A1

CHERWELL DISTRICT LOCAL PLAN REVIEW Land east of Bodicote Oxfordshire

Agricultural Land Classification ALC Map and Summary Report Semi Detailed Survey

July 1999

Resource Planning Team Eastern Region FRCA Reading RPT Job Number 3301/048/99 MAFF Reference EL 33/01588

AGRICULTURAL LAND CLASSIFICATION SUMMARY REPORT

CHERWELL DISTRICT LOCAL PLAN REVIEW LAND EAST OF BODICOTE OXFORDSHIRE SEMI DETAILED SURVEY

INTRODUCTION

- 1 This summary report presents the findings of a semi detailed Agricultural Land Classification (ALC) survey of approximately 99 hectares of land east of Bodicote in Oxfordshire The survey was carried out during July 1999
- 2 The survey was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) The survey was carried out in connection with MAFF s statutory input to the Cherwell district Local Plan Review This survey supersedes any previous ALC information for this land however adjacent survey information (FRCA ref 3301/012/92 and 3301/034/96) has been used to help classify the land on this site
- 3 The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I
- 4 At the time of survey the agricultural land on the site was wheat barley field beans peas and permanent grassland The areas mapped as Other land include farm buildings trackways woodland and a pond

SUMMARY

- 5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 1 15 000 It is accurate at this scale but any enlargement would be misleading
- 6 The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1

Grade/Other land	Area (hectares)	✓ surveyed area	/ site area
2	70 0	75 8	71 1
3a	12 6	13 6	12 8
3b	98	10 6	99
Other land	6 1	N/A	6 2
Total surveyed area	92.4	100	93 8
Total site area	98 5		100

Table 1 Area of grades and other Lind

¹ FRCA is an executive agency of MAFF and the Welsh Office

- 7 This was a free survey with auger borings conducted at an average density of 1 boring per 3 hectares of agricultural land In total 33 borings and 3 soil pits were described
- 8 The agricultural land on this site has been classified as Grade 2 (very good quality) Subgrade 3a (good quality) and subgrade 3b (moderate quality) Soil wetness and soil droughtiness are the principal limitations with gradient along the north western boundary
- 9 Most of the agricultural land has been classified as Grade 2 A minor soil droughtiness limitation is typical of the soils located along the south western boundary. These soils are well drained variably stony with fine loamy textures to depth. These soil properties interact with the local climate and result in a reduction in the water available to crops causing a minor soil droughtiness limitation. This may affect the consistency and level of yields particularly in drier years. A minor soil wetness limitation is typical of the other soils found along the eastern and northern areas of the site. These soils comprise fine loamy or fine silty textures becoming clayey at moderate depth. The clay acts to impede drainage causing these soils to be moderately well drained which results in a minor soil wetness limitation. This may cause a reduction in crop yield and limit the flexibility of the land particularly in wetter years
- 10 Subgrade 3a land suffers from soil droughtiness and soil wetness limitations Along the north western boundary the land suffers from a slight soil droughtiness restriction. The stonier profiles result in a further reduction in profile available water therefore increasing the drought stress which in drier years may further affect the consistency and level of yields. The lowest lying land on this site experiences a slight soil wetness limitation. The profile description is similar to the unit above but the soil wetness limitation is more acute resulting in imperfectly drained soils.
- 11 Subgrade 3b land is shown along the north western boundary. In this area, the land experiences a significant soil wetness limitation associated with poorly drained clayey subsoils located at a shallow depth from the surface. Soils with drainage characteristics such as these will affect the range and yield of crops that can be grown on this land as well as restricting the number of days when the land is in a suitable condition for cultivation trafficking by machinery or grazing by livestock. Gradient also affects land quality in part of this location Such slopes will restrict the safe and efficient use of farm machinery

FACTORS INFLUENCING ALC GRADE

Climate

- 12 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics
- 13 The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met Office 1989)
- 14 The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions

Table 2 Climatic and altitude data

Factor	Units	Values					
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit Wheat Moisture Deficit Potatoes	N/A m AOD day C (Jan June) mm days mm mm	SP 475 379 115 1369 699 155 101 91	SP 473 386 95 1391 687 155 103 94				
Overall climatic grade	N/A	Grade 1	Grade 1				

- 15 The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (ATO January to June) as a measure of the relative warmth of a locality
- 16 The combination of rainfall and temperature at this site mean that there is no overall climatic variation. Local climatic factors such as exposure and frost risk do not affect land quality at this location. The site is climatically Grade 1. However, climatic factors do interact with soil properties to influence soil wetness and soil droughtiness. At this locality the climate is average in regional terms.

