{~mm}$ a ' Y ' will appear in this column

12 IMP If the profile is impenetrable to rooting a ' Y will appear in this column at the appropiate horizon

13 SPL Slowly permeable layer If the soll honzon is slowly permeable a ' Y ' will appear in this column

14 CALC If the soil horizon is calcareous a ' Y ' will appear in this column
15 Other notations
APW avalable water capacity (1 mmm) adjusted for wheat APP avalable water capacity (m mm) adjusted for potatoes
MBW moisture balance wheat
MBP moisture balance potatoes

SOIL PIT DESCRIPTION

FINAL ALC GRADE 3B
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

SOIL PIT DESCRIPTION

FINAL ALC GRADE 3B
MAIN LIMITATION Wetness

SOIL PIT DESCRIPTION

FINAL ALC GRADE 2
MAIN LIMITATION Droughtiness
SAMPLE ASPECT -WETNESS-- -WHEAT- -POTS- M REL 'EROSN FROST CHEM ALC No GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP ME DRT FLOOD EXP DIST LIMIT

COMMENTS

$\left.\begin{array}{lllllllllll}1 & \text { SZ28909550 SAS } & & 030 & 030 & 4 & 3 B & 89 & -21 & 93 & -13 \\ \hline 1 P & & & 3 B \\ 2 & \text { SZ29009500 SAS } & & 030 & 030 & 4 & 3 B & 117 & 7 & 107 & 1 \\ 2\end{array}\right)$
SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS M REL EROSN FROST CHEM ALC NO GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS

39	SZ29209500	SAS	SE	01	050		2	2	113	3	114	8	3A	WD	2	I80 2 to 120
40	SZ29309500	SAS	SE	01			2	2	107	-3	107	1	3A	WD	2	I80 2 to 120
41	SZ28309490	SAS	E	01	030	038	4	3 B	135	25	118	12	2	WE	38	
42	SZ28409490	SAS			030	060	3	3 A	153	43	118	12	1	WE	3A	
45	SZ28709490	SAS			0	042	4	3B	112	2	116	10	3 A	WE	3 B	IMPEN 80
46	SZ28809490	SAS			028	040	4	3B	139	29	116	10	2	WE	3B	
47	SZ28909491	SAS			040	050	3	3 A	124	14	120	14	2	WE	3A	
49	SZ29109490	SAS			055	055	3	3A	130	20	108	2	2	WE	3A	SL GLEYED 45
50	SZ29209490	SAS			030	070	2	2	110	0	115	9	3 A	WD	2	1802 to 120
51	SZ29309490	SAS					1	1	74	-36	74	-32	3B	DR	3 A	I50 3a to 120
52	SZ29409490	SAS			030	055	3	3 A	137	27	108	2	2	WE	3 A	
53	SZ28209480	SAS			025	025	4	3B	153	43	117	11	1	WE	38	
54	SZ28309480	SAS			028	028	4	3 B	118	8	114	8	2	WE	3B	IMPEN 90
55	SZ28409480	SAS			030	030	4	3B	99	-11	107	1	3A	WE	3B	I65 2 to 120
58	SZ28709480	SAS			0	032	4	3B	104	-6	115	9	3A	WE	3B	IMPEN 70
59	SZ28809480	SAS			028		2	2	59	-51	59	-47	4	DR	3A	140 3a to 120
62	SZ29109480	SAS			035	035	4	3 B	108	-2	99	-7	3A	WE	3 B	IMPEN 100
66	SZ28209470	SAS			027	027	4	3B	115	5	107	1	2	WE	3B	IMPEN 90
67	SZ28309470	SAS			029	029	4	3 B	144	34	110	4	2	WE	3 B	
68	SZ28409470	SAS			0	029	4	3B	142	32	108	2	2	WE	3B	
69	SZ28499470	SAS	E	01	030	055	3	3 A	99	-11	110	4	3 A	WE	3 A	1702 to 120
79	SZ28309460	SAS			029	029	4	3B	82	-28	84	-22	$3 B$	WE	3B	I55 3a to 120
80	SZ28409460	SAS			029	045	4	38	104	-6	108	2	3A	WE	3B	IMPEN 80
81	SZ28509460	SAS			029	029	4	38	133	23	110	4	2	WE	3 B	
88	SZ28409450	SAS			0	028	4	38	107	-3	107	1	3A	WE	3B	IMPEN 80
89	SZ28509450	SAS			028	028	4	3 B	99	-11	103	-3	3 A	WE	3 B	IMPEN 80
90	SZ28609450	SAS			028	028	4	3B	99	-11	107	1	3 A	WE	3 B	IMPEN 75
91	SZ28709450	SAS	S	01	028		2	2	66	-44	66	-40	$3 B$	DR	3A	I40 3a to 120
92	SZ28509440	SAS			070	070	2	2	144	34	114	8	2	WD	2	SL GLEYED 42
93	SZ28609440	SAS			040	040	4	3B	155	45	116	10	1	WE	3B	BORDER 3A

