MILTON KEYNES LOCAL PLAN Potential Development Area 2

Agricultural Land Classification Semi-Detailed Survey
ALC Map and Report

July 1997

Resource Planning Team
RPT Job Number:
0304/083/97
Eastern Region
FRCA Reading

AGRICULTURAL LAND CLASSIFICATION REPORT

MILTON KEYNES LOCAL PLAN, POTENTIAL DEVELOPMENT AREA 2

SEMI-DETAILED SURVEY

INTRODUCTION

1. This report presents the findings of a semi-detailed Agricultural Land Classification (ALC) survey of 273.5 ha of land at Fen Farm and Brooklands Farm on the eastern side of Milton Keynes in Buckinghamshire, which forms Potential Development Area 2 of the Milton Keynes Local Plan. The survey was carried out during June 1997.
2. The work was undertaken by the Farming and Rural Conservation Agency (FRCA) ${ }^{1}$ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with the Milton Keynes Expansion Study. This survey supersedes previous ALC information for this land.
3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA with assistance from N Duncan of NA Duncan and Associates. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
4. At the time of survey, the land at the northern end of the site was under winter oilseed rape. To the south of this and to the north of the brook that crosses the site (see Kingston Bridge on the western side of the site), the land use is predominantly winter cereals, whilst to the south of the brook the agricultural land is under permanent grass and grazed by sheep. A field of winter cereals occupies the extreme south-east corner of the site. The areas mapped as 'Other' include narrow strips of newly planted woodland around the fields on the southern part of the site with two areas of mature woodland toward the northern end of the site. The area around Fen Farm comprises a lorry park and associated buildings together with a residential dwelling. To the east of Fen Farm is an area that is used as a tip for hardcore and soil. Another large block to the east of Fen Farm is indicated as 'Agricultural land not surveyed'; this comprises an area of grassland which is normally grazed by sheep but which is also used as a showground for heavy engineering equipment for a small period of the year. As such, some of the soils in this area are probably grossly disturbed.

SUMMARY

5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of $1: 15,000$; it is accurate at this scale but any enlargement would be misleading.
6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.
[^0]Table 1: Area of grades and other land

Grade/Other land	Area (hectares)	\% surveyed area	\% site area
2	81.3	35.6	29.7
3a	66.6	29.2	24.4
3b	80.5	35.2	29.4
Agricultural land not	11.8	$\mathrm{~N} / \mathrm{A}$	4.3
surveyed	33.3	$\mathrm{~N} / \mathrm{A}$	12.2
Other land	228.4	100	83.5
Total surveyed area	273.5	-	100

7. The fieldwork was conducted at an average density of 1 boring per 2 hectares. A total of 134 borings and 6 soil pits was described.
8. The central part of the site has been mapped as Grade 2, very good quality agricultural land. The major limitation associated with this area is droughtiness, especially for shallower rooting crops. The upper horizons of the soils are slightly to moderately stony, fine loamy deposits, which may overlie clayey or coarse loamy material at depth.
9. Five areas of Subgrade 3a, good quality agricultural land, have been mapped. The major limitation associated with this land is due to wetness and workability restrictions. The soils in these areas are typically fine loamy over clayey giving rise to moderate waterlogging.
10. The remaining agricultural land has been classified as Subgrade 3b, moderate quality agricultural land. These areas generally have a moderately severe wetness and workability limitation as a result of the heavy clay loam topsoil textures overlying slowly permeable clayey subsoils. The small central unit of Subgrade 3b identifies an area of sandy soils with very stony subsoils which experience a significant droughtiness limitation.
11. It should be noted that, given the very dry conditions during fieldwork, some of the soils could not be examined to depth. If the area was to be surveyed under better conditions and at a detailed scale, some localised changes to grades might occur, particularly in the Grade 2 unit. This, for example, adjoins an area of Subgrade 3a on land immediately to the west of the site, which was the subject of a detailed survey in 1992.

FACTORS INFLUENCING ALC GRADE

Climate

10. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
11. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5 km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Table 2: Climatic and altitude data

Factor	Units	Values		
Grid reference	N/A	SP 894 406	SP 905 397	SP 914 386
Altitude	m, AOD	60	65	70
Accumulated Temperature	day ${ }^{\circ}$ C (Jan-June)	1421	1415	1410
Average Annual Rainfall	mm	619	620	616
Field Capacity Days	days	125	125	125
Moisture Deficit, Wheat	mm	112	111	110
Moisture Deficit, Potatoes	mm	105	104	103
Overall climatic grade	N/A	Grade 1	Grade 1	Grade 1

12. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
13. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.
14. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation affecting the site. The area is, however, relatively warm and dry and, consequently, the soils will need a moderately high available water capacity to avoid drought stress affecting the crops during parts of the growing season. The site is not particularly exposed or prone to increased frost risk and, consequently, there are also no local climatic restrictions to the grading of this land. The site is, therefore, climatically Grade 1.

Site

15. The site is divided in two by a minor road running due east from the A5130 which forms the western boundary to the site. The southern part of the site is crossed by a small stream, with the land falling gently toward the stream. Apart from this minor valley, the southern area is relatively level with only very gentle gradients occurring. The altitude over the southern half is approximately $60-65 \mathrm{~m}$ AOD. The northern half of the site is also relatively level, lying at an altitude of approximately 65 m AOD , with another small stream crossing the northern part of this area. Nowhere on the site do gradient, microrelief or flooding impose any limitation on the agricultural quality of the land.