Site

17 The site lies at altitudes in the range 91–120m AOD The highest land is found along the south west boundary of the site with the lowest lying ground located along the eastern and northern boundaries. A diverse gradient does affect the site with a small area in the extreme north of the site restricting land quality to Subgrade 3b due to slopes of <9 Elsewhere the higher land falls through gentle to moderate gradients to the lower lying land Flooding does not affect this site

Geology and soils

- 18 The most recently published geological information for the site (BGS 1968) maps the higher land as the Marlstone Rock Bed and the sloping and lower land as clays silts and siltstones of the Middle and Lower Lias In the north west there is an isolated deposit of the Middle Lias
- 19 The most recently published soils information covering the site (SSEW 1983) maps two soil associations Soils of the Banbury association cover most of the area These are described as well drained brashy fine and coarse loamy ferruginous soils over ironstone. Some deeper fine loamy over clayey soils with slowly permeable subsoils and slight seasonal waterlogging. The remainder of the area on the mid and lower slopes is mapped as soils of the Wickham 2 association. These soils are described as slowly permeable seasonally waterlogged fine loamy over clayey fine silty over clayey and clayey soils. Small areas of slowly permeable calcareous soils on steeper slopes. Soils fitting these descriptions were found on the site

AGRICULTURAL LAND CLASSIFICATION

- 20 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 page 1
- 21 The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II

Grade 2

- 22 Very good quality agricultural land is mapped over most of the site and suffers from a minor soil droughtiness and soil wetness limitation Grade 2 land is coincident with the underlying Marlstone Rock Beds and the silts and siltstones of the Middle Lias
- Grade 2 land with a minor droughtiness limitation is typical of the soils derived from the underlying Marlstone Rock Beds These soils are typically well drained (Wetness Class I) non calcareous medium clay loams which may contain up to 10% total medium sandstone (MSST) by volume These overly a similarly textured upper subsoil which may contain up to 15% MSST From 50–68cm these soil profiles were impenetrable to the soil auger To grade these soils inspection pits from an adjacent survey (FRCA ref 3301/012/92) were used They reveal loamy soils over solid Marlstone from 90–94cm with increasing stone contents with depth In this local climatic regime the combination of soil textures structures and stone contents act to reduce the amount of profile available water This may affect the level and consistency of yields particularly in drier years Moisture balance calculations indicate that Grade 2 land is appropriate for these soils Better quality land was also found but was not extensive enough to map separately this was also indicated on the adjacent survey
- Grade 2 land with a minor soil wetness limitation is derived from the underlying silt and siltstones which are located on the mid slopes close to the eastern boundary. Soil Pit 1 and Pit 3 (see Appendix II) are typical of these soils. These soils comprise a non calcareous medium silty clay loam (MZCL) topsoil which contains up to 10% total MSST (by volume). The upper subsoil is similarly textured and contains up to 15% MSST. In Pit 3 this passed to a gleyed slowly permeable silty clay lower subsoil from 56cm and in pit 1 the gleyed slowly permeable silty clay was encountered at 73cm. For both pits the depth to the slowly permeable layer in the local climate (155 FCD) assigns these soils to Wetness Class II. This combined with the topsoil texture results in land classified Grade 2. Soils with a minor soil wetness limitation may affect the flexibility of the land due to a reduction in the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock.

