SHROPSHIRE STRUCTURE PLAN WHITCHURCH LAND NORTH OF CHESTER ROAD

Agricultural Land Classification ALC Map and Report

July 1999

Resource Planning Team Northern Region FRCA Wolverhampton

.

 RPT Reference:
 25/RPT/0954

 RPT Job No.:
 082/98

 MAFF Reference:
 EL 35/11859

AGRICULTURAL LAND CLASSIFICATION REPORT SHROPSHIRE STRUCTURE PLAN WHITCHURCH, LAND NORTH OF CHESTER ROAD

INTRODUCTION

- 1. This report presents the findings of a detailed Agricultural Land Classification (ALC) survey of 33.6 ha of land on the north western edge of Whitchurch, Shropshire. The survey was carried out during June 1999.
- 2. The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF). The survey was carried out in connection with MAFF's statutory input to the Shropshire Structure Plan. This survey supersedes any previous ALC information for this land.
- 3. The work was conducted by members of the Resource Planning Team in the Northern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
- 4. At the time of survey the land use on the survey area was under permanent grassland and cereals. The areas mapped as 'Other land' include urban land, tracks, ditches and a pond.

SUMMARY

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:10,000. It is accurate at this scale but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Grade/Other land	Area (hectares)	% surveyed area	% site area
1 2 3a 3b 4 5 Agricultural land not surveyed Other land	- 13.2 18.1 1.2 - - -	- 40 56 4 - - N/A N/A	- 39 54 4 - - - 3
Total agricultural land area Total survey area	32.5 33.6	. 100	- 100

Table 1: Area of grades and other land

7. The fieldwork was conducted at an average density of 1 boring per hectare of agricultural land. In total 35 borings and 3 soil pits were described.

¹ FRCA is an executive agency of MAFF and the Welsh Office

- 8. Grade 2 (very good quality) land occurs in the north and west of the survey area. Soil droughtiness and soil wetness are the main limitations to the agricultural use of this land.
- 9. Subgrade 3a (good quality) land occurs in the centre and towards the south east of the survey area. Soil droughtiness and soil wetness are the main limitations to the agricultural use of this land.
- 10. Subgrade 3b (moderate quality) land occurs in the north west corner of the survey area. Soil wetness is the main limitation to the agricultural use of this land.

FACTORS INFLUENCING ALC GRADE

Climate

- 11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
- 12. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Values
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m, AOD day°C (Jan-June) mm days mm mm	SJ 532 425 105 1356 741 170 90 77
Overall climatic grade	N/A	Grade 1

Table 2: Climatic and altitude data

- 13. The climatic criteria are considered first when classifying land. Climate can be overriding in the sense that severe limitations will restrict land to low grades, irrespective of favourable site or soil conditions.
- 14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.
- 15. The combination of rainfall and temperature at this site mean that climate does not pose a limitation to the agricultural use of the land. The survey area is climatically Grade 1.

Site

- 16. The topography of the survey area is strongly undulating in nature, rising towards the south east of the survey area.
- 17. Gradient, microrelief and flooding do not pose any limitation to the agricultural use of the land.

Geology and soils

- 18. The solid geology of the survey area is composed entirely of Upper Keuper Saliferous Beds -British Geological Survey (1967). The drift geology is composed of Glacial Sand and Gravel in the north of the area and Boulder Clay in the south - British Geological Survey (1967).
- 19. The soils that have developed at the survey area are shown by the Soil Survey of England and Wales (1983) to be Salop and Wick Series. Soils of the Salop Series have a clay loam topsoil overlying clay loam and clay subsoils. Salop Series soils are slowly permeable and seasonally waterlogged (Wetness Class IV). Soils of the Wick Series have either sandy loam or sandy silt loam topsoils, over loamy sand and sand subsoils. These soils are permeable and well drained (Wetness Class I).