1 | $0-30$ | mcl |
| ---: | :--- |
| | $30-55$ |
| hcl | |
| | $55-60$ | c

$1 \mathrm{P} \quad 0-30 \mathrm{mcl}$
30-55 hcl
55-78 c 78-120 c

2030 mcl
30-55 hel
55-60 c
6065 c
2P $\quad 0-26 \quad \mathrm{mcl}$
2636 mcl
3655 mcl
55-70 hcl
$3 \quad 0-30 \mathrm{mcl}$
$30-60 \mathrm{mcl}$
60-75 scl
75-80 hel
$3 P \quad 0-28 \mathrm{mcl}$
2845 mcl
4570 hcl
7085 scl
85-105 ms 1
105-120 scl
$\begin{array}{llll}4 & 0-28 & \mathrm{mcl}\end{array}$
28-48 mcl
48-50 mcl

4P $\quad 0-29 \mathrm{mcl}$
29-44 hel
44-51 hel
5162 scl
6290 ms 1
90-120 c
$5 \quad 0-32 \mathrm{mcl}$
3265 hcl
65-75 scl
$75-83$ scl 10 YR53 51 1OYR58 00 M
$6 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR42} 4110$ YR56 00 F
30-42 mcl 10YR43 41 10YR46 56 F
42-65 hel 10 YR 5363 10YR56 58 C
$65-68$ hel 10 YR63 0010 YR5 68 M

	0	0 HR	3
Y	0	0 HR	10
r	0	0 HR	30

3
$\begin{array}{llll}\gamma & 0 & 0 & H R \\ 30\end{array}$

	0	$0 H R$	2	WKCSAB FR		
Y	0	$0 H R$	5	WKCSAB FR M	Y	Y
Y	0	$0 H R$	20	WKCSAB FM P	Y	Y
Y	0	$0 H R$	50	FM P		

	0	$0 H R$	3		
Y	0	$0 H R$	3	M	Y
Y	0	$0 H R$	15	P	Y
Y	0	$0 H R$	25	P	Y

y	0	0	$H R$	1	MDCSAB FR	
y	0	0	0	MDCSAB FR M		
Y	0	0	0	MDCSAB FR M		
Y	0	0	0	$F R M$	Y	Y

| | 0 | $0 H R$ | 3 | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Y | 0 | $0 H R$ | 2 | M | |
| Y | 0 | $0 H R$ | 10 | M | |
| Y | 0 | $0 H R$ | 20 | M | Y |

```
MDCSAB FR
MDCSAB FR M
WKCSAB FRM Y Y
MDCSAB FR M
MDCAB FRM
                                    M
```

| S | 0 | $0 H R$ | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Y | 0 | $0 H R$ | 1 | M |

$Y \quad 0 \quad 0 \quad H R \quad 15 \quad M$

```
WKCSAB FR
MDCSAB FRM SL GLEYED
SL GLEYED
```