Subgrade 3a

- 25 Good quality agricultural land is mapped in two places along the north west boundary and on lower lying land adjacent to the Oxford Canal Soil droughtiness and soil wetness are the principal limitations to land quality
- 26 On the high ground which effectively separates the Marlstone from the silts and clays of the Middle and Lower Lias there is an area along the north west boundary which is restricted by a soil droughtiness limitation. These soils are similar to the droughty soil previously described

(see para 23) but are either more stony and/or shallower to the underlying Marlstone Rock Bed (impenetrable to the auger in the range 40–48cm) An inspection pit from a nearby survey (FRCA ref 3301/034/96) and pit 2 (see Appendix II) are representative of these soils Both pits proved that the upper subsoils are more stony (43–55% MSST) than the lower subsoil (39–41% MSST) although at depth stone contents increased to 51% MSST. This combination of soil properties interacting with the local climate reduces the soils ability to store water and this shortfall results in land classified Subgrade 3a

Subgrade 3a land with a soil wetness limitation is found on mid and lower slopes to the north east adjacent to the Oxford Canal These soils are derived from the silts and clays of the Middle and Lower Lias They are typically non calcareous medium clay loam topsoils These pass to gleyed heavy clay loam upper subsoils which overlie slowly permeable clays from 47–64cm These soils are typical of pit 2 (FRCA ref 3301/034/96) which is also located on the mid to lower slopes The pit confirmed the lower subsoil clay to be poorly structured which acts to impede the downward movement of water The depth to gleying and to the slowly permeable layer interacts with the local climate (155 FCD) to assign these soils to wetness class III This combination of imperfect drainage and topsoil texture results in soils classified Subgrade 3a A slight soil wetness limitation may limit the timing of cultivations as trafficking of the land by farm machinery and grazing livestock may increase the likelihood of damage to the soil structure

Subgrade 3b

- 28 Land of moderate quality is affected by a soil wetness limitation and by gradient Land with a soil wetness limitation occurs in the west of the site in a small valley and is associated with slowly permeable clays found at shallow depth The slowly permeable clay occurs within 40cm of the surface resulting in soils assigned to wetness class IV These poor drainage characteristics combined with the topsoil texture result in land classified Subgrade 3b Excessive soil wetness adversely affects seed germination and survival partly by a reduction in soil temperature and partly because of anaerobism. It also inhibits the development of a good root system all of which can affect the range of crops that can be grown and the level of yield Soil wetness also influences the sensitivity of the soil to structural damage and is therefore a major factor in determining the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazing by livestock.
- A small area of land in the north of the survey area is affected by a gradient limitation where the more resistant Marlstone Rock Beds give way to the softer silts and clays of the Middle and Lower Lias Gradients in the range 7 –11 were recorded using an optical clinometer This degree of limitation restricts land quality to Subgrade 3b because slope can affect the safe and efficient use of machinery since most mechanised farm operations perform best on level ground

Colin Pritchard Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1968) Sheet No 218 Chipping Norton BGS London

Ministry of Agriculture Fisheries and Food (1988) Agricultural Land Classification of England and Wales Revised guidelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for Agricultural Land Classification Met Office Bracknell

Soil Survey of England and Wales (1983) Sheet 6 Soils of South East England 1 250 000 SSEW Harpenden

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass oilseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e g cereals and forage crops) the yields of which are variable. In moist climates yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasional pioneer forage crops

APPENDIX II

SOIL DATA

Contents

ļ

Sample location map

Soil abbreviations explanatory note

Soil pit and soil boring descriptions (boring and horizon levels)

SOIL PROFILE DESCRIPTIONS EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database This uses notations and abbreviations as set out below

Boring Header Information

- 1 **GRID REF** national 100 km grid square and 8 figure grid reference
- 2 USE Land use at the time of survey The following abbreviations are used

ARA	Arable	WHT	Wheat	BAR	Barley
CER	Cereals	OAT	Oats	MZE	Maize
OSR	Oilseed rape	BEN	Field beans	BRA	Brassicae
РОТ	Potatoes	SBT	Sugar beet	FCD	Fodder crops
LIN	Linseed	FRT	Soft and top fruit	FLW	Fallow
PGR	Permanent pasture	LEY	Ley grass	RGR	Rough grazing
SCR	Scrub	CFW	Coniferous woodland	ОТН	Other
DCW	Deciduous woodland	BOG	Bog or marsh	SAS	Set Aside
нтн	Heathland	HRT	Horticultural crops	PLO	Ploughed