AGRICULTURAL LAND CLASSIFICATION

20. The details of the classification of the survey area are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 1.

Grade 2

- 21. Land of very good quality occupies 13.2 ha (40 %) of the surveyed area and occurs in the north and west of the survey area. Two types of profile can be found within this area. The first profile type occurs predominantly along the northern edge of the survey area. The profile typically comprises either a sandy clay loam or medium sandy loam topsoil overlying a medium sandy loam upper subsoil. This passes to loamy medium sand and medium sand lower subsoils. There are few stones within the profile. The depths to gleying and the slowly permeable layer place these soils in Wetness Class I. The moisture balances places these soils in Grade 2. The main limitation to the agricultural use of this land is soil droughtiness.
- 22. The second profile type occurs in the western and more southerly part of this Grade. The profile typically comprises a sandy clay loam topsoil, overlying a sandy clay loam or medium sandy loam upper subsoil. The lower subsoil consists of bands of alternately heavier and lighter soil textures, with few stones. The depths to gleying and the slowly permeable layer place these soils in Wetness Class II. With 170 field capacity days and a sandy clay loam topsoil, these profiles are Grade 2. In some cases the moisture balances also places these soils in Grade 2. The main limitations to the agricultural use of this land are soil wetness and soil droughtiness.

Subgrade 3a

- 23. Land of good quality occupies 18.1 ha (56 %) of the surveyed area and occurs in the centre and towards the south east of the survey area. A variety of soil types occur within this area, often changing within a short distance. Some isolated profiles were found to be Grade 2 and some of Subgrade 3b, but these areas were too small to show separately at the scale of mapping. Overall, Subgrade 3a is most appropriate. The soil profiles broadly fall into two types.
- 24. In the first type, the profile commonly comprises either a medium clay loam or sandy clay loam topsoil, overlying a sandy clay loam upper subsoil. This passes to heavy clay loam and clay lower subsoils that occasionally have sand lenses within them. The depths to gleying and the slowly permeable layer place these soils in Wetness Class III and with 170 field capacity days and either a medium clay loam or a sandy clay loam topsoil, these profiles are Subgrade 3a. The main limitation to the agricultural use of this land is soil wetness.
- 25. In the second profile type, the soils commonly comprises either a sandy clay loam or medium sandy loam topsoil, overlying either a sandy clay loam, medium sandy loam or loamy medium sand upper subsoil. This passes to loamy medium sand and medium sand lower subsoils, with few to common stones within the profile. Occasional thin bands of heavier textured soil may occur within the subsoil. The depths to gleying and the slowly permeable layer place these soils in Wetness Class I or II. The moisture balances places these soils in Subgrade 3a. The main limitation to the agricultural use of this land is soil droughtiness.

Subgrade 3b

ĩ

26. Land of moderate quality occupies 1.2 ha (4 %) of the surveyed area and occurs in the north west corner of the survey area. The profile typically comprises a medium clay loam topsoil overlying a slowly permeable subsoil of heavy clay loam and clay. The depths to gleying and the slowly permeable layer place these soils in Wetness Class IV. With 170 field capacity days and medium clay loam topsoils, these profiles are Subgrade 3b. The combination of clay loam topsoils and slowly permeable subsoils located relatively close to the surface will adversely affect plant growth or impose restrictions on cultivations or grazing by livestock

J M LePage Resource Planning Team Northern Region FRCA Wolverhampton

SOURCES OF REFERENCE

British Geological Survey (1967) 1:63 360 scale. Sheet No. 122, Nantwich, Solid Edition . BGS: London.

British Geological Survey (1967)1:63 360 scale. Sheet No. 122, Nantwich, Drift Edition . BGS: London.

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) *Climatological Data for Agricultural Land Classification*. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Soils and their Use in Midland and Western England SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereats and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

.

.