WKCSAB FR M Y
MDCSAB FR $M \quad Y$
MDCAB FRM Y
FM P $Y \quad Y$
$M \quad Y$
M
M
M
$\begin{array}{ll}M & Y \\ M & Y\end{array}$

TOO STONY FOR SPL

VERY WET AT 55 cm

SL Gleyed

$10 \begin{array}{llll}10 & 0-25 & \mathrm{mcl} & 10 \text { YR43 } 00\end{array}$
25-35 mcl 10YR43 00 10YR58 00 C 35-55 mcl 10 YR53 00 10YR58 00 C 5565 hel 10YR53 00 75YR58 00 C 65-75 c JOYR53 00 75YR58 00 C 75-78 c 10YR53 00 75YR58 00 C
$11 \quad 0-35 \mathrm{mcl} \quad 10 \mathrm{YR42} 43$

35-45 mcl
45-60 hel
10YR54 00 10YR56 00 F $70-100 \mathrm{sel} \quad 10 \mathrm{YR} 630010 \mathrm{YR} 5800 \mathrm{M}$ $100-105$ scl 10 YR 630010 YR5 800 M
$12035 \mathrm{mcl} \quad 10 \mathrm{YR43} 00$
35-45 mc1 10YR42 52 1OYR56 00 C 45-65 hel 10YR53 52 10YR58 00 M 65-75 hcl 25 Y 516110 YR 5800 M

16	0-35	mcl	$10 \mathrm{YR42}$	00	10YR56	00
	35-45	hel	$10 \mathrm{YR43}$	00	10YR56	00 C
	45-70	c	$10 \mathrm{YR5} 3$	54	75YR58	00 C
	70-88	scl	$10 \mathrm{YR53}$	54	75YR58	00 C
	88-90	c	$10 \mathrm{YR53}$	00	75YR58	00 C
17	025	ncl	$10 \mathrm{YR43}$	00	10YR58	00 C
	25-35	mcl	$10 \mathrm{YR53}$	00	10YR58	00 C
	35-48	hel	10YR53	00	75YR58	00 C
	4860	c	10YR53	00	75YR58	61 C
	60-80	scl	10 YR53	00	75YR58	61 C
18	025	mcl	10YR43	00	10YR52	56 C
	2540	hel	$10 \mathrm{YR44}$	00	10YR56	00 C
	4050	c	$10 \mathrm{YR44}$	00	10YR56	00 M
19	035	mc 1	$10 \mathrm{YR41}$	00		
	3560	hel	10 YR53	62	10YR56	00 C
	60-70	hel	25Y 61	00	75YR58	00 M
	70-80	$\mathrm{mc}]$	25Y 61	00	75YR58	00 M
	80-85	mcl	$25 Y 62$	00	10YR58	00 M
	85-90	mcl	10YR53	00	10YR56	00 F
20	0-32	mcl	$10 \mathrm{YR42}$	00		
	32-45	mcl	$10 \mathrm{YR5} 5$	00	10YR56	00 C
	45-60	mcl	$25 Y 63$	62	10YR58	00 M
	60-75	mcl	$10 \mathrm{YR63}$	00	10YR58	00 M
	75-100	c	$25 Y 52$	62	75YR58	00 M
	100-120	scl	$25 Y 52$	62	75YR58	00 M
21	0-30	$m \mathrm{mc} 1$	10YR42	00		
	30-50	hel	$10 \mathrm{YR5} 2$	00	10YR56	00 C
	50-65	c	$10 \mathrm{YR53}$	00	10YR56	58 M
	65-85	scl	10YR62	00	10YR58	00 M
	85-100	scl	$25 Y 61$	62	10YR68	00 M
22	0-32	mc 1	$10 \mathrm{YR43}$	41		
	32-60	hcl	$10 \mathrm{YR5} 3$	63	10YR58	00 M
	60-75	mcl	$10 \mathrm{YR5} 3$	00	10YR58	00 M
	75-93	scl	$10 \mathrm{YR6} 3$	00	10YR58	00 M
23	0-29	mc 1	$10 \mathrm{YR42}$	00	10YR56	00 C
	29-45	hcl	10YR54	00	10YR56	00 F
	45-60	hcl	$10 \mathrm{YR5} 3$	54	$75 \mathrm{YR58}$	00 C
	60-70	scl	$10 \mathrm{YR5} 3$	00	75YR58	00 C
	70-95	1 ms	10 YR53	00	75YR58	00 C
	95-110	c	10 YR 53	00	75YR58	00 M