- 3 **GRDNT** Gradient as estimated or measured by a hand held optical clinometer
- 4 **GLEY/SPL** Depth in centimetres (cm) to gleying and/or slowly permeable layers
- 5 AP (WHEAT/POTS) Crop adjusted available water capacity
- 6 MB (WHEAT/POTS) Moisture Balance (Crop adjusted AP crop adjusted MD)
- 7 **DRT** Best grade according to soil droughtiness
- 8 If any of the following factors are considered significant Y will be entered in the relevant column

risk	MREL	Microrelief limitation	FLOOD	Flood risk	EROSN	Soil	crosion
11010	EXP CHEM	Exposure limitation Chemical limitation	FROST	Frost prone	DIST	Distur	bed land

9 LIMIT The main limitation to land quality The following abbreviations are used

OC	Overall Climate	AE	Aspect	ST	Topsoil Stoniness
FR	Frost Risk	GR	Gradient	MR	Microrelief
FL	Flood Risk	ТΧ	Topsoil Texture	DP	Soil Depth
СН	Chemical	WE	Wetness	WK	Workability
DR	Drought	ER	Erosion Risk	WD	Soil Wetness/Droughtiness
EX	Exposure				_

Soil Pits and Auger Borings

1 **TEXTURE** soil texture classes are denoted by the following abbreviations

S	Sand	LS	Loamy Sand	SL	Sandy Loam
SZL	Sandy Silt Loam	CL	Clay Loam	ZCL	Silty Clay Loam
ZL	Silt Loam	SCL	Sandy Clay Loam	С	Clay
SC	Sandy Clay	ZC	Silty Clay	OL	Organic Loam
P	Peat	SP	Sandy Peat	LP	Lonmy Peat
PL	Peaty Loam	PS	Peaty Sand	MZ	Marine Light Silts

For the sand loamy sand sandy loam and sandy silt loam classes the predominant size of sand fraction will be indicated by the use of the following prefixes

- **F** Fine (more than 66% of the sand less than 0 2mm)
 - M Medium (less than 66 / fine sand and less than 33 / corrse sand)
 - C Course (more than 33 / of the sand larger than 0 6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content M Medium (<27 / clay) H Heavy (27 35 / clay)

- 2 MOTTLE COL Mottle colour using Munsell notation
- 3 MOTTLE ABUN Mottle abundance expressed as a percentage of the matrix or surface described

F few <2/ C common 2 20/ M many 20 40/ VM very many 40/ +

- 4 MOTTLE CONT Mottle contrast
 - F faint indistinct mottles evident only on close inspection
 - D distinct mottles are readily seen
 - P prominent mottling is conspicuous and one of the outst inding features of the horizon
- 5 PED COL Ped face colour using Munsell notation
- 6 GLEY If the soil horizon is gleyed a Y will appear in this column If slightly gleyed an S will appear
- 7 STONE LITH Stone Lithology one of the following is used

СН	chalk
GS	gravel with porous (soft) stones
GH	gravel with non porous (hard) stones
	CH GS GH

Stone contents (>2cm >6cm and total) are given in percentages (by volume)

8 STRUCT the degree of development size and shape of soil peds are described using the following notation

Degree of development	WK ST	weakly developed strongly developed	MD	moderntely developed
Ped size	F C	fine coarse	Μ	medium
Ped shape	S GR SAB PL	single grain granular sub angular blocky platy	M AB PR	massive angular blocky prismatic

9 **CONSIST** Soil consistence is described using the following notation

L loose	FM firm	EH extremely hard
VF very friable	VM very firm	
FR friable	EM extremely firm	

10 SUBS STR Subsoil structural condition recorded for the purpose of calculating profile droughtiness G good M moderate P poor

- 11 **POR** Soil porosity If a soil horizon has less than 0.57 biopores >0.5 mm a Y will appear in this column
- 12 IMP If the profile is impenetrable to rooting a Y will appear in this column at the appropriate horizon
- 13 SPL Slowly permeable layer If the soil horizon is slowly permeable a Y will appear in this column
- 14 CALC If the soil horizon is calcareous a Y will appear in this column
- 15 Other notations
 - **APW** available water capacity (in mm) adjusted for wheat **APP** available water capacity (in mm) adjusted for potnoes
 - MBW moisture balance wheat
 - MBP moisture balance potatoes