SAMPI	_E	A	SPECT				WETN	VESS	-WHI	EAT-	-PC	ITS	1	M.REL	EROSN	FRC	ST (СНЕМ	ALC	
NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	8	ХP	DIST	LIMIT		COMMENTS
1	SJ53104270	PGR	W	02	000		1	1	110	20	096	19	2					DR	2	
1P	SJ53104270	PGR	W	02	000		1	1	104	14	088	11	2					DR	2	
2	SJ53204270	PGR	W	02	075		1	1	138	48	109	32	1					5	1	
2P	SJ52924254	PGR	N	03	022 0	035	4	ЗB	114	24	101	24	2					WF	3B	
3	SJ53304270	CER	W	02	000		1	1	097	7	078	1	2					DR	2	
																			-	
3P	SJ53004250	PGR	Ν	02	036 0	089	2	2	112	22	099	22	2					WE	2	
4	SJ53404270	CER			000		1	1	112	22	097	20	2					DR	2	
5	SJ53004260	PGR	W	06	033		2	2	152	62	110	33	1					WE	2	
6	\$J53104260	PGR	NW	05	000		1	1	122	32	109	32	1						1	
7	SJ53204260	PGR	NW	05	045 0	045	3	3A	105	15	094	17	2					WE	3A	SANDLENS
7A	SJ53234263	PGR	N	01	047		1	1	130	40	098	21	1						1	
8	SJ53304260	CER	W	03	027		2	2	134	44	115	38	1					WE	2	
9	SJ53404260	CER	Μ	03	055		1	1	122	32	110	33	1						1	HR6-10ST
10	SJ53504260	CER	Е		028		1	1	112	22	097	20	2					DR	2	
11	SJ53604260	CER	SW	02	000		1	1	089	-1	072	-5	ЗА					DR	ЗA	
12	SJ52924254	PGR	NW	02	000 0	035	4	3B	121	31	112	35	1					WE	3B	
13	SJ53004250	PGR	NW	02	025		2	2	120	30	104	27	2					WD	2	
14	SJ53104250	PGR	NW	03	025		2	2	129	39	111	34	1					WE	2	
75	SJ53204250	PGR	NW	03	025 0	045	4	38	118	28	110	33	2					WE	ЗB	
16	SJ53304250	CER	£		029 0)55	3	3A	138	48	107	30	1					WE	ЗA	
17	S 153404250	CCD.	c	02	020 0		2	24	110	20	115	20	2						~.	
10	SUSS404250	CER	с С.	03	030 0	122	3	3A 1	120	20	107	30	2					WE	JA 1	
10	\$152604250	CER	C C	06	000		1	1	123	39	107	30	1						-	
20	SJ53004250	DCD	E E	00	020 0		ו ז	ו ר	105	43	100	29	1						1	
20	5153204240	CED		04	020 0	122	3	2	067	10	062	28	2					WE	2	D4 00
21	3033204240	ULK	INC.	05	030		1	,	007	-23	003	-14	38					WE	38	DA-90
21A	SJ53204240	CER	NE	05	000		1	1	081	-9	065	-12	34					DD	34	BP 21 TO 120 CM
22	SJ53304240	CER	NW	02	028		2	1	145	55	110	33	1					UIX	1	
23	SJ53404240	CER	E	02	026		1	1	080	-10	067	-10	34					DR	ЗА	
24	SJ53504240	CER	E	03	036		2	2	136	46	114	37	1					WF	2	
25	SJ53204230	PGR	N	06	029 0)65	3	3A	120	30	110	33	2					WF	- 3A	
							-						-					***	371	
26	SJ53304230	CER	SE		065		1		104	14	106	29	2					DR	2	DA-80-ST
27	SJ53404230	CER	SE	03	028 0)35	4	3B	094	4	099	22	3A					WE	3B	

.

.