Geology and soils

16. The published geology map for the area (BGS, 1992) shows all the land to the south of the stream that crosses the southern part of the site and a small area alongside the M1 motorway at the northern end to be underlain by Oxford Clay. The two valleys occupied by the streams referred to in paragraph 15 comprise alluvium, whilst the remaining land is underlain by Head and first and second terrace deposits.
17. The $1: 250,000$ scale reconnaissance soil map (SSEW, 1983) for the area shows that the areas underlain by Oxford Clay comprise soils of the Evesham 2 soil association. These soils are described as "slowly permeable calcareous clayey soils with some seasonally waterlogged non-calcareous clayey and fine loamy or fine silty over clayey soils" (SSEW, 1984). Fladbury 1 association has been mapped on the alluvium in the valleys. These soils are described as "stoneless clayey soils, calcareous in places and variably affected by groundwater" (SSEW, 1984). On the Head and terrace deposits, soils of the Bishampton 2 association have been mapped. Bishampton 2 soils are described as "deep fine loamy soils with slowly permeable subsoils and slight seasonal waterlogging" (SSEW, 1984). The soils found in the current survey correlate well with those described above.

AGRICULTURAL LAND CLASSIFICATION

18. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 2.
19. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Grade 2

20. An area of Grade 2, very good quality agricultural land, has been mapped across the central part of the site correlating with the area mapped as Head and terrace deposits on the geology map and the Bishampton 2 soils described above. Due to the dry conditions prevailing at the time of survey, it was not possible to examine the soils to depth at all the auger borings. Three soil pits (1P, 3P and 5P; see Appendix II) were dug in this area to help describe the soils in greater detail. These pits indicate that the soils typically have a dark greyish brown medium clay loam topsoil with few hard stones overlying a sandy clay loam, medium clay loam or heavy clay loam upper subsoil with $5-10 \%$ flint stones and coarse subangular blocky structure. The lower subsoil is typically sandy clay loam or sandy clay with a coarse subangular blocky structure, becoming sandy loam with depth in some areas. In one soil pit (3P), slowly permeable, grey, Oxford Clay was encountered below 1 m depth. Two of the soil pits showed evidence of ochreous mottling in the subsoil horizons although no slowly permeable layers were present within 80 cm depth. These soils, occurring in this relatively low rainfall area, have been assessed as Wetness Class I or II. Moisture balance calculations for the two pits show that they are both slightly droughty for the shallower rooting crops such as potatoes, restricting the land quality to Grade 2.

Subgrade 3a

21. Five areas of Subgrade 3a, good quality agricultural land, have been mapped. The soils in these areas typically comprise fine loamy over clayey deposits having a moderate wetness and workability restriction. The soils typically have a dark brown medium clay loam or occasionally heavy clay loam topsoil overlying a greyish brown mottled heavy clay loam upper subsoil which has coarse subangular blocky structure. The lower subsoil, which is slowly permeable, is typically a light brownish grey or yellowish brown mottled clay, with coarse angular blocky structure. The clay tends to become more calcareous with depth with common calcareous nodules. These soils have been assessed as Wetness Class III or, occasionally, Wetness Class II. Under the prevailing climatic conditions, this wetness
limitation restricts the time when the soils are in a suitable condition and can be cultivated or trafficked by machinery or grazing livestock without resulting in structural damage. The severity of this limitation therefore restricts this land to Subgrade 3a.

Subgrade 3b

22. Subgrade 3 b , moderate quality agricultural land, has been mapped on the alluvial soils of the southern valley and on the heavier textured soils developed on the Oxford Clay. The alluvial soils typically comprise non-calcareous clayey deposits, having a dark grey brown clay topsoil overlying a strongly gleyed, grey clay subsoil. These soils are assessed as Wetness Class III and as such have a moderately severe wetness and workability restriction. In addition, the low-lying nature of these soils mean that they are susceptible to groundwater inundation and occasional surface flooding limiting the agricultural potential of the area.
23. On the slightly higher land, the fine loamy over clayey soils developed on the Oxford Clay have also been mapped as this subgrade. These soils have dark brown, non-calcareous, heavy clay loam or occasionally clay topsoils overlying slowly permeable greyish brown clay subsoils which become calcareous with depth. A soil pit on the adjoining site immediately to the south of this site (FRCA reference number 0304/84/97) shows that the clays are slowly permeable restricting these soils to Wetness Class III. The heavy topsoil textures associated with the wetness limitation mean that these soils have a moderately severe workability restriction adversely affecting their management, limiting this land to Subgrade 3b.
24. Pit 4 is typical of some of the shallow impenetrable borings which are lighter in texture than elsewhere. Sandy loam topsoils overlie loamy sand subsoils with stone contents in the range $52-64 \%$. This combination of textures and stone contents significantly reduces the amount of available water in the profile, causing drought stress at times during the growing season and in drier years.

N A Duncan
for the Resource Planning Team
Eastern Region
FRCA Reading

SOURCES OF REFERENCE

ADAS (1992) Agricultural Land Classification Survey of Land at Manor Farm, Broughton, Bucks.
Unpublished.
British Geological Survey (1992) Sheet No. 220, Leighton Buzzard.
BGS: London.
Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 4,Eastern England. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in Eastern England SSEW: Harpenden

APPENDIX I
 DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

Sample location map

Soil abbreviations - explanatory note
Soil pit descriptions
Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

1. GRID REF: national 100 km grid square and 8 figure grid reference.
2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent pasture	LEY:	Ley grass	RGR:	Rough grazing
SCR:	Scrub	CFW:	Coniferous woodland	OTH	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP - crop adjusted MD)
7. DRT: Best grade according to soil droughtiness.
8. If any of the following factors are considered significant, ' Y ' will be entered in the relevant column:

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk
EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land
CHEM: Chemical limitation
9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC:	Overall Climate	AE: Aspect	ST:	Topsoil Stoniness
FR:	Frost Risk	GR: Gradient	MR:	Microrelief
FL:	Flood Risk	TX: Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE: Wetness	WK:	Workability
DR:	Drought	ER: Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure			

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations:

S:	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	2CL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C:	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: \quad Fine (more than 66% of the sand less than 0.2 mm)
M: Medium (less than 66% fine sand and less than 33% coarse sand)
C: Coarse (more than 33% of the sand larger than 0.6 mm)
The clay loam and silty clay loam classes will be sub-divided according to the clay content:
M: Medium (<27\% clay) H: Heavy (27-35\% clay)
2. MOTTLE COL: Mottle colour using Munsell notation.
3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:
F: few <2\%
C: common 2-20\%
M: many 20-40\%
VM: very many 40% +
4. MOTTLE CONT: Mottle contrast:

F: faint - indistinct mottles, evident only on close inspection
D: distinct - mottles are readily seen
P: prominent - mottling is conspicuous and one of the outstanding features of the horizon
5. PED. COL: Ped face colour using Munsell notation.
6. GLEY: If the soil horizon is gleyed a ' Y ' will appear in this column. If slightly gleyed, an ' S ' will appear.
7. STONE LITH: Stone Lithology - one of the following is used:

HR: all hard rocks and stones FSST: soft, fine grained sandstone
ZR: soft, argillaceous, or silty rocks
MSST: soft, medium grained sandstone
SI: soft weathered igneous/metamorphic rock

CH: chalk
GS: gravel with porous (soft) stones
GH: gravel with non-porous (hard) stones

Stone contents ($>2 \mathrm{~cm},>6 \mathrm{~cm}$ and total) are given in percentages (by volume).
8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development WK: weakly developed MD: moderately developed ST: strongly developed
Ped size

Ped shape
F: fine

M: medium
C. coarse

S: \quad single grain
GR: granular
SAB: sub-angular blocky PR: prismatic
PL: platy
9. CONSIST: Soil consistence is described using the following notation:

L: loose VF: very friable FR: friable FM: firm VM: very firm
EM: extremely firm EH: extremely hard
10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile
droughtiness: G: good M: moderate \mathbf{P} : poor
11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores $>0.5 \mathrm{~mm}$, a ${ }^{\prime} Y^{\prime}$ will appear in this column.
12. IMP: If the profile is impenetrable to rooting a ' Y ' will appear in this column at the appropriate horizon.
13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a ${ }^{\prime} Y^{\prime}$ will appear in this column.
14. CALC: If the soil horizon is calcareous, a ' Y ' will appear in this column.
15. Other notations:

APW: available water capacity (in mm) adjusted for wheat
APP: available water capacity (in mm) adjusted for potatoes
MBW: moisture balance, wheat
MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

```
Site Name : MILTON KEYNES UDP AREA 2 Pit Number : 1P
Grid Reference: SP91533942 Average Annual Rainfall : 619 mm
Accumulated Temperature : }1421\mathrm{ degree days
Field Capacity Level : 125 days
Land Use : Set-aside
Slope and Aspect : degrees
\begin{tabular}{rcccccccccc} 
HORIZON & TEXTURE & COLOUR & STONES \(>2\) & TOT. STONE & LITH & MOTTLES & STRUCTURE & CONSIST & SUBSTRUCTURE CALC \\
\(0-33\) & MCL & 10YR33 00 & 1 & 3 & HR & & & & \\
\(33-45\) & SCL & 10YR44 00 & 0 & 10 & HR & & & M \\
\(45-65\) & SCL & 10YR53 00 & 0 & 3 & HR & C & CSAB & FR & M \\
\(65-120\) & MSL & \(10 Y R 5300\) & 0 & 5 & HR & C & MCSAB & FR & M
\end{tabular}
```

Wetness Grade : 1

Drought Grade : 2

```
\begin{tabular}{ll} 
Wetness Class & \(:\) I \\
Gleying & \(: 045 \mathrm{~cm}\) \\
SPL & \(:\) No SPL
\end{tabular}
    APW : 154mm MBN : 42 mm
    APP : 110mm MBP : 5 mm
```

FINAL ALC GRADE : 2
MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

FINAL ALC GRADE : 3A
MAIN LIMITATION : Soil Wetness/Droughtiness

FINAL ALC GRADE : 2
MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

FINAL ALC GRADE : 3B
MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

SOIL PIT DESCRIPTION

Site Nam	: MILTON	EYNES UD	AREA 2	Pit Number	倍					
Grid Ref	rence: SP9	0004030	Average Annua Accumulated Field Capaci Land Use Slope and As	1 Rainfal Temperature ty Level pect	$\begin{array}{lr} : & 61 \\ : & 142 \\ : & 125 \\ : & \text { Ara } \end{array}$	mm degree days le degrees				
$\begin{array}{r} \text { HORIZON } \\ 0-28 \\ 28-90 \end{array}$	TEXTURE HCL C	$\begin{aligned} & \text { COLOUR } \\ & 25 Y 42 \\ & 25 Y 52 \end{aligned}$	$\begin{gathered} \text { STONES >2 } \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { TOT. STONE } \\ 2 \\ 2 \end{gathered}$	$\begin{gathered} \text { LITH } \\ \text { HR } \\ \text { HR } \end{gathered}$	MOTTLES C	STRUCTURE MDVCAB	CONSIST FM	SUBSTRUCTURE P	CALC
Wetness	ade : 3B		Wetness Clas Gleying SPL	$\begin{aligned} & : ~ I I 1 \\ & : 028 \\ & : 028 \end{aligned}$						
Drought	Grade : 3 A		$\begin{aligned} & \text { APW : } 105 \mathrm{~mm} \\ & \text { APP }: 103 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { MBW : } \\ & \text { MBP : } \end{aligned}$						
FINAL ALC GRADE : 3 A 3 h . MAIN LIMITATION : Wetness										

page 1
SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS- M.REL •ROSN FROST CHEM ALC No. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS

1	SP89504060	ARA	NW	01	035035	3	3 A		0	0		WE	3 A	
$1 P$	SP91533942	SAS			045	1	1	154	42110	5	2	DR	2	
2	SP89404050	ARA	SE	01				056	-56 056	-49	4	DR	4	I35 FLINTS
2 P	SP91503840	PGR			028040	3	3 A	106	-6 107	2	3A	WD	3A	
3 P	SP90703960	WHT			036105	1	1	146	34113	8	2	DR	2	
4	SP89604050	ARA			035035	3	3B	097	-15 099	-6	3A	WE	3B	
4 P	SP91203950	ARA				1	1	075	-37 072	-33	3B	DR	3B	AT AB 96
5P	SP89804010	PLO				1	1	140	28113	8	2	DR	2	AT AB 26
6	SP89504040	ARA			025025	2	3 A		0	0		WE	3B	I45 FLINTS
6 P	SP90004030	ARA			028028	3	38	105	-7 103	-2	3 A	WE	3A	
7	SP89604040	ARA			035035	3	3B	096	-16 101	-4	3 A	WE	38	
8	SP89704040	ARA			030030	3	3A	096	-16 101	-4	3A	WE	3A	
10	SP89904040	ARA			030030	3	3B	095	-17 100	-5	3A	WE	38	
11	SP89604030	PLO				1	1	096	-16 102	-3	3A	DR	2	160 SEE 5P
13	SP89804030	ARA			035045	3	3 A	092	-20 102	-3	3B	WE	3A	170 FLINTS
15	SP90004030	ARA			030030	3	38	098	-14 103	-2	3 A	WE	38	SEE 6P
16A	SP90174027	ARA	SE	03	035035	3	3A	097	-15 102	-3	3 A	WE	3A	
18	SP89704020	PLO				1	1	096	-16 102	-3	3A	DR	2	160 SEE 5P
20	SP89904020	ARA			030030	3	38	079	-33 084	-21	3B	WE	38	
22	SP90104020	ARA			050070	2	2	125	13110	5	2	WD	2	
24	SP90304020	WHT			028028	3	3B	078	-34 078	-27	3 B	WE	3B	I50 FLINTS
25	SP89634008	PLO				1	1	100	-12084	-21	3 A	DR	3A	
26	SP89804010	PLO				1	1	095	-17 101	-4	3A	DR	2	I60 SEE 5P
28	SP90014012	ARA			045045	2	3A	101	-11 106	1	3 A	WE	3A	
30	SP90204010	WHT				1	1	058	-54 058	-47	4	DR	3A	135 SEE 5P
32	SP90404010	WHT			025025	3	38	070	-42 070	-35	3B	WE	3 B	IMPQWE
34	SP89704000	PLO				1	1	093	-19098	-7	3A	DR	3A	165 SEE 4P
36	SP89904000	ARA					1	083	-29 083	-22	$3 B$	DR	2	150 SEE 5P
38	SP91003960	ARA			030050	3	3 A	106	-6 105	0	3A	WE	3A	IB8STONE
40	SP90304000	ARA			030045	3	3 A	107	-5 105	0	3A	WE	3 A	
42	SP90504000	CER			032	3	38		0	0		WE	38	GWATER
44	SP90704000	CER			030030	3	38	121	9097	-8	2	WE	38	GWATER
45	SP89803988	PGR				1	1	072	-40 072	-33	38	DR	38	150 SEE 4P
47	SP90003990	PGR			037	2	2	130	18110	5	2	WD	2	QWCSPL
49	SP90203990	ARA			049	1	1	095	-17 101	-4	3A	DR	2	I60 SEE 5P
51	SP90383990	ARA			028068	2	2	134	22112	7	2	WD	2	
55	SP90803990	CER			030030	3	3B	128	16105	0	2	WE	3B	
59	SP90103980	WHT			025	2	2	087	-25090	-15	3B	WE	2	Quc
61	SP90303980	WHT			028028	3	3A	093	-19 105	0	3 A	WE	3A	QTSTEXT
63	SP90503980	WHT			030	2	3 A	094	-18 100	-5	3 A	WE	3A	IMP600WE
65	SP90703980	CER	N	01		1	1		0	0		DR	2	IMP 70
67	SP90903980	CER	N	01	033033	3	3 A	129	17105	0	2	WE	3A	