		0	0 HR	1				
	S	0	0	0	M		SL	GLEYED
	Y	0	0	0	P	Y		
	γ	0	0 HR	5	M			
	Y	0	0 HR	20	P			
	S	0	0 HR	1			SL	GLEYED
	Y	0	0 HR	1	M			
	Y	0	0 HR	2	M	Y		
	Y	0	0 HR	2	P	Y		
	Y	0	0 HR	10	M			
	S	0	0 HR	2			SL	Gleyed
	S	0	0 HR	5	M		SL	GLEYED
	S	0	0 HR	25	P		SL	GLEYED
		0	0 HR	2				
	Y	0	0 HR	2	M	Y		
	Y	0	0	0	M	Y		
	Y	0	0	0	M			
	Y	0	0 HR	5	M			
	Y	0	0 HR	20	M			
		0	0 HR	2				
	Y	0	0 HR	2	M			
	Y	0	0 HR	10	M			
	Y	0	0 HR	10	M			
	Y	0	0 HR	15	P	Y		
	Y	0	0 HR	15	M	Y		
		0	0 HR	2				
OOMNOO 00	Y	0	0 HR	10	M	Y		
OOMNOO 00	Y	0	0 HR	2	P	Y		
	Y	0	0 HR	5	M			
	Y	0	0 HR	15	M			
		0	0 HR	2				
OOMNOO 00	Y	0	0 HR	2	M	Y		
	Y	0	0 HR	5	M			
	Y	0	0 HR	20	M			
	Y	0	0 HR	1				
		0	0 HR	1	M			
	Y	0	0	0	M	Y		
	Y	0	0	0	M			
	Y	0	0	0	M			
	Y	0	0 HR	15	P	Y		

24	0-20	$n \mathrm{ml}$
	20-35	mc1
	35-55	hel
	55-75	hel
	75-100	c
25	0-32	mcl
	3268	c
	68-75	scl
	75-80	c

$26 \quad 0-28 \mathrm{mcl}$
28-45 mcl
45-70 hcl
70-85 scl
$27 \quad 0-28 \mathrm{mcl}$
28-40 mcl
40-58 hcl
58-80 c
$28 \quad 0-28 \mathrm{mcl}$
28-40 hcl
40-65 c
65-80 scl
$80-120$ c
$29 \quad 0-38 \quad \mathrm{mc} 1$
$38-58 \mathrm{mcl}$
58-85 hel
$85-120 \mathrm{~ms} 1$
$30 \quad 0-38 \mathrm{mcl}$
38-70 mcl
70-120 hel
$31 \quad 0-38 \mathrm{mcl}$
38-65 hcl
6595 scl
$95-120 \mathrm{~ms} 1$
$32 \quad 0-28 \mathrm{mc} 1$
28-70 mcl
70-120 ms 1
$33 \quad 0-35 \mathrm{mc} 1$
45-85 hel 10 YR53 00 10YR58 00 C 85-98 mcl 10YR63 00 10YR58 00 C $98-120 \mathrm{~ms}) \quad 10 \mathrm{YR} 6100$ 75YR46 00 M