LIST OF BORINGS HEADERS 12/07/99 WHITCHURCH SITE B

---WETNESS-- --WHEAT- --POTS--SAMPLE ASPECT M. REL EROSN FROST CHEM ALC NO. GRID REF USE GRDNT GLEY SPL CLASS GRADE AP MB AP MB DRT FLOOD EXP DIST LIMIT COMMENTS 000 0 000 28 SJ53504230 CER E 1 1 000 0 DR 2 DA-40 29 SJ53204220 PGR NE 01 085 1 1 21 096 19 2 DR 2 111 DA-100 30 SJ53304220 PGR N 04 000 1 1 069 -21 058 -19 3B DR 3B 31 SJ53404220 PGR S 04 045 1 1 140 50 110 33 1 1 32 SJ53504220 CER W 3**B** 02 022 035 4 120 30 104 27 2 WE 3B 028 34 SJ53404210 PGR NE 02 1 1 135 45 107 30 1 1 02 025 073 3 3A 134 44 115 38 1 WE 3A 35 SJ53504210 CER NW

٠

.

COMPLETE LIST OF PROFILES 12/07/99 WHITCHURCH SITE B

					^	IOTTL	.ES	– PE	D			-st	ONES-		STRUCT	1	SUBS	3			
	SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	I CON	т со	μ.	GLEY	>2	>6	LITH	тот	CONSIS	T :	STR	POR	IMP	SPL	CALC
	1	0-33	scl	10YR33 00							1	0	HR	3							
		33–45	scl	10YR34 00							0	0	HR	3			М				
		4555	ms1	75YR44 00							0	0	HR	3			М				
		5560	lms	75YR44 46							0	0	HR	3			Μ				
		60 –120	ms	75YR46 56							0	0	HR	3			М				
K0	112	0-30	ms 1	10YR33 00							0	0	HR	3							
	SL	30-45	msl	10YR34 00							0	0	HR	10	MDSCB	FR	М				
÷ .		45-55	lms	10YR44 00							0	0	HR	2	MDMSB	VF	G				
		55120	ms	10YR44 54							0	0	HR	1	WKCSB	VF	Μ				
	2	0-35	scl	10YR33 00							2	0	HR	3							
		35-55	scl	10YR43 00							0	0	HR	3			м				
		55-75	scl	10YR43 00							0	0	HR	3			М				
		75–100	scl	10YR53 00	10YR58	00	с			Y	0	0	HR	3			М				
		100–120	lms	10YR53 00	10YR58	00	С			Y	0	0	HR	3			М				
	2P	022	mcl	10YR41 00							3	٥	HR	3							
		22-35	mc]	75YR42 00	75YR56	00	С			Y	0	0	HR	3	WKCSB	FR	м				
		35-48	hcl	10YR53 00	10YR56	00	с			Y	0	0	HR	10	WKCPR	FM	Ρ	Y		Y	
		48-70	с	05YR53 00	00MN00	00	м			Y	0	0		0	MASSIV	FM	Ρ			Y	
		70–95	scl	05YR53 00						Y	0	0		0			Μ			Y	
	3	0-30	msl	10YR33 00							1	٥	HR	3							
		30-60	lms	75YR64 54							0	0	HR	1			М				
		60–120	lms	75YR44 00							0	0	HR	1			Μ				
	3P	0-36	mcl	10YR32 33							0	0	HR	3							
		36-42	scl	10YR52 00	10YR56	00	м			Y	0	0	HR	1	MDCPR	FR	м				
		42-71	lms	75YR54 00						Y	0	0	HR	1	MDCAB	FR	G				
		71 -89	lms	05YR44 00	•					Y	0	0	HR	1	MDCPL	FR	м				
		89–102	с	75YR44 00						Y	0	0		0	MASSIV	FM	Ρ	Y		Y	
	4	0-33	scl	10YR33 00							1	0	HR	3							
		33-55	msl	10YR44 00							0	0	HR	1			Μ				
		55-65	lms	10YR44 00							0	0	HR	1			м				
		65–70	ms	10YR44 00							0	0	HR	1			м				
		70-120	ms	10YR52 53							0	0	HR	1			м				

.