SAMP	LE	A	SPECT				WE	TNESS	-WHE	AT	PC	DTS	۲	1 REL	EROSN	FRC	ST	CHEM	ALC	
NO	GRID REF	USE		GRDNT	GLEY	SPL	CLAS	S GRADE	AP	MB	AP	MB	DRT	FLOOD	E	XP	DIST	LIMIT		COMMENTS
16	SP47403860	нт	NE	6	0	26	4	38	86	15	95	4	3A					WE	38	2P /034/96
17	SP47503860	WHT	NE	5	28	48	3	3A	134	33	111	20	1					WE	3A	2P /034/96
18	SP47603860	WHT			36	64	3	3A	138	37	113	22	1					WE	3A	2P /034/96
20	SP47203850	MHT	N	3			1	1	145	44	110	19	1						1	POSS GR2
25	SP47703850	HRT	N	4	29	47	3	3A	99	2	111	20	3A					WE	3A	2P /034/96
27	SP47103840	WHT					1	1	68	33	68	23	38					DR	3A	142 SEE/20/90
28	SP47203840	WHT					1	1	65	36	65	26	3B					DR	3A	I40 SEE/20/90
30	SP47403840	WHT	NE	4			1	1	146	45	111	20	1						1	POSS GR2
39	SP47103830	WHT					1	1	77	24	77	14	3B					DR	3A	148 SEE/20/90
41	SP47303830	WHT	NE	3	74	74	2	2	135	34	110	19	1					WE	2	POSS GR2
43	SP47503830	WHT	NE	1	77	77	2	2	135	34	110	19	1					WE	2	SEE 3P
44	SP47603830	HRT	Ε	4	52	52	3	ЗA	128	27	105	14	2					WE	3A	SEE 3P
45	SP47703830	HRT	N	4	55	55	2	2	170	69	120	29	1					WE	2	SEE 3P
49	SP47003820	OSR			52	52	3	ЗА	112	11	110	19	2					WE	ЗA	SEE/20/90
52	SP47303820	WHT					1	1	140	39	105	14	1						1	POSS GR2
55	SP47603820	HRT	SE	5	87		1	1	153	52	118	27	1						1	BORDER WCII
57	SP46903810	OSR			28	28	4	3B	91	10	103	12	3A					WE	3B	1P /034/96
63	SP47503810	HRT	NE	1			1	1	98	3	108	17	3A					DR	2	IMP63SEE2P
68	SP47103800	BEN			36	36	4	38	87	14	97	6	3A					WE	3B	1P /034/96
73A	SP47703800	WHT	Ε	2	72	72	2	2	111	10	108	17	2					WE	2	SEE 3P
80	SP47403790	ынт			33	33	4	3B	77	24	77	14	3B					WE	38	1P /034/96
84	SP46803780	OSR				•••	1	1	88	13	91	0	3A					DR	2	IMP55SEE2P
85	SP46903780	OSR					1	1	82	19	82	9	3A					DR	2	IMP50SEE2P
87	SP47103780	BEN					1	1	71	30	71	20	3B					DR	3A	AT 2P
92	SP47603780	WHT					1	1	66	35	66	25	3B					DR	3A	IMP42SEE2P
94	SP47803780	PGR	SW	2	60	60	2	2	150	49	124	33	1					WE	2	SPL SEE1P
96	SP47303770	WHT		-			1	1	85	16	86	5	3A					DR	2	IMP52SEE2P
104	SP47503760	WHT					1	1	64	37	64	27	3B					DR	3A	IMP40SEE2P
111	SP47703750	PGR	SE	2	55	55	2	2	148	47	122	31	1					WE	2	BORDER 3A
112	SP47803750	PGR	NW	4			1	1	148	47	114	23	1						1	POSS GR2
113	5047003750	PCP	NU	5	54	54	3	3A	145	44	119	28	1					WE	3A	SEE1P
115	SP47503740	BAR			- ,	2,	1	1	79	22	79	12	3B					DR	2	IMP50SEE2P
116	SP47603740	PGR	NE	1	49	49	3	3A	140	39	114	23	1					WE	3A	SPL SEE1P
1P	SP47703570	PGR	S	6	50	73	2	2	143	42	117	26	1					WE	2	P90AUG120
2P	SP47103780	BEN	-	•	2.	-	1	2	103	3	78	11	ЗА					DR	3A	P95AUG120
3P	SP47603830	HRT	E	3	56	56	2	2	96	5	105	14	3A					WE	2	PLATYSPL