SAMPLE ASPECT --WETNESS-- -WHEAT- -POTS- M.REL EROSN FROST CHEM ALC

NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT

COMMENTS

SAMP		ASPECT			GLEY		--WETNESS--		-WHEAT-		-POTS-		M. REL		EROSN	FROST	CHEM	ALC	COMMENTS
No.	GRID REF	USE		GRONT		SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EXP	DIST	LIMIT		
238	SP91703840	PGR	E	01	030	065	2	3A	135	23	113	8	2				WE	3 A	LIMED
240	SP91903840	CER	E	02	030	030	3	3A	129	17	106	1	2				WE	3A	CALC
242	SP92103840	CER			030	030	3	3B	125	13	103	-2	2				WE	3B	
-244	SP92303840	CER			028	028	3	3B	125	13	102	-3	2				WE	3B	
246	SP91003830	PGR			028	028	3	3A	124	12	101	-4	2				WE	3 A	NEAR 3B
248	SP91203830	PGR			030	030	3	38	128	16	105	0	2				WE	38	alluvial
250	SP91403830	PGR	SW	02	035	055	3	3B	113	1	112	7	3A				WE	38	IMP 90
1252	SP91603830	PGR			035	055	3	3A	138	26	112	7	2				WE	3A	
254	SP91803830	PGR	E	01	030	045	3	3A	131	19	107	2	2				WE	3A	
256	SP90903820	PGR			027	045	3	3A	131	19	108	3	2				WE	3A	
258	SP91103820	PGR			030	045	2	2	130	18	107	2	2				WE	2	NEAR 3A
${ }^{260}$	SP91303820	PGR			025		3	38	113	1	104	-1	3A				WE	3B	IMP 100
262	SP91503820	PGR			030	045	3	3B	113	1	108	3	3A				WE	38	IMP 95
- 263	SP91003810	PGR			035	065	2	2	136	24	113	8	2				WE	2	DR

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS
COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC
1
$1 P$
2
$2 P$
$2 P$

		1	0	$H R$	4			
OONNOO OO S	0	0	$H R$	7	MCSAB FM M			
Y	0	0	$H R$	8	MVCSAB FM M			
OOMNOO OO S	0	$0 H R$	10		M			Y
Y	0	0	$H R$	2	P	Y	Y	Y

4	$0-25$	c	25 Y43 00
$25-35$	c	25 Y53 00	
$35-85$	c	25 Y53 00 10YR68 00 C	

$4 \mathrm{P} \quad 0-28 \mathrm{~ms} 7 \quad 10 \mathrm{YR42} 00$
$28-40 \mathrm{~ms}] \quad 10 \mathrm{YR} 4200$
40-50 1ms 10YR43 00
$50-60 \quad 1 \mathrm{~ms} \quad 10$ YR43 00
60-71 1ms 10YR44 53

5P $\quad 0-33 \mathrm{~ms} 1 \quad 10 \mathrm{YR} 4200$
33-58 mcl 10 YR43 00
58-81 hel 10YR53 00
$81-120 \mathrm{scl} \quad 10 \mathrm{YR43} 44$
6 0-25 c 10 YR42 00
25-45 c 10 YR52 00 10YR58 00 M

6P $0-28$ hel $25 Y 4200$
00 HR 2
28-90 c $25 Y 5253$ 1OYR58 00 C

7 0-35 hel 10YR33 00
35-80 c 10YR52 00 10YR58 00 C
$8 \quad 0-30$ hal 10 YR42 00
30-80 c 25 Y52 00 75YR58 00 M

10 | $0-30$ | c |
| ---: | ---: |
| | $30-80$ |
| | c |

11 0-35 mszl 10 YR32 00
$\begin{array}{llllll}2 & 0 H R & 4 & & \\ 0 & 0 H R & 3 & P\end{array}$ 35-49 hel 10 YR43 00 $49-60$ hel 10 YR53 00
$13 \quad 0-35 \mathrm{mcl} \quad 10 \mathrm{YR} 3300$
$35-45 \mathrm{mcl} 10 \mathrm{YR} 4200$ 10YR58 00 C 45-70 c 10 YR52 00 10YR58 00 C
$\begin{array}{lllll}15 & 0-30 & \text { hel } & 10 Y R 3300 \\ 30-80 & c & 25 \text { Y52 } 00 & 10 Y R 6800 \mathrm{M}\end{array}$
$16 \mathrm{~A} \quad 0-35 \mathrm{mcl} \quad 10 \mathrm{YR} 3300$
35-80 c 10 YR 530010 YR 5800 M

18 | | $0-30$ | mszl | 10 YR32 00 |
| ---: | :--- | ---: | :--- |
| | $30-45$ | mcl | $10 \mathrm{YR43} 00$ |
| | $45-60$ | hcl | 25 y 5400 |

1	$0 H R$	3
0	$0 H R$	3
0	$0 H R$	5

M
45-60 hel 25Y 5400
$20 \quad 0-30$ hel 10 YR33 00
30 HR 7
$30-60$ c 10YR53 0010 YR58 00 C
$22 \quad 0-35 \mathrm{mcl} \quad 10 \mathrm{YR43} 00$
35-50 scl 10 YR54 00
50-70 hel 10 YR63 00 10YR68 00 C
$70-110$ c 25 Y53 00 10YR68 00 C
$\begin{array}{lrll}24 & 0-28 & \text { hcl } & 10 \text { YR42 } 00 \\ & 28-50 & c & 10 Y R 5300000 c 0000 ~ C\end{array}$
$25 \quad 0-40 \mathrm{~ms} 1 \quad 10 \mathrm{YR} 3200$
40-120 1ms 10 YR43 00

26 0-30 mszl 10 YR43 00
$30-45 \mathrm{mcl} \quad 10 \mathrm{YR43} 00$
45-60 hel 10YR53 00

28 0-45 hel 10YR42 00
45-80 c 10 YR53 00 75YR58 00 M
$30 \quad 0-28 \mathrm{mc} 7 \quad 10 \mathrm{YR} 3200$
$28-35 \mathrm{mcl} 10 \mathrm{YR} 4200$
32 0-25 hcl 10YR42 00
25-50 c $25 Y 520000000000 \mathrm{C}$