.

					OTTLE	S	PED			s ⁻	TONES		STRUCT/	SUBS	S			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	тот	CONSIST	STR	POR	IMP	SPL	CALC
E	0.33		100022 42	10004	5 00 F				n	•	цю	2						
5	0-33	SCI	101832 42	107840				v	0	0		2		м				
	33-52	SCI	101842 00	101K4	5 00 G			T V	0	0	нк	2		M M				
	52-90	SCI	101862 00	TOTRO	5 UU M			T V	0	0	нк	2		[^m]				
	90-120	ms I	10YR62 00	TUYRS	3 00 0			Ŷ	U	U	нк	2		M				
6	0-35	scl	10YR33 00						1	0	HR	3						
	35–55	scl	75YR34 00						0	0	HR	3		М				
	55-70	scl	10YR44 00						0	0	HR	3		м				
	70-85	msl	10YR44 46						0	0	HR	3		м				
	85–100	lms	75YR56 00						0	0	HR	3		м				
7	0_27	sel	107633 00						n	0	нр	3						
'	27_45	301	107852 53	10705	3 00 F				n	0		1		м				
	27-4J 45-75	hol	757053 00	75705				v	n	0		1		M			v	
	40-75		757833 00	751630	а оо м			v	0	0	חות נוס	1		D D			v	
	75-100	C	751142 00	751836	5 00 11			•	Ŭ	Ŭ	ri n	•		F			r	
7A	0-30	scl	10YR43 00						0	0	HR	2						
	30-47	sc]	10YR53 00						0	0	HR	1		м				
	47-55	msl	75YR46 00	75YR58	з оо м	t	DOMNOO	00 Y	0	0	HR	1		Μ				
	5570	ໄຫຣ	10YR53 44	00MN00	0 00 C			Y	0	0	HR	1		м				
	70-90	ms	75YR54 00					Y	0	0	HR	1		м				
	90-120	scl	75YR53 00	75YR58	3 00 C			Y	0	0	HR	1		М				
0	0.07	1	100042 00						1	^	มก	2						
0	27 50	501 £e1	107843 00	107050				v	0	0	חות ענט	2		м				
	27-30	1	05VD44 00	757046				, v	0	~		2		т м				
	00 100	SCI	051844 00	731840				r V	0	0		~		-M M				
	80-100	ms I	251834 00	UUMINUL	J UU M			Ť	U	U	нк	2		m				
9	0-33	msl	10YR43 00						1	0	HR	2						
	33–55	ms]	10YR44 00						0	0	HR	2		М				
	55-75	msl	10YR53 00	10YR58	3 00 C			Y	0	0	HR	2		М				
	75-85	lms	10YR52 00	10YR58	3 00 C			Y	0	0	HR	2		М				
	85-100	m\$	10YR62 00	10YR58	3 00 F			Y	0	0	HR	2		Μ				
	100-110	lms	10YR52 00					Y	0	0	HR	2		м				

.

.

