A1

Isle of Wight Unitary Development Plan Hale Manor Farm, Arreton (Minerals)

Agricultural Land Classification ALC Map and Report

May 1997

Resource Planning Team Eastern Region FRCA Reading RPT Job Number: 1600/078/97 FRCA Reference: EL 16/01251

AGRICULTURAL LAND CLASSIFICATION REPORT

ISLE OF WIGHT UNITARY DEVELOPMENT PLAN (UDP) HALE MANOR FARM, ARRETON (MINERALS).

INTRODUCTION

- 1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of approximately 50 hectares of land around Hale Manor Farm, Arreton. The survey was carried out during May 1997.
- 2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA) on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF), in connection with the Isle of Wight Unitary Development Plan. This survey supersedes any previous ALC information for this land.
- 3. The work was conducted by members of the Resource Planning Team in the Eastern Region of the FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
- 4. At the time of survey the agricultural land was in arable cultivation.

SUMMARY

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale, but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1 below.

Table 1: Area of grades and other land

Grade/Other land	Area (hectares)	% site area
2 3a	25.1 25.6	49.5 50.5
Total site area	50.7	100

7. The fieldwork was conducted at an average density of 1 boring every hectare. A total of 49 borings and 3 soil pits were described.

- The area under agricultural use has been classified as Grade 2 (very good quality) and 8. Subgrade 3a (good quality). The land is predominantly limited by soil droughtiness and soil wetness/workability and occasionally stoniness, to a lesser extent.
- 9. Much of the site is affected by soil droughtiness restrictions. The soils are variable but typically comprise fine and coarse loamy profiles, which are on the whole freely draining. Profile available water is restricted due to the presence of stones, gravelly horizons and/or sandy textures to varying extents. The degree of restriction determines the ALC grade; the deeper and less stony profiles are assigned to Grade 2, whilst shallower, more gravelly soils fall into Subgrade 3a. Soil droughtiness may result in the yield potential being lower.
- Parts of the site are equally or solely limited by soil wetness, where soil drainage is 10. Additionally, the moist climatic regime at this locality gives rise to minor soil impeded. workability problems. Occasionally, land quality is also limited by topsoil stoniness. In these areas up to 15% flints > 2cm were measured, the volume of stones determining the severity of the limitation. The presence of large stones in the topsoil has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.

FACTORS INFLUENCING ALC GRADE

Climate

- Climate affects the grading of the land through the assessment of an overall climatic 11. limitation and also through interactions with soil characteristics.
- 12. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Table 2: Climatic and altitude data

Factors	Units	Values	Values
Grid reference	N/A	SZ 540 844	SZ 546 8
Altitude	m,AOD	20	25
Assumulated Tomporatura	da0C	15/12	1527

Factors	Units	Values	Values
Grid reference	N/A	SZ 540 844	SZ 546 842
Altitude	m,AOD	20	25
Accumulated Temperature	day°C	1543	1537
Average Annual Rainfall	mm	896	899
Field Capacity Days	days	187	187
Moisture Deficit, Wheat	mm	107	106
Moisture Deficit, Potatoes	mm	101	99
Overall Climatic Grade	N/A	Grade 1	Grade 1

- 13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (ATO, January to June), as a measure of the relative warmth of a locality.

15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. The site is climatically Grade 1. The site is believed not to be at risk from exposure. However, it does lie in an area which is indicated as being 'Rather Frost Prone' (Met. Office, 1968). Detailed field examination indicates that frost is not likely to be a significant limitation in the grading of this site.

Site

16. The agricultural land at this site lies at an altitude of 15-30m AOD. The majority of the land at the site is flat or very gently sloping with slight undulations. Nowhere does gradient or microrelief affect agricultural land quality.

Geology and soils

- 17. The published geological information fo the site (BGS, 1976) shows the majority of it to be underlain with Lower Greensand which is almost all overlain by drift deposits of gravel terraces (except for the extreme south-west corner of the site).
- 18. The most recently published soil information (SSEW, 1983) shows the survey area to be entirely mapped as the Hucklesbrook Association. These soils are described as 'Well drained coarse loamy and sandy soils, commonly over gravel. Some similar permeable soils affected by groundwater. Usually on flat land.' (SSEW, 1983). Field examination of the soils on the site found them to be broadly consistent with this description.