87	0-30	mcl	$10 \mathrm{YR43} 00$		0	0 HR	2			
89	0-30	mc 1	$10 \mathrm{YR43} 00$		0	0 HR	2			
91	0-30	mcl	$10 \mathrm{YR43} 00$		0	0 HR	2			
93	0-35	mc 1	25Y 4200		1	0 HR	3			
	35-58	hel	$25 Y 430010 Y R 5800 \mathrm{M}$	OOMNOO 00 S	0	0 HR	5	M		
	58-120	zc	05GY61 00 10YR68 00 M	r	0	0 SLST	5	P	Y	Y
94	0-30	mc 1	$10 \mathrm{YR43} 00$		0	0 HR	2			
96	0-35	msz1	10YR32 00		2	0 HR	5			
	35-40	ms 1	10YR42 00 75YR46 00 C	V	0	0 HR	40	M		
98	0-35	ms 1	10YR32 00		2	0 HR	5			
	35-65	ms 1	10YR43 53 75YR68 00 C	S	0	0 HR	5	M		
	65-75	1 ms	10YR43 00 75YR68 00 C	Y	0	0 HR	15	M		
99	0-35	$n \mathrm{mcl}$	$10 \mathrm{YR42} 00$		1	0 HR	3			
	35-65	hel	25 Y 540010 YR 5800 M	OOMNOO 00 Y	0	0 HR	10	M		
	65-120	zc	05GY61 $0010 \mathrm{YR68} 00 \mathrm{M}$	Y	0	0 SLST	5	P	Y	Y
100	0-35	mcl	10 YR43 00		0	0 HR	2			
101	0-35	mcl	$10 \mathrm{YR43} 00$		0	0 HR	2			
103	0-30	ms 1	10 YR43 00		0	0 HR	2			
105	0-30	mcl	10 YR43 00		0	0 HR	2			
107	0-30	ms 1	10 YR43 00		0	OCH	1			
108	0-30	$m \times 1$	$10 \mathrm{YR43} 00$		0	0 HR	2			
109	0-20	$m \mathrm{cl} 1$	$10 \mathrm{YR43} 00$		0	0	0			
	20-30	mc 1	$10 \mathrm{YR43} 44$		0	0	0	M		
111	0-20	mc 1	10YR43 00		0	0 HR	2			
	20-40	mcl	$10 \mathrm{YR43} 44$ 10YR56 00 F		0	0	0	M		
113	0-38	$n ¢ 1$	$10 \mathrm{YR43} 00$		0	0 HR	2			
115	$0-38$	mc 1	10 YR43 00		0	0 HR	2			
117	0-38	macl	$10 \mathrm{YR43} 00$		0	0 HR	2			
119	0-30	mcl	10YR43 00		0	0 HR	1			

IMP V. FLINTY

IMP FLINTS

----MOTTLES----- PED ----STONES---- STRUCT/ SUBS

COL ABUN CONT COL. GLEY $>2>6$ LITH TOT CONSIST STR POR IMP SPL CALC

Ssample depth texture colour ? $121 \quad 0-30 \mathrm{mzcl}$ 10YR43 00 $123 \quad 0-30$ hel 10YR42 00
$125 \quad 0-30 \quad$ c $\quad 10 Y R 420000000000 \mathrm{C}$
$127 \quad 0-38 \mathrm{mcl} \quad 10$ YR43 00
$38-45 \mathrm{mcl} 10$ YR53 00
45-55 sc $10 \mathrm{YR} 5300000 c 0000 \mathrm{C}$
$127 \mathrm{~A} \quad 0-35 \mathrm{mcl} 10$ YR43 00
35-60 hel 10 YR42 00 10YR46 00 C 60-70 c 10 YR52 00 10YR56 00 C 70-90 c 10 YR52 00 10YR56 00 C
$129 \quad 0-30 \mathrm{mcl} \quad 10$ YR43 00
$30-45$ scl 10 YR54 00
$131 \quad 0-30 \mathrm{scl} \quad 10 \mathrm{YR43} 00$
$30-50$ scl 10 YR44 00
$133 \quad 0-35$ scl 10 YR 4300
$35-60$ scl 10 YR54 5575 YR46 00 F
$135 \quad 0-30 \quad \mathrm{mcl} \quad 10$ YR43 00
30-45 hel 25 Y 5354 10YR56 00 C $45-80$ c 05 Y 6163 10YR56 00 C $80-105 \mathrm{~ms}) \quad 10$ YR56 00
105-120 c 05Y 6100
$137 \quad 0-28 \mathrm{hcl}$
10 YR43 00 28-60 c 25 Y 530010 YR 5600 C $60-120$ c $05 Y 636225 Y 5661$ C
$139 \quad 0-30 \quad c \quad 10 Y R 4300$
30-50 c $\quad 25 \mathrm{Y} 530010$ YR56 00 C 50-105 c $\quad 05 Y 5100$ 75YR46 00 M
$141 \quad 0-30 \mathrm{mcl} \quad 10$ YR42 00
30-55 scl 10 YR54 00
141A $\quad 0-30 \mathrm{mcl} \quad 10 \mathrm{YR} 3300$
$30-50$ scl 10 YR43 00
50-70 sc 10 YR53 00 10YR56 00 C
$142 \quad 0-35 \mathrm{mcl} \quad 10 Y \mathrm{Y} 4300$
$\begin{array}{lrllll}144 & 0-23 & c & 10 Y R 43 & 00 \\ & 23-50 & c & 25 Y & 51 & 52 \\ & 75 Y R 46 & 00 & \mathrm{C}\end{array}$ $50-120$ c $05 Y 510075 Y R 4600 \mathrm{M}$
$\begin{array}{lll}0 & 0 & H R\end{array}$
$\begin{array}{lll}0 & 0 & \text { HR } 1\end{array}$
$\begin{array}{llll}\mathrm{Y} & \mathrm{O} & \mathrm{O} & \mathrm{HR} \quad 1\end{array}$