COMPLETE LIST OF PROFILES 12/07/99 WHITCHURCH SITE B

					OTTLES	}	PED				-ST	ONES-		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLI	EY :	>2 ;	>6	LITH	тот	CONSIST	STR POR	IMP	SPL	CALC
10	0-28	ന്റി	10YR33 00							0	0	HR	5					
	28-55	scl	10YR53 00	10YR4	5 00 C			١	Y	0	0	HR	3		М			
	55-65	lms	75YR52 53	75YR4	5 00 C			`	Y	0	0	HR	1		М			
	65-120	ms	10YR46 00	10YR4	5 00 M			`	Y	0	0	HR	1		Μ			
11	0–29	msl	10YR33 00							0	0	HR	3					
	29-38	lms	10YR43 00							0	0	HR	1		М			
	38-80	ms	10YR44 46							0	0	HR	1		М			
	80120	m\$	75YR56 00							0	0	HR	1		М			
		-		40000						~	•		~					
12	0-25	mc i	10YR42 00	TUYR4	5 UU C				Y 	0	0	HR	3					
	25-35	mc1	10YR53 00	10YR4	5 58 C				Y	0	0	HR	1		M			
	35-60	hcl	10YR53 00	10YR5	SUUM				Y	U	0	нк	1		M		Y	
	60-100	С	75YR53 UU	/5785	5 UU M				Y	U	U	нк	1		Ρ		Ŷ	
13	025	ടവി	10VR33_00							a	0	HR	3					
	25-50	scl	10YR53 00	10VR5	3 00 C			,	Y	õ	ñ	HR	1		м			
	50-65	msl	10VR44 53	10785	3 00 F			,	v v	ñ	ñ	HR	1		м			
	65-70	lms	10YR43 00					,	Y Y	õ	õ	HR	1		M			
	70-95	ms	75YR43 00	DOMNO	00 F			,	, Y	ů.	ñ	HR	1		M			
	95-100	scl	75YR53 00	10YR5	3 00 C			,	Y Y	n	ñ	HR	1		M			
	100-120	ms.	75YR43 00	OOMNOL				,	Ŷ	0	â	HR	ì		M			
										-	Ū		•					
14	0-25	mcl	10YR43 00							0	0	HR	1					
	25-68	scl	10YR52 53	10YR58	3 00 M			١	4	0	0	HR	1		Μ			
	68-75	с	75YR53 00	75YR58	8 00 M	0	omnoo	00 \	1	0	0	HR	1		Ρ			
	75–100	scl	05YR44 00	75YR58	3 00 C	0	omnoo	00 \	1	0	0	HR	1		М			
										_								
15	0-25	scl	10YR43 00							0	0	HR	2					
	25-45	scl	10YR52 53	10YR58	3 00 C			١	1	0	0	HR	1		М			
	4565	hcl	10YR53 00	10YR56	558 M	_)	1	0	0	HR	1		M		Y	
	65-100	С	75YR42 00	75YR61	00 C	0	omnoo	00 \	ſ	0	0	HR	1		Ρ		Ŷ	
16	0-29	scl	10VR33_00							٥	n	HR	5					
, 0	29-55	scl	10YR52 00	10YR46	5 00 C			`	(0	0	HR	5		м			
	55-70	hcl	75YR53 00	75YR46	5 58 M			, ,	(õ	õ	HR	5		M		v	
	70-85	scl	10YR53 00	10YR56	5 00 0				,	0	õ	HR	2		м		•	
	85-105	msl	10YR53 00	10YR56	5 00 C				,	õ	õ	HR	3		M			
	105-120	ms	10YR52 00	10YR54	3 00 C			, ,	(õ	ŏ	HR	2		M			
										-	~		-		••			

•

.