AGRICULTURAL LAND CLASSIFICATION

- 19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1.
- 20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Grade 2

21. Just over half of the area is mapped as very good quality agricultural land (Grade 2). This land is affected mainly by soil droughtiness with soil wetness/workability being equally or solely restricting in places. The soils within this unit comprise intermixed sands and clays and as such are very variable depending on the amount of sand in the profile. On the whole, the profiles comprise very slightly to slightly stony (0-10% total flints, 0-2% > 2cm diameter) medium clay loam, sandy clay loam or medium sandy loam topsoils. Where topsoil textures are heavier, these interact with the moist climatic regime at this locality to give rise to minor soil workability problems. The topsoils overlie similar upper subsoils which are again very slightly to slightly stony (0-15% total flints). Lower subsoils vary considerably in composition from loamy medium sand to clay textures (the latter being slowly permeable). These subsoils are generally well drained although occasionally they are gleyed or slightly gleyed at depths between 43-90cm, suggesting seasonal waterlogging. A wetness class of I, or occasionally II has been assigned to these soils depending on the degree of waterlogging. The soils may contain up to 15% total flints. Many of the profiles are impenetrable to the auger at depths between 68-

100cm over flints or sometimes gravel. On the whole, the combination of soil texture and hard stone restricts the water available to crops such that there is a very slight risk of drought stress to the plants in most years. This, in combination with soil wetness and/or workability (which affects the timing of cultivations and trafficking) restricts the land to Grade 2.

Subgrade 3a

- 22. The remaining parts of the site have been mapped as good quality agricultural land (Subgrade 3a). Similar to the Grade 2 unit, the principal limitation is soil droughtiness with wetness/workability and topsoil stoniness being equally or more limiting on occasion.
- 23. The areas affected by soil droughtiness are those where soil texture and moderate stone contents within the profile restrict water availability to plants. Typically, these profiles consist of medium clay loam, sandy clay loam and medium sandy loam topsoils which are very slightly to moderately stony (0-23% total flints, 0-7% >2cm diameter). These pass to similar upper subsoils which have a maximum stone content of 25% total flints. The lower subsoils are again very variable ranging from medium sand textures to sandy clay loam (depending on the amount of sand content). These lower horizons are often gleyed but become more gravelly with depth and impenetrable to the auger between 30-100cm. Despite this, the soils are generally well drained and a Wetness class of I or II has been assigned. The combination of soil characteristics and climate means that water availability to crops is restricted such that there is a slight risk of drought stress to plants in most years. the extent of this soil droughtiness restriction is more severe than for land classified as Grade 2.
- 24. A few profiles within the Subgrade 3a unit are affected by soil wetness/workability and suffer from impeded drainage which gives rise to gleying at depths between 29 and 35cm. Soils are assigned to wetness class II. The heavier topsoil textures (medium clay loam and sandy clay loam) and imperfect drainage combine with the moist climatic regime to result in a slight wetness/workability limitation which leads to restricted utilisation of the land by reducing the number of days when cultivations and/or grazing may occur without causing structural damage to the soil. Crop growth and development will also be affected by seasonal waterlogging of the soil.
- 25. Occasionally, a stone content of between 11% and 14% > 2cm diameter in the topsoil is sufficient to limit the classification to Subgrade 3a on the basis of topsoil stones alone. The presence of large stones in the topsoil has the effect of increasing production costs caused by extra wear and tear to equipment and reducing crop quality and establishment.

Sharron Cauldwell Resource Planning Team, FRCA Reading.

SOURCES OF REFERENCE

British Geological Survey (1976) Sheet No. 269, Isle of Wight 1:50,000 scale (Drift Edition). BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification.

Met. Office: Bracknell.

Met. Office (1968) Unpublished Climatological Data. Map Sheet 180.

Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils of South East England. 1:250,000 scale. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England. Bulletin 15. SSEW: Harpenden.

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

Sample location map

Soil abbreviations - explanatory note

Soil pit descriptions

Soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent pasture	LEY:	Ley grass	RGR:	Rough grazing
SCR:	Scrub	CFW:	Coniferous woodland	OTH	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. MB (WHEAT/POTS): Moisture Balance. (Crop adjusted AP crop adjusted MD)
- DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL: Microrelief limitation FLOOD: Flood risk EROSN: Soil erosion risk EXP: Exposure limitation FROST: Frost prone DIST: Disturbed land CHEM: Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC: Overall Climate AE: Aspect ST: Topsoil Stoniness FR: Frost Risk GR: Gradient MR: Microrelief FL: Flood Risk TX: Topsoil Texture DP: Soil Depth CH: Chemical WE: Wetness WK: Workability DR: Drought ER: Erosion Risk Soil Wetness/Droughtiness WD:

EX: Exposure

Soil Pits and Auger Borings

1. TEXTURE: soil texture classes are denoted by the following abbreviations:

S:	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P:	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

F: Fine (more than 66% of the sand less than 0.2mm)

M: Medium (less than 66% fine sand and less than 33% coarse sand)

C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content:

M: Medium (<27% clay) H: Heavy (27-35% clay)

2. MOTTLE COL: Mottle colour using Munsell notation.

3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

4. MOTTLE CONT: Mottle contrast:

F: faint - indistinct mottles, evident only on close inspection

D: distinct - mottles are readily seen

P: prominent - mottling is conspicuous and one of the outstanding features of the horizon

5. PED, COL: Ped face colour using Munsell notation.

6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.

7. STONE LITH: Stone Lithology - one of the following is used:

HR: all hard rocks and stones FSST: soft, fine grained sandstone

ZR: soft, argillaceous, or silty rocks CH: chalk

MSST: soft, medium grained sandstone GS: gravel with porous (soft) stones

SI: soft weathered GH: gravel with non-porous (hard)

igneous/metamorphic rock stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development WK: weakly developed MD: moderately developed

ST: strongly developed

Ped size F: fine M: medium

C: coarse

Ped shape S: single grain M: massive

GR: granular AB: angular blocky SAB: sub-angular blocky PR: prismatic

PL: platy

9. CONSIST: Soil consistence is described using the following notation:

L: loose VF: very friable FR: friable FM: firm VM: very firm

EM: extremely firm EH: extremely hard

10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor

11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.

12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.

13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.

14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations:

APW: available water capacity (in mm) adjusted for wheat

APP: available water capacity (in mm) adjusted for potatoes

MBW: moisture balance, wheat MBP: moisture balance, potatoes

SOIL PIT DESCRIPTION

Site Name : I OF WIGHT UDP ARRETON

Pit Number: 1

Grid Reference: SZ54308430

Average Annual Rainfall: 896 mm

Accumulated Temperature: 1543 degree days

Field Capacity Level : 187 days
Land Use : Cereals

Slope and Aspect

degrees

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 35	MCL	10YR42 43	1	5	HR					
35- 54	MCL	10YR56 66	0	3	HR	С	MDVCAB	FR	M	
54- 74	LMS	10YR64 00	0	25	HR	С	MDCSAB	FR	M	
74- 95	LMS	05Y 53 54	0	5	HR	M	WKCSAB	FR	M	
95–120	GH	10YR53 00	0	0					Р	

Wetness Grade: 2

Wetness Class : I

Gleying :054 cm SPL : cm

Drought Grade: 3A

APW: 105mm MBW: -2 mm

APP: 099mm MBP: -2 mm

FINAL ALC GRADE : 3A

MAIN LIMITATION : Droughtiness

SOIL PIT DESCRIPTION

Site Name : I OF WIGHT UDP ARRETON

Pit Number: 2P

Grid Reference: SZ54508410

Average Annual Rainfall: 896 mm

Accumulated Temperature: 1543 degree days

Field Capacity Level : 187 days Land Use : Cereals

Slope and Aspect

: 01 degrees E

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 32	MCL	10YR42 00	1	5	HR			•		
32- 50	MCL	10YR43 64	٥	3	HR	F	MDCSAB	FR	M	
50- 72	SCL	25Y 63 64	Q	6	HR	M	MDCSAB	FR	M	
72-120	LMŞ	25Y 64 00	Q	10	HR	С	WKCSAB	VF	М	

Wetness Grade : 2

Wetness Class : I

Gleying SPL :050 cm

Drought Grade: 2

APW: 125mm MBW: 18 mm

APP: 111mm MBP: 10 mm

FINAL ALC GRADE : 2

MAIN LIMITATION : Soil Wetness/Droughtiness

SOIL PIT DESCRIPTION

Site Name : I OF WIGHT UDP ARRETON

Pit Number: 3P

Grid Reference: SZ53908425 Average Annual Rainfall: 896 mm

Accumulated Temperature: 1543 degree days

Field Capacity Level : 187 days

Land Use

: Cereals

Slope and Aspect

: 01 degrees W

HORIZON	TEXTURE	COLOUR	STONES >2	TOT.STONE	LITH	MOTTLES	STRUCTURE	CONSIST	SUBSTRUCTURE	CALC
0- 30	MSL	10YR42 00	6	12	HR					
30- 45	MSL	10YR44 00	0	25	HR				M	
45- 80	LMS	10YR46 00	0	25	HR				M	
80-120	MS	10YR53 54	0	2	HR	F	WKMSAB	VF	M	