		0	0 HR	1				
	Y	0	0	0	M			
OORNOO 00	Y	0	0	0	M			
	Y	0	0	0	M	Y		
OOMNOO 00	Y	0	0	0	P	Y		
	Y	0	0 HR	1				
	Y	0	0 HR	1	P	Y		
	Y	0	0 HR	5	M			
	Y	0	0 HR	20	P			
	Y	0	0 HR	1				
	Y	0	0 HR	4	M			
	Y	0	0 HR	4	M	Y		
	Y	0	0 HR	15	M			
		0	0 HR	1				
	S	0	0 HR	4	M		SL	GLEYED
	S	0	0 HR	4	M			GLEYED
	y	0	0 HR	15	P	y		
	Y	0	0	0				
	Y	0	0	0	M	Y		
	Y	0	0	0	P	Y		
	Y	0	0 HR	5	M			
	Y	0	0 HR	2	P	Y		
OOMNOO 00	Y	0	0 HR	1				
OOMNOO 00	Y	0	0 HR	1	M			
OOMNOO 00	Y	0	0	0	M	Y		
	Y	0	0	0	M			
		0	0 HR	1				
OOMNOO 00	Y	0	0	0	M			
	Y	0	0 HR	1	M	Y		
OOMNOO 00	Y	0	0 HR	1				
	Y	0	0	0	M	Y		
	Y	0	0 HR	1	M			
	Y	0	0 HR	5	M			
	Y	0	0 HR	1				
	Y	0	0	0	M			
	Y	0	0 HR	2	M			
	Y	0	0 HR	1				
	Y	0	0 HR	1	M			
	Y	0	0	0	M	Y		
	Y	0	0	0	M			
	Y	0	0 HR	1	M			

$34 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$ 10YR58 61 C 30-70 hel 10YR52 00 10YR68 61 M $70-90$ scl $10 Y R 630010 Y R 6800 \mathrm{M}$
$35 \quad 0-29 \quad \mathrm{mc} 1 \quad 10$ YR5 20010 YR 5800 C 29-65 hcl 10YR53 00 10YR58 61 C 65-80 c 10YR63 00 10YR58 61 C
$36 \quad 0-29 \quad \mathrm{mc}$ $50-75 \mathrm{scl} 10 \mathrm{YR} 6400$ 75YR58 00 C 75-80 c
$37 \quad 0-35 \mathrm{mcl}$
35-60 hel 10YR53 64 75YR58 00 C 60-75 c 10YR53 64 75YR58 00 M
$38 \quad 0-30 \quad \mathrm{mc} 1$
30-45 hcl
45-75 hel

39
30-50
50-70 scl
$70-80$ scl

40
30-45 scl 10 YR43 0010 YR56 00 C $45-60$ scl 10 YR43 00 10YR56 00 C 60-80 hel 10YR43 54 10YR56 00 C
$41 \quad 0-30 \quad \mathrm{mcl} \quad 10 \mathrm{YR42} 00$
30-38 mcl 10 YR42 00 75YR58 61 C $38-88$ hel 10YR53 0075 YR58 61 C $88-100$ scl 10 YR61 00 75YR46 00 M
$42 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$
30-45 mcl 10 YR42 52 10YR56 00 C 45-60 mcl 25 Y 636110 YR 5800 M $60-80$ hcl 25 Y 6300 10YR58 00 M 80-100 mc1 10YR63 0075 YR 5800 M $100-120$ scl 25 Y 610075 YR58 00 M
$45 \quad 0-29 \mathrm{mc} 1 \quad 10 \mathrm{YR42} 00$ 10YR58 00 C 29-42 mcl 10 YR 6200 10YR68 61 C 42-75 hcl 10 YR 620010 YR 6861 M 75-80 c $\quad 10$ YR63 00 75YR56 71 M

Y	0	$0 H R$	2
Y	0	$0 H R$	2
Y	0	$0 H R$	5

M	Y
M	

Y	0	0	$H R$

Y $0 \quad 0 \mathrm{HR} \quad 2$
Y $0 \quad 0 \mathrm{HR} \quad 10$

Y	0	$0 H R$	1
y	0	$0 H R$	1
y	0	0	0
y	0	0	$H R$

$M \quad Y$

M
P
$\begin{array}{rrrrr}\text { OOMNOO } 00 & & 0 & 0 & H R \\ y & 0 & 0 & 1 \\ y & 0 & 0 & H R & 1 \\ & 20\end{array}$