	0	0	$H R$
	0	0	2
Y	0	0	$H R$

M
M

	0	0	$H R$
Y	0	0	2
Y	0	$0 H R$	2
Y	0	$0 H R$	1

M
M
$P \quad Y \quad Y$

M

M

M

	1	0	$H R$	3		
Y	0	0	$H R$	3	M	
Y	0	0	0	P	Y	Y
Y	0	0	0	M	Y	Y
Y	0	0	0	P	Y	Y

	0	0	$H R$	2		
Y	0	$0 H R$	2	P	Y	Y
Y	0	0	0	P	Y	Y

	0	0	0
\mathbf{y}	0	0	0
\mathbf{y}	0	0	0

$P \quad Y$
$P \quad Y$

M

$$
M
$$

$$
M
$$

$P \quad Y \quad Y$

146 | $140-30$ | |
| :--- | :--- |
| | $30-50$ |
| $50-120$ | |

$148 \quad 0-30 \quad \mathrm{mcl} \quad$ 10YR43 00
$30-70$ hel 10YR54 55
$150 \quad 0-30$ hel 10 YR44 00
$152 \quad 0-35$ hel 10 YR43 00
$154 \quad 0-30 \quad$ c $\quad 10 \mathrm{YR} 3300$
$156 \begin{array}{rl}0-28 & \text { hc } \\ 28-45 & c\end{array}$
45-80 c 80-120 c
$58 \quad \begin{array}{rr}0-27 & \text { he } \\ 27-45 & c\end{array}$
45-120 c
160 0-26 hal 10YR43 00
$164 \quad 0-30 \quad c$
30-70 c
70-95 c
166 0-27 hel $55-80$ scl 10 YR66 00
$168 \quad 0-25$ hcl
25-120 c

170 0-22 hcl
22-60 c

70-80 hel 10YR53 00 75YR56 00 C

30-55 hel 25Y 5400 10YR56 00 C 55-80 c $05 Y 515205 \mathrm{YR46} 00 \mathrm{M}$ $80-120 \mathrm{hcl} \quad 05 \mathrm{Y} 6362$ 10YR66 00 M

35-60 c 25Y 5253 10YR56 00 M 60-90 c $\quad 25 \mathrm{Y} 5100$ 05YR46 00 M

30-50 c $\quad 25 \mathrm{Y} 5200$ 75YR46 00 C $50-120$ c $05 Y 5100$ 05YR46 00 M

26-60 c $25 Y 5300$ 10YR56 00 C
$60-120 \mathrm{c} \quad 05 \mathrm{Y} 6300$ 10YR56 00 M

10YR42 00 10YR46 00 C $27-55$ hel 25 Y 530010 YR 6800 M

10YR43 00
25Y 5200 75YR56 00 C
05Y 5100 75YR46 00 M
$25 Y 4200$
25Y 5300 10YR56 00 C 05Y 5363 10YR56 00 C 05Y 6356

25Y 4200 75YR46 00 C 25Y 5300 10YR56 00 C 05Y 626325 Y 6600 C

10 YR32 00
10YR51 00 10YR56 00 M 25Y 5200 75YR56 00 M

10YR43 00
05Y $626325 Y 6600 \mathrm{C}$

10YR43 00
05Y 6353 1OYR56 00 C

	0	0	0			
Y	0	0	0		P	Y
Y	0	0	0		P	Y
	1	0	$H R$	3		M

	1	0	$H R$	3	
Y	0	0	0	P	Y
Y	0	0	0	P	Y

	0	0	0		
Y	0	0	0	P	Y
Y	0	0	0	P	Y

	0	0	$H R$	1			
Y	0	0	0	P	Y		
Y	0	0	0	P	Y	Y	
Y	0	0	$H R$	15	P	Y	Y

Y	0	0	$H R$	2			
Y	0	0	$H R$	3	P	Y	
Y	0	0	0	P	Y	Y	

	0	0	$H R$	2			
Y	0	0	$H R$	1	P	Y	
Y	0	0	0	P	Y	Y	

	0	0	0		
\mathbf{Y}	0	0	0	P	Y
\mathbf{Y}	0	0	0	P	Y

\mathbf{y}	0	0	0
\mathbf{y}	0	0	$H R$
\mathbf{y}	0	0	1

P	Y
M	Y

| | 0 | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 | P | Y |

1	0	$H R$	3			
Y	0	0	$H R$	3	P	Y

---MOTTLES----- PED ----STONES---- STRUCT/ SUBS
COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

172	$0-27$	mcl	$10 Y R 4300$
$27-60$	hcl	25 Y 5400	

174 0-25 hel 10YR43 00
25-100 c 05Y 6362 10YR66 56 M
$178 \quad 0-30 \quad$ c $\quad 10 Y R 3300$
30-55 c 25Y 520010 YR58 00 M
$55-60 \mathrm{mcl} 05 \mathrm{Y} 3600$
IOYR43 00
30-50 hel $10 \mathrm{YR54} 00$ OOMNOO 00 F
181 0-23 c
23-65 c
65-120 c
185 0-24 mel
24-60 c
60-95 c
$189 \quad 0-20 \quad c$
20-40 c 25 Y 5400 OONNOO 00 F
40-75 c 25Y 530025 Y 5600 C
$75-120$ c $05 Y 530025 Y 5661$ M
$191 \quad 0-35 \quad c$
35-50 c $\quad 25 \mathrm{Y} 6300$ 10YR68 61 M
50-90 c 10 YR54 00 10YR56 00 C
$195 \quad 0-35 \mathrm{mcl} \quad 10$ YR43 00
35-47 hel 10 YR53 0075 YR5 500 C 47-95 c 25Y $640010 Y R 6661 \mathrm{C}$ 95-100 1ms 10 YR 6600
$197 \quad 0-23 \mathrm{mcl} \quad 10$ YR43 00
23-45 hel 10 YR55 0000 NNO 00 F 45-70 c 25Y 6300 10YR56 61 C 70-120 c 05Y 6361 10YR56 00 C
$201 \quad 0-30 \quad c$ 30-50 c 50-120 c