COMPLETE LIST OF PROFILES 12/07/99 WHITCHURCH SITE B

					10TTI	LES-	PED)			\$	TONES-		STRUCT/	SUBS			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	٧	CONT COL	•	GLEY	>2	>6	LITH	тот	CONSIST	STR POR	IMP	SPL	CALC
17	0–30	mcl	10YR33 00							0	0	HR	5					
	30-55	mcl	10YR42 00	10YR4	5 00	С			Y	0	0	HR	1		М			
	5585	hc1	10YR53 00	10YR4	5 58	С			Y	0	0	HR	1		м		Y	
18	0–29	scl	10YR33 00							0	0	HR	5					
	29-55	scl	10YR43 00							0	0	HR	3		М			
	55-75	ms1	10YR43 00							0	0	HR	3		М			
	75–90	hc1	05YR44 00							0	0	HR	2		М			
	90100	ms 1	05YR44 00							0	0	HR	1		М			
19	0–25	ms1	10YR33 00							0	0	HR	5					
	25-47	scl	75YR43 00							0	0	HR	3		М			
	47-67	scl	75YR53 00	75YR4	5 58	С	OOMNO	0 0	0 Y	0	0	HR	2		М			
	6790	msl	75YR53 00	75YR5	3 00	С			Y	0	0	HR	1		М			
	90-120	lms	75YR53 00	75YR5	3 00	С			Y	0	0	HR	1		м			
20	0–28	ms)	10YR42 00							0	0	HR	2					
	28–38	msl	10YR53 00	75YR5	3 00	С			Y	0	0	HR	5		м			
	38-55	scl	10YR53 00	10YR5	3 00	Μ			Y	0	0		0		М			
	55-70	hcl	75YR53 00	75YR5	3 00	М	OOMNO	0 0	0 Y	0	0		0		Р		Y	
	70–90	lms	10YR72 00	75YR5	3 00	С			Y	0	0		0		М		X	-
	90-91	lms	10YR72 00	75YR50	3 00	С			Y	0	0		0		м		\boldsymbol{X}	
21	0-22	msì	10YR42 00							0	0	HR	2					
	22-30	lms	10YR43 54							0	0	HR	5		м			
	30-45	ms	10YR53 00	10YR58	3 00	С			Y	0	0	HR	5		М			
	45–55	ms	10YR56 00						Y	0	0	HR	10		М			
	55-90	ms	05YR53 00						Y	0	0	HR	15		м			
		_																
21A	0-22	msl	10YR42 00							0	0	HR	2					
	22-30	lms	10YR43 54							U	0	HR	5		M			
	30-120	ms	10YR53 00							Ų	U		Q		М			
22	0_29	me]	1000/2 00	107041	2 00	c			v	n	0	шD	2					
22	29-36	mel	101042 00	101046	3 00	c c			v	n	0	116	د ۱		м			
	20-30	na i sel	10103 00	10100	2 00	м	00MN0	ሰሰ	n v	ñ	0		ů n		M			
	57_110	പ	757853 00	75785	3 00	n n	JUNNU	5 0	v	n	0		0		M			
	J7-110	0.21		701100		<u> </u>				· ·	· · ·		v		1.6			

page 4

.

.

.

COMPLETE LIST OF PROFILES 12/07/99 WHITCHURCH SITE B

-----STONES---- STRUCT/ SUBS -----MOTTLES-- PED TEXTURE COLOUR COL ABUN CONT COL. GLEY >2 >6 LITH TOT CONSIST STR POR IMP SPL CALC SAMPLE DEPTH 10YR42 00 0 0 HR 2 23 0-26 ms 1 10YR72 00 10YR78 00 C Y 0 0 0 М 26-42 ms 10YR41 00 Y 0 0 0 м 42-55 ms М 75YR34 00 Y 0 0 HR 20 55-68 ms М 75YR44 00 Y 0 0 0 68-110 ms 2 0--28 10YR42 00 0 0 HR 24 mc1 0 0 HR 2 28-36 mc1 10YR43 00 10YR58 00 F Μ 36-45 10YR63 00 10YR78 00 C Y 0 0 0 м mcl 10YR63 00 10YR78 00 C Y 0 0 0 М 45-65 scl 75YR63 00 10YR68 00 C Y 0 0 0 М 65-88 ms l 75YR63 00 75YR68 00 C Y 0 0 0 М 88-93 mc1 75YR63 00 10YR68 00 C Y 0 0 0 М 93-110 ms 10YR33 00 0 0 HR 3 25 0-29 mcl 10YR52 53 75YR46 00 C Y 0 0 HR 3 М 29-55 scl 0 0 HR 3 М 55-65 scl 10YR52 00 10YR56 58 M Y 65-80 75YR42 00 75YR46 58 M Y 0 0 HR 2 Ρ Y c Y 05YR44 00 75YR58 00 M 00MN00 00 Y 0 0 HR 2 Ρ 80-100 c 10YR33 00 0 0 HR 5 0-29 26 ms Ì 5 10YR43 00 0 0 HR М 29-65 scl М 10YR52 00 10YR46 00 C 0 0 HR 5 65-75 ms1 Y М 75-80 75YR44 46 05YR46 00 C Y 0 0 HR 10 ໄຟຂ 10YR33 32 0 0 HR 5 27 0-28 scl 5 10YR53 00 10YR58 00 M Y 0 0 HR М 28-35 scl М 10YR58 00 10YR56 58 M Y 0 0 HR 3 Y 35-44 hc1 Y 3 Ρ 75YR42 00 75YR58 00 M Y 0 0 HR 44-65 C м Y 75YR53 00 Y 0 0 HR 3 65-80 lms 10YR33 00 0 0 HR 5 28 0-29 msl 29-40 10YR43 44 0 0 HR 8 М ms 1 0 0 HR 3 10YR33 00 29 0-29 msl 3 М 10YR43 44 0 0 HR 29-55 ms l 3 М 75YR43 44 0 0 HR 55-85 ໄຟຂ 05YR44 00 00MN00 00 C Y 0 0 HR 1 М 85-95 sc1