M	Y
P	Y

M	Y
M	Y

SL gLeyed

SL GLEYED
SL GLEYED
SL Gleyed
----MOTTLES- --- PED - --STONES---- STRUCT/ SUBS

COL ABUN CONT COL GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

	0	0	0			
Y	0	0 HR	2	M		
Y	0	0 HR	3	M	Y	
Y	0	0 HR	10	P	Y	
	0	0	0			
Y	0	0	0	M		
Y	0	0	0	M	Y	
Y	0	0	0	M		
Y	0	0	0	P	Y	
	5	0 HR	8			
	0	0 HR	5	M		
S	0	0 HR	3	M		SL GLEYED

SL GLEYED

Y	0	0	$H R$	5	P

M	
M	
P	Y

$51 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR} 4200$
30-40 mel 10 YR43 00
$40-50$ cs 1
10YR44 00
$52 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$
$30-45 \mathrm{mcl} \quad 10 \mathrm{YR5} 20010 \mathrm{YR} 5600 \mathrm{c}$
45-55 scl 10YR52 53 10YR58 00 C
5590 c 10YR62 0010 YR 6871 m
$90-120 \mathrm{hcl}$
10YR52 00 10YR58 61 M

	0	0	$H R$
y	0	0	3
y	0	2	
y	0	$0 H R$	3
y	0	$0 H R$	10

60 HR 10
0 OHR 15
0 OHR 30
M

	0	$0 H R$	3		
y	0	$0 H R$	3	M	
Y	0	$0 H R$	5	M	
Y	0	$0 H R$	10	P	Y
Y	0	$0 H R$	10	M	Y

	0	0	0		
Y	0	0	0	M	Y
Y	0	0	$H R$	5	M

	0	0	$H R$	2	
Y	0	$0 H R$	2	M	Y
Y	0	$0 H R$	2	P	Y
Y	0	$0 H R$	10	M	Y

$55 \quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR} 4200$ 10YR58 00 F
30-50 hel 10YR53 0010 YR 6861 M
50-65 hel 10YR62 0010 YR68 61 M

	0	0	0
Y	0	0	$H R$
Y	0	0	2

M	Y
M	Y

$58 \quad 0-32 \mathrm{mcl} \quad 10 \mathrm{YR42} 00$ 10YR58 00 C
32-60 hel 10YR52 0010 YR 6861 M
$60-70 \mathrm{scl} \quad 10 \mathrm{YR} 6200$ 10YR68 61 M

Y	0	0	$H R$	2		
Y	0	0	$H R$	2	M	Y

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS
COL ABUN CONT COL GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

10YR41 00 10YR58 00 F 10YR52 00 10YR58 61 C 10YR41 00
10YR63 00 10YR58 62 M 10YR63 00 10YR58 62 M

10YR42 00 10YR56 00 F 25 Y 6300 75YR58 00 M 25Y 6300 75YR58 00 M 10YR53 00 75YR58 00 M

10YR42 00 10YR56 00 F 10YR53 00 10YR56 00 C 10YR53 00 75YR58 00 M 10YR53 00 75YR58 00 M 95-110 $95-110 \mathrm{~ms} 1$ $110-120 \mathrm{sc} 1$
$68 \quad 0-29 \mathrm{mcl}$ 29-38 hel 38-65 c 65-75 scl 75-85 ms 1 85-110 scl 110120 c
$69 \quad 0-30 \mathrm{mcl}$
3045 hcl
4555 scl
55-70 c
$79 \quad 0-29 \mathrm{mcl} \quad 10 \mathrm{YR} 420010 \mathrm{YR} 5600 \mathrm{~F}$ 29-50 c $\quad 25 \mathrm{Y} 7400$ 75YR58 00 M 50-55 c $\quad 25 \mathrm{Y} 730075 \mathrm{YR} 5800 \mathrm{M}$
$80 \quad 0-29 \mathrm{mcl}$
29-45 ms 7
45-70 c
70-75 scl
75-80 c
81 0-29 mcl
29-50 hel 50-70 c 70-78 hel 78-120 c