203
$0-30$
\mathbf{c}
$30-75$
75-120 c

25Y 4300
25Y 5354 loYR56 00 C 05Y $630025 Y 5661$ M

10YR43 00
25Y 5300 10YR58 61 M
25Y 6362 75YR68 00 M

	1	0 HR	3			
	0	0 HR	2	M		
γ	0	0	0	P	Y	Y
Y	0	0	0	P	Y	Y
	1	0 HR	3			Y
Y	0	0	0	P	Y	Y
	0	0 HR	2			
Y	0	0	0	P	Y	
\boldsymbol{r}	0	0	0	P	Y	
	0	0 HR	4			
	0	0 HR	25	M		

	0	0	0
y	0	0	$H R$
y	0	0	0

P	Y
P	Y

	1	0	$H R$	3			
Y	0	0	$H R$	3	P	Y	
Y	0	0	0	P	Y	Y	

	0	0	0			
	0	0	0	M		Y
\mathbf{Y}	0	0	$C H$	2	P	Y
Y	0	0	$C H$	3	P	Y

	0	0	$C H$	10			Y
Y	0	0	$C H$	8	P	Y	Y
S	0	0	$H R$	5	P	Y	

	2	0	$H R$	3			
Y	0	0	$H R$	5	M		
\mathbf{Y}	0	0	0	P	Y	Y	
\mathbf{Y}	0	0	$H R$	20	M	Y	

	1	0	$H R$	3			
	0	0	$H R$	2	M		
Y	0	0	0	P	Y	Y	
Y	0	0	0	P	Y	Y	

	1	0	HR	2			
Y	0	0	0	M			
Y	0	0	0	P	Y	Y	

	0	0	$H R$	2			
y	0	0	0	P			
Y	0	0	0	P	Y	Y	

SSAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

	1	0 HR	3			
Y	0	0	0	P		
Y	0	0	0	P	Y	Y
	0	0	0			
\boldsymbol{r}	0	0	0	P	Y	
Y	0	0	0	P	Y	
Y	0	0 HR	8	P	Y	
	1	0 HR	3			
	0	0 HR	5	M		
Y	0	0	0	P	Y	Y
Y	0	0	0	P	Y	Y
	2	0 HR	5			r
Y	0	0 HR	4	M		
Y	0	0 HR	3	P	Y	
Y	0	0 HR	3	p	γ	Y

$238 \quad 0-30$ hel $10 Y R 4300$

	1	0	$H R$	4			Y
S	0	$0 H R$	3	M			
Y	0	$0 H R$	3	P	Y		
Y	0	$0 H R$	3	P	Y	Y	

	0	0	0			Y
S	0	0	0	P	Y	Y
Y	0	0	0	P	Y	Y
Y	0	0	0	P	Y	Y

	0	0	0				
Y	0	0	V	0		P	Y
Y	0	0	$H R$	2		P	Y
	0	0	0				
Y	0	0	0	P	Y	Y	
Y	0	0	0	P	Y	Y	

$246 \quad 0-28 \mathrm{mcl} \quad 10 \mathrm{YR43} 00$
28-55 c $\quad 25 \mathrm{Y} 5300$ 75YR56 00 M

	1	0	$H R$	3			
Y	0	0	$H R$	8	P	Y	
Y	0	0	$H R$	1	P	Y	Y
Y	0	0	$H R$	15	P	Y	Y

	0	0	$H R$	2	
Y	0	0	0	P	Y
Y	0	0	0	P	Y

250 0-35 hel $10 \mathrm{YR43} 00$
35-55 c $25 Y 5300$ 10YR58 00 C
55-90 c 05Y 630025 Y 6661 M

	1	0	$H R$
y	0	0	0
y	0	0	0

Y

SAMPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC

252	$0-35$	mcl	10YR43 00		
	$35-55$	hcl	$25 Y 5354$	75 YR5 600 C	
	$55-85$	sc	$25 Y$	6263	loYR58 00 M

	0	0 HR	2			
Y	0	0 HR	3	M		
Y	0	0 HR	3	P	Y	
Y	0	0	0	P	Y	Y
	2	0 HR	5			
\mathbf{Y}	0	0 HR	4	M		
Y	0	0	0	p	Y	Y
Y	0	0 HR	2	P	Y	
Y	0	0	0	P	Y	
	1	0 HR	3			
Y	0	0 HR	3	M		
Y	0	0	0	P	Y	
Y	0	0	0	P	Y	Y
	1	0 HR	3			
S	0	0 HR	5	M		
Y	0	0 HR	2	P	Y	Y
Y	0	0	0	P	Y	Y
	0	0	0			
Y	0	0	0	P	Y	
Y	0	0	0	P	Y	
	0	0 HR	4			
Y	0	0 HR	3	M		
Y	0	OCH	2	P	Y	Y
	2	0 HR	5			
Y	0	0 HR	4	M		Y
Y	0	0	0	P	Y	Y

[^0]: ${ }^{1}$ FRCA is an executive agency of MAFF and the Welsh Office