Y

0 0

0

75YR42 00 75YR58 00 M

95–100 c

Ρ

· · ·

٠

COMPLETE LIST OF PROFILES 12/07/99 WHITCHURCH SITE B

				!	OTTLES	;	PED			S1	ONES-		STRUCT/	SUBS	5			
SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY	>2	>6	LITH	TOT	CONSIST	STR	POR	IMP	SPL	CALC
30	0–15	msl	75YR42 00						0	0		0						
	15-38	lms	75YR43 00						0	0	HR	5		Μ				
	38-45	ms	75YR43 00						0	0	HR	5		м				
	45-55	ms	75YR56 00						0	0	HR	10		Μ				
	55–110	ms	75YR54 00						0	0	HR	10		Μ				
31	0-25	msl	10YR42 00						0	0		0						
	25-45	msl	10YR43 00						0	0		0		Μ				
	45-65	scl	10YR53 00	10YR58	3 00 C			Y	0	0		0		М				
	65–75	scl	10YR72 00	10YR58	3 00 C			Y	0	0		0		Μ				
	75–110	scl	10YR51 00	10YR58	8 00 C			Y	0	0		0		М				
32	0-22	mcl	10YR42 00						0	0		0						
	22-35	mcl	10YR53 00	10YR56	5 00 C			Y	0	0		0		М				
	35-45	с	75YR53 00	75YR58	3 00 C			Y	0	0		0		Ρ			Y	
	45-55	hc1	75YR53 00	75YR58	3 00 M	C	DOMNOO (00 Y	0	0		0		Ρ			Y	
	55–110	с	05YR43 00	10YR61	00 M			Y	0	0	HR	5		Ρ			Y	
34	010	നടി	10YR42 00						0	0		0						
	10-28	ms]	10YR43 00						0	0		0		Μ				
	28–60	ms]	10YR53 00	10YR58	00 C			Y	0	0		0		м				
	60-85	msl	10YR63 00	10YR58	00 C			Y	0	0		0		М				
	85–97	៣ន	10YR63 00	10YR58	00 C			Y	0	0		0		м				
	97-110	msl	75YR44 00					Y	0	0		0		М				
35	0–25	mcl	10YR42 00						0	0		0						
	25-47	mc]	10YR53 00	75YR58	3 00 C			Y	0	0		0		Μ				
	47-73	scl	10YR53 00	75YR58	3 00 M			Ŷ	0	0		0		М				
	7 3– 100	hc1	75YR53 00	75YR58	00 M			Y	0	0		0		Ρ			Y	
	100-110	с	75YR53 00	75YR58	00 M			Y	0	0		0		Ρ			Y	

.