Wetness Grade : 1

Wetness Class : I

Gleying

: CITI

SPL

cm

Drought Grade : 3A

APW: 092mm MBW: -15 mm

APP: 076mm MBP: -25 mm

FINAL ALC GRADE : 3A

MAIN LIMITATION : Droughtiness

SAM	DI F	,	ASPECT			. UET	NESS	_1,11	IEAT-	_ DC	TS-	м	REL	EROSN	FRO	CT.	CHEM	ALC	
NO.	GRID REF	USE	SPECI	GRONT	GLEY SPL				MB		MB	DRT	FLOOD		YP XP	DIST	LIMIT	ALC	COMMENTS
1101	GRID REI	001		GILDITT	GEE, 01 E		GIVADE		110	~	115	DICI	1 (000)		AI.	0131	CIMI		CONTIENTS
1	SZ54108480	CER	W	05		1	1	074	-33	075	-26	3B					DR	3A	Imp52 see 3p
11	SZ54308430	CER			054	1	2	105	-2	099	-2	3A					DR	ЗА	Assume to 120
_ 2	SZ54208480	CER	N	01		1	1	060	-47	060	-41	38					DR	3A	Imp40 see 3p
<u> </u>	SZ54508410	CER	Ε	01	050	1	2	125	18	111	10	2					WD	2	Also WK
3	SZ54108470	CER	W	05	035	2	2	110	3	096	-5	ЗА					TS	3 A	DR see 3p
-																			
	SZ53908425	CER	W	01		1	1	092	-15	076	-25	ЗА					DR	3 A	
4 5	SZ54208470	CER			043	1	1	101	-6	108	7	3A					DR	2	See 2p
5	SZ54108460	CER	NW	01		1	2	040	-67	040	-61	4					DR	3A	Also ST
6	SZ54208460	CER	W	01		1	2	107	0	113	12	ЗА					WD	2	Imp 72
7	SZ54008450	CER	W	02		1	2	062	-45	062	-39	38					DR	3 A	Imp40 see 3p
7			i																
8	SZ54108450	CER	W	01		1	2	101	-6	109	8	3A					DR	ЗА	Poss 2
_ 9	SZ54208450	CER	N	01		1	1	088	-19	092	-9	3A					DR	3A	Imp60 see 1p
10	SZ54308450	CER			055	1	1	151	44	111	10	2					DR	2	
— 11	SZ54408450	CER			035	2	3A	077	-30	077	-24	3B					WD	ЗА	see 1p
12	SZ54508450	CER			030	2	2	055	-52	055	-46	4					DR	ЗА	Also ST
13																			
13	SZ54708450	CER				1	1	086	-21	090	-11	3B					DR	ЗА	Imp60 see 3p
14	SZ54008440	CER	₩	01		1	1	123	16	105	4	2					DR	2	Imp 100
15	SZ54108440	CER				1	2	090	-17	093	-8	3A					DR	ЗА	Imp65 see 1p
16	SZ54208440	CER	N	01		1	2	106	-1	101	0	3A					WD	2	•
17	SZ54308440	CER			055	1	2	094	-13	097	-4	3A					DR	ЗА	Imp60 see 1p
_																			•
18	SZ54408440	CER			045	1	2	094	-13	098	-3	3A			•		DR	3A	Imp60 see 1p
19	SZ54508440	CER				1	2	049	-58	049	-52	4					DR	ЗА	Imp30 see 3p
20	SZ54608440	CER	W	02	080	1	2	156	49	118	17	1					WK	2	
21	SZ54708440	CER				1	2	105	-2	108	.7	3A					DR	ЗА	Imp75 poss 2
22	SZ54808440	CER				1	2	093	-14	099	-2	3A					DR	3A	See 1p
_																			•
23	SZ53908430	CER	W	01		1	1	053	-54	053	-48	4					DR	3 A	See 3p
24	SZ54008430	CER	W	01		1	2	119	12	113	12	2				•	WD	2	
25	SZ54108430	CER				1	2	051	-56	051	-50	4					DR	ЗА	Imp30 see 3p
26	SZ54208430	CER	:		090	1	2	153	46	115	14	1					WK	2	
27	SZ54308430	CER				1	1	063	-44	063	-38	3B					DR	3A	Imp40 see 3p
5																			•
28	SZ54408430	CER				1	2	095	-12	100	-1	3A					DR	ЗА	Imp60 see 1p
29	SZ54508430	CER			030	1	1	098		106		3A					DR		Imp 70
30			W	01	060 070	2	2	135		109	8	2					WD	2	Imp 110
31	SZ54708430	CER	W	02		1	2	110	3	105	4	3A					WD	2	Also WK
32				01		1	2	086	-21		-13						DR		Imp55 see 1p
																			•
33	SZ53908420	CER	SW	01	-	1	1	037	-70	037	-64	4					DR	3A	Imp25 see 3p
34	SZ54008420	CER	W	01		1	2	103	-4	109	8	3A					WD	2	•
35	SZ54108420	CER	W	01		1	2	150		110	9	2					₩D	2	
36	SZ54208420	CER				1	1	049	-58		-52								Imp 30
37			Ε	01		1	2	113		115	14						ÐR	2	Also WK
38	SZ54408420	CER	W	01		1	2	105	-2	117	16	3A					DR	2	Also WK
39					050	1	2	136		118	17						DR		Also WK .
_																			
_																			