10YR42 00 10YR56 00 F 25Y 6300 75YR58 00 C 10YR53 00 75YR58 00 M 10YR53 54 75YR58 00 C 10YR53 00 75YR58 00 M

10YR42 00 10YR56 00 F 10YR53 00 75YR56 00 C 10YR53 54 75YR58 00 M 10YR53 54 75YR58 00 C 10YR53 00 75YR58 00 M

	8	0 HR	12			
Y	0	0 HR	25	M		
	5	0 HR	8			
Y	0	0 HR	10	P	Y	
Y	0	0 HR	15	P	Y	
	0	0 HR	1			
Y	0	0	0	P	Y	
Y	0	0 HR	2	M		
Y	0	0 HR	30	P		
	0	0 HR	1			
Y	0	0	0	M	Y	
Y	0	0	0	P	Y	
Y	0	0	0	M		
Y	0	0 HR	5	M		
Y	0	0 HR	3	M		
Y	0	0 HR	1			
Y	0	0	0	M	Y	
Y	0	0	0	P	Y	
Y	0	0 HR	3	M		
Y	0	0 HR	3	M		
Y	0	0 HR	10	M		
Y	0	0 HR	10	P	Y	ASSUME C $120 \mathrm{~cm}+$
	0	0 HR	1			
Y	0	0 HR	1	M		
Y	0	0 HR	3	M		
Y	0	0 HR	10	P	Y	
	0	0 HR	1			
Y	0	0	0	P	Y	
Y	0	0 HR	30	P	Y	
	0	0 HR	1			
Y	0	0	0	M		
Y	0	0	0	P	Y	
Y	0	0	0	M		
Y	0	0 HR	20	P	Y	
	0	0 HR	1			
Y	0	0 HR	1	M	Y	
Y	0	0 HR	5	P	Y	
Y	0	0 HR	5	M	Y	
Y	0	0 HR	10	P	Y	

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS

ESAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

88	0-28	mcl	$10 \mathrm{YR42}$	00 10YR56	00 C			Y	0		HR	1		
	28-50	c	10YR61	00 75YR56	68 M	M	OOMNOO 00	Y	0	0		0	P	Y
	50-80	scl	10YR61	62 75YR56	68 M	M	OOMNOO 00	Y	0	0	HR	4	M	
89	0-28	mcl	$10 \mathrm{YR42}$	00					0	0	HR	1		
	28-35	hel	10YR53	54 75YR58	00 M	M		Y	0	0	HR	1	M	Y
	35-55	c	$10 \mathrm{YR53}$	00 75YR58	62 M	M		Y	0	0	HR	2	P	Y
	55-80	c	10YR53	00 75YR58	51 M	M		Y	0	0	HR	15	P	Y
90	0-28	mc 1	10YR43	00					0	0	HR	2		
	28-44	hel	10YR42	00 10YR56	52 C	C		Y	0	0	HR	2	M	Y
	44-75	c	10YR53	00 10YR56	00 M	M		Y	0	0	HR	5	P	Y
91	0-28	mcl	10YR42	00					2		HR	5		
	28-40	mcl	10YR52	42 75YR46	00	C		Y	0		HR	5	M	
92	0-25	mc 1	10YR43	00 10YR52	00	C			0	0		0		
	25-42	hel	10YR44	00					0	0		0	M	
	42-70	scl	10YR54	00 10YR56	00 M	M		S	0	0		0	M	
	70-120	c	10YR53	54 75YR58	68 M	M		Y	0	0		0	M	Y
93	0-30	mcl	10YR42	00					0	0	HR	1		
	30-40	hcl	10YR43	00					0	0	HR	1	M	
	40-60	hel	10YR64	54 10YR56	52	C		Y	0	0		0	M	Y
	60-120	scl	10YR64	54 10YR56	52 C	C		Y	0	0		0	M	

[^0]: ${ }^{1}$ The number of days specified is not necessanly a contunuous period
 ${ }^{2}$ In most years is defined as more than 10 out of 20 years