program: ALCO12

LIST OF BORINGS HEADERS 13/08/97 I OF WIGHT UDP ARRETON

page 2

ASPECT --WETNESS-- -WHEAT- -POTS-M.REL EROSN FROST CHEM ALC NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB LIMIT COMMENTS DRT FLOOD EXP DIST 40 SZ54608420 CER 035 ЗА 153 46 115 14 1 WE ЗА 2 01 045 41 SZ54708420 CER W 2 094 -13 100 -1 3A DR 3A Imp60 see 1P 1 DR 3A Imp100 42 SZ54808420 CER 1 1 107 0 092 -9 3A 43 SZ54108410 CER W 01 1 2 090 -17 096 WD See 2p Imp 100 44 SZ54208410 CER W 01 1 2 134 27 115 14 2 WD 45 SZ54308410 CER W 1 2 000 0 000 0 DR 3A Imp 35 46 SZ54408410 CER 085 085 1 2 2 143 36 113 12 1 WK 47 SZ54508410 CER E 3A See 2p 01 2 102 -5 113 12 3A DR 48 SZ54608410 CER 050 068 2 3A 116 9 112 11 2 WE 3A Imp 90 49 SZ54778413 WHT W 2 098 -9 105 4 3A 3A Imp 68 01 055 1 DR

ì		•			MOTTLES	S	PED			S	TONES	S	STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLE							IMP SPL CALC	
1	0-30	ms?	10YR43 00						7	n	HR	9		·		
'	30-52	msl	10YR44 00								HR	15		М		IMP, FLINTS
1 P	0-35	mcl	10YR42 43						1	3	HR	5				
, ,	35-54	mc1	10YR56 66	10YR5	8 00 C		000000	00 S			HR		MDVCAB F	R M		
j	54-74	lms	10YR64 00					γ			HR	25	MDCSAB F			
	74-95	ìms	05Y 53 54					Υ			HR	5	WKCSAB F			
	95-120	gh	10YR53 00						0			0		Р		ASSUME ROOTS
2	0-30	ms 1	10YR43 00						6	0	HR	8				
ł	30-40	ms l	10YR44 00						0	0	HR	15		М.		IMP, FLINTS
2P	0-32	mcl	10YR42 00						1	0	HR	5				
	32-50	mcl	10YR43 64	10YR5	8 00 F				0	0	HR	3	MDCSAB F	RM		
	50-72	scl	25Y 63 64	75YR5	8 00 M			Y	0	0	HR	6	MDCSAB F	RM		POROUS
,	72-120	lms	25Y 64 00	10YR5	6 00 C			Y	0	0	HR	10	WKCSAB V	FM		FRIABLE
3	0-35	msl	10YR43 00				•		11		HR	15	٠			
,	35-45	mcl	10YR64 00					Υ	0	0	HR	5		М		
	45-60	ms1.	10YR64 00					Y	0	0	HR	2		М		
•	60-80	lms :	25Y 64 00	10YR6	6 68 C			Y				0		M		
	80-120	ms	05Y 64 00	10YR6	6 00 C			Y	0	0		0		М		
3P	0-30	ms1	10YR42 00						6		HR	12				
	30-45	msl	10YR44 00						0		HR	25		М		HARD, STONY
•	45-80	lms	10YR46 00						0		HR	25		<u>M</u>		HARD, STONY
)	80-120	ms	10YR53 54	10YR5	B 00 F				0	0	HR	2	WKMSAB V	F M		
4	0-30	msl	10YR43 00						2		HR	5				
	30-43	msl	10YR44 00						0		HR	8		M		
ì	43-59	hc1	10YR64 00					Y			HR	5		M		714D C1 714TO
	59-75	hc1	25Y 64 00	10YR6	B 00 M			Y	U	U	HR	5		М		IMP, FLINTS
5	0-30	scl	10YR43 00						12	0	HR	23		•		IMP, FLINTS
6	0-35	mcl	10YR43 00						0	0	HR	2				
	35-45	scl	10YR56 00						0	0	HR	2		М		
Ì	45-60	msl	10YR56 66						0	0	HR	2		M		
,	60-72	msl	10YR66 00	75YR5	8 00 C			S	0	0	HR	5		M		IMP, FLINTS
7	0-35	scl	10YR43 00								HR	8				
ł	35-40	msl .	10YR56 00						0	0	HR	10		M		IMP, FLINTS
8	0-32	mc1	10YR43 00								HR	5		M		
	32-60	scl	10YR44 00	75. c				_			HR	5		М .		THE ELECTION
)	60-70	msl	10YR66 00	/5YR5	5 UU C			S	U	U	HR	5		М		IMP, FLINTS
9	0-30	msl	10YR43 44						1		HR	2				
t	30-42	mcl	10YR56 00	75YR58	8 00 F				0	0	HR	2		M		
•	42-55	msl	10YR56 00					S			HR	2		M		
ì	55-60	lms	10YR56 00	75YR5	3 00 C			S	0	0	HR	2		М		IMP, FLINTS

----STONES---- STRUCT/ SUBS ----MOTTLES---- PED MPLE DEPTH TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC 10 0-25 10VR43 00 1 0 HR 2 ms 1 25-55 2 ms 1 10YR56 00 0 0 HR М 55-120 25Y 63 00 75YR58 00 C Y 0 0 HR scl 0-35 10YR43 00 0 0 HR mc1 1 mc] · 35-45 10YR64 00 10YR68 00 C Y 0 0 HR 10 IMP, FLINTS 0-30 14 9 HR 20 10YR32 00 12 ms 1 30 - 40С 05Y 51 52 75YR58 00 M 0 0 HR 15 IMP, GRAVELLY 0-35 10YR43 00 10 13 4 1 HR ms 1 35-50 10YR53 56 00MN00 00 0 0 HR 5 50-60 ms] 10YR56 00 75YR58 00 F 0 0 HR IMP, FLINTS 0-33 ms 1 10YR43 44 2 0 HR 3 33-50 10YR44 00 0 0 HR 10 50-65 sel 10YR46 56 0 0 HR 1 М 65-80 10YR56 00 0 0 HR Ims 1 М S 0 0 HR 80-100 ms1 10YR56 00 75YR58 00 C 1 М IMP, FLINTS 15 0~35 me1 10YR43 00 O O HR 4 35-50 sel 10YR56 00 0 0 HR 2 50-65 10YR56 00 0 0 HR Ims IMP, FLINTS 0-33 10YR43 00 1 0 HR 2 mc] 33-45 mc;1 10YR46 00 0 0 HR 5 45-50 ms.] 10YR66 00 75YR58 00 C 00MN00 00 S 0 0 HR 5 М 50-65 00MN00 00 S 0 0 HR 5 10YR66 00 75YR58 00 C Ims : М 65-80 00MN00 00 S 0 0 HR 10YR66 00 75YR58 00 C 5 ms T IMP, FLINTS 0-32 10YR43 00 me1 1 0 HR 2 32-55 10YR54 00 10YR58 00 C S 0 0 HR ms.1 1 М 55-60 10YR64 00 10YR58 00 C Y 0 0 HR ms } 10 IMP, FLINTS 18 0-30 10YR42 00 0 0 HR 3 me1 30-45 10YR43 00 0 0 HR 2 mc] M 45-60 25Y 53 64 75YR58 00 C 00MN00 00 Y 0 0 HR IMP, FLINTS 19 0-30 me1 10YR42 00 2 3 HR 10 IMP, FLINTS 0-30 me] 10YR42 00 0 0 HR 3 30-40 0 0 10YR42 00 0 fszl М 40~60 sq1 10YR53 68 0 0 0 60-80 sc] 25Y 64 00 10YR58 00 F 00 00MN00 0 0 HR М FRIABLE 80-120 sq1 25Y 63 00 75YR58 46 M 00MN00 00 Y 0 0 HR LOOSE М 0-20 mc] 10YR42 43 0 0 HR 4 20-30 0 0 mc:] 10YR43 00 0 М 30-75 10YR53 56 0 0 HR 5 ms] М IMP, FLINTS

					MOTTLES		PED		_		-ST	ONES-		STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GL	.EY >	2 >	6	LITH	TOT	CONSIST	STR POR	IMP SPL	CALC		
22	0-32	mc1	10YR43 00							2	0	HR	3						
	32-60	mc1	10YR44 00						(0	0	HR	5		M			IMP,	FLINTS
23	0-27	msì	10YR43 00								0		8		•				
	27-35	ms 1	10YR46 00						(0	0	HR	15		М			IMP,	FLINTS
24	0-32	mc1	10YR43 00								0 !		6						
	32-40	mcl	10YR46 00								0 1		10		М				
}	40-70	mc1	10YR56 00			(OOMMOO				0		2	*	M				
	70-77	msl	25 Y66 00								0		5		M				* *
	77–100	lms	25 Y66 00	75YR5	8 00 C				S (0	0	HR .	5		М			IMP,	FLINTS
25	0-30	mcl'	10YR43 00						;	3	0	HR	5					IMP,	FLINTS
26	0-35	mcl	10YR43 00						ſ	0	0	HR	5						
ı	35-55	mcl	10YR44 00						1	0	0	HR	2		М				
	55-90	mc1	10YR56 66	75YR5	B 00 F	(COMMOC	00	1	0	0		0		М				
	90-120	mcl	25Y 64 00	75YR5	8 00 C				Y I	0	0		0		M				
27	0-30	msl	10YR44 46							1	0	HR	3						
1	30-40	mc1	10YR44 00						1	0	0	HR	15		М			IMP,	FLINTS
28	0-35	mcl	10YR42 43						ſ	0	0	HR	3						
)	35-60	mc1	10YR44 00	10YR4	6 00 F	(OOMNOO	00	1	0	0	HR	2		М			IMP,	FLINTS
29	0-30	msl	10YR42 00						ĺ	0	0	HR	5						
	30-70	msl	10YR64 00	75YR5	8 00 C	(OOMNOO	00	Υ Ι	0	0	HR	5		M			IMP,	FLINTS
30	0-30	ms1	10YR42 00						;	2	0 1	HR	3						
•	30-40	ms1	10YR43 00						ľ	0	0	HR	3		М				
	40-60	msl	10YR66 00	10YR5	8 00 C	2	25 Y76	00	S	0	0	HR	2		М				
!	60-70	scl	25 Y64 00	75YR5	B 00 M				Y (0	0		0		М				
,	70-85	С	10YR63 00	75YR5	8 00 M				Υ (0	0		0		Р	Y			
1	85-110	sc	25 Y52 53	75YR5	B 00 M				Υ Ι	0	0		0		М	Y		IMP,	FLINTS
31	0-30	mcl	10YR44 00						1	4	0 1	HR	10						
	30-55	mcl	10YR44 54						1	0	0 1	HR	10		М				
}	55-75	ms 1	10YR56 00								0 1		15		М				
	75–85	mcl	10YR56 00	10YR5	3 00 C				S I	0	0 1	HR	10		M			IMP,	FLINTS
32	0-32	mcl	10YR43 00								0 1		5						
	32-45	mcl	10YR44 00								0 1		5		М				
'	45-55	msl	10YR56 00						(0	0 1	HR	15		М			IMP,	FLINTS
33	0-25	ms1	10YR43 00						•	6	0 1	HR	15					IMP,	FLINTS
34	0-32	mcl	10YR43 00							3	0 1	HR	8						
) 1	32-60	mc1	10YR44 00								0 1		10		м -				
	60-75	mcl	10YR46 00	00MN00	00 F						0 1		5		M			IMP,	FLINTS
•																			

•		:			40TTLES	;	PED			-S1	FONES	,	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR		ABUN	CONT		GLEY					CONSIST		R IMP SP	L CALC		
35	0-30	mcl	10YR43 00						3	0	HR	10						
	30-40	mcl	10YR44 46						0	0	HR	15		M				
_	40-75	mcl	10YR46 00						0	0	HR	2		M				
1	75–120	msl	10YR46 56						0	0	HR	5		M				
36	0-30	msl	10YR43 00						1	0	HR	5					IMP,	FLINTS
37	0-30	mcl	10YR43 00								HR	3						
ı	30-80	mcl	10YR44 00						0	0	HR	2		M			IMP,	FLINTS
38	0-35	mcl	10YR43 00								HR	2						
	35–40	mcl	10YR44 00								HR	2		М				
	40-70	mcl	10YR46 56						0	0	HR	2		М			IMP,	FLINTS
39	0-38	mcl	10YR42 00								HR	1						
,	38-50	mcl	10YR56 00							0		0		М				
•	50-100	hcl	25 Y54 00	75YR5	3 00 C			Y	0	0	HR	2		М			IMP,	FLINTS
40	0-35	mc1	10YR53 00						1		HR	3						
•	35-50	wcj:	10YR63 72					Y	0		HR	8		M				
1	50-70	hc1	25Y 64 74					Υ			HR	1		М				
	70-98	mc1	10YR66 68				00MN00 0				HR	1		M				
	98-120	scl	25Y 62 00	/5YR5i	3 00 C	(DOMNOO O	UY	U	Û	HR	1		М				
41	0-32	mcl	10YR43 00								HR	3						
•	32-45	mszl	10YR43 00	10406				v			HR	2		М			TMD	C) THEC
1	45–60	mcl	10YR64 00	TOYRO	3 58 C			Y	U	U	HR	8		М			IMP,	FLINTS
42	0-32	msl	10YR44 00						1	0	HR	3						
•	32-40	msl	10YR46 56						0	0	HR	3		М				
•	40-80	lms	10YR56 66						0	0	HR	5		M				
	80-100	lms	10YR56 66						0	0	HR	15		Μ.			IMP,	GRAVELLY
43	0-30	scl	10YR43 00						4	0	HR	7						
	30-45	scl	10YR46 56						0		HR	10		M				
j	45-60	msl	10YR56 00						0	0	HR	5		M				
•	60-70	lms	10YR56 66						0	0	HR	15		М			IMP,	FLINTS
44	0-30	mcl	10YR43 00								HR	1	,					
_	30-60	mc1	10YR44 46								HR	2		М	•			
ì	60-100	scl	10YR46 56	75YR50	3 00 F				0	0	HR	2		М			IMP,	FLINTS
45	0-35	mcl .	10YR43 00						3	0	HR	5					IMP,	FLINTS
46	0-35	mc1	10YR43 00						2	0	HR	3				Y		
5	35-45	rom.	10YR56 00								HR	5		M				
	45-65	scl	10YR56 00								HR	2		M				
1	65-85	scl	10YR56 00					S			HR	2		M				
j	85-120	С	25 Y63 00	75YR58	3 00 M			Y	0	0		0		P	γ			

1				MOTTLES			PED	STONES STRUC				STRUCT/	CT/ SUBS						
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT	CONSIST	STR	POR	IMP S	PL CALC		
47	0-32	mcl	10YR42 00						2	0	HR	3							
	32-45	mc1	10YR43 00						0	0	HR	5		M					
•	45-60	mc1	10YR56 00	75YR58	00 F	00	MN00	00	0	0	HR	5		М					
1 .	60-70	sc1 ,	10YR56 00	75YR58	00 C			S	0	0	HR	5		M				IMP,	FLINTS
48	0-29	scl	10YR43 00						0	0		0							
	29-50	hcl	25 Y66 00	10YR58	00 C			S	0	0		0		М					
	50-68	scl	25 Y63 00	75YR58	00 M			Υ	0	0		0		М					
}	68-90	c	10YR62 00	75YR58	00 M			Y	0	0	HR	2		Р			Y	IMP,	GRAVELLY
49	0-30	mcl	10YR43 00						1	0	HR	3							
	30-41	mcl	10YR44 46	10YR58	00 C	00	MNOO	00 S	0	0	HR	5		М					
	41-55	scl	10YR64 00						0	0	HR	8		М					
	55-68	scl	10YR64 54	75YR58	00 C			Y	0	0	HR	15		M				IMP,	GRAVELLY