program ALCO11

-				-M	OTTLES		PED		S	TONES	STRUCT/	SUBS		
GAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	00L	GLEY	2 €	LITH T	FOT CONSIST	STR POR IN	1P SPL CALC	
16	0 26	с	25Y 63	10yr58	с	D		Y	0	0	0			
	26 65	С	05Y 61	10YR68	М	D		Y	0	0	0	Ρ	Y	PLASTIC
17	0 28	MCL	10YR43						0	0	0			
	28-48	HCL	25Y 53	10YR58	С	D		Y	0	0	0	м		
	48 120	С	05Y 61	10YR58	M	D		Y	0	0	0	Ρ	Y	PLASTIC
18	036	MCL	10YR43						0	0	0			
	36 64	SCL	25Y 53	10YR58	H	Ð		Y	0	0 MSS1	5	М		
	64 90	С	05Y 61	10YR58	м	0		Y	0	0	0	P	Y	FIRM/DRY
	90 120	С	10Y 61	10YR66	M	D		Y	0	0	0	Ρ	¥	PLASTIC
20	0 29	MCL	75YR43						0	0 HR	5			
	29 78	MCL	75YR44						0	0 MSS1	r 10	М		
_	78 120	MCL	75YR34						0	0 MSSI	Г 10	м		
25	0 29	MCL	10YR43						0	0	0			
	29 47	HCL	10YR53	10YR56	С	F		Y	0	0	0	м		
	47 70	С	05Y 62	10YR68	М	D		Y	0	0	0	Р	Y	PLASTIC
27	0 25	MCL	10YR44						٥	0 MSST	5			
	25 42	MCL	10YR54						0	0 MSS1	r 10	м		
28	0 25	MCL	10YR44						0	0 MSST	5			
_	25 40	HCL	10YR54						0	o msst	F 10	м		
30	0 30	MCL	75YR43						0	0 MSST	5			
	30 60	MCL	75YR44						0	0 MSST	r 10	M		
_	60 85	MZCL	75YR5444						0	0 MSST	F 10	м		
	85120	MCL	10YR44						0	0 MSST	F 10	м		
39	0 28	MCL	10YR43						0	0 HR	3			
	28 40	HCL	10YR44						0	0 MSS1	F 10	м		
	40-48	MZCL	25Y54						0	0 MSST	25	м		
41	0 29	MCL	75YR43						٥	o msst	5			
	29 55	MCL	75YR44						0	0 MSST	r 10	M		
	55 74	MCL	75YR5444						0	0 MSST	r 10	M		
•	74 120	С	25Y 64	10YR56	С	D		Y	0	0 MSST	12	Р	Ŷ	FIRM/DRY
43	0 30	MCL	75YR43						0	0 MSST	5			
	30 55	MCL	10YR44						0	0 MSST	10	м		
	55 77	MCL	10YR5444		_	_			0	0 MSST	15	M		
	77 120	С	25Y 64	10YR56	С	D		Y	0	0 MSST	2	Р	Ŷ	FIRM/DRY
44	0 25	MCL	10YR54						2	0 MSST	r 10			
	25-52	HCL.	10YR54						0	0 ZR	10	м		
	52 120	ZC	25Y 63	10YR56	M			Y	0	O ZR	20	Р	Y	

page 1

_prog am ALCO11

		~											
-				-MOTT	ILES		PED		\$	STONES	STRUCT/	SUBS	
SAMPLE	ØEPTH	TEXTURE	COLOUR	COL ABL	JN	CONT	COL	GLEY	2 6	5 LITH T	OT CONSIST	STR POR	IMP SPL CALC
45	0 29	MCL,	10YR43						0	0 MSST	2		
-	29 55	HZCL	10YR54	10YR56	С	F		S	0	0 MSST	2	м	
	55-93	HZCL	25Y 53	10YR56	M	D		Y	0	0	0	Р	Y
	93-120	ZC	05Y 53	10YR56	С	D		Y	0	0	0	P	Y
49	0 30	MCL	10YR54						0	0 HR	3		
	30 52	HCL	10YR53						0	O HR	2	М	
_	52 90	C	10YR53	10YR56	С	D		Ŷ	0	0	0	Р	Ŷ
52	0 26	MCL	75YR43						1	0 MSST	10		
	26-45	HCL.	75YR44						0	0 MSST	20	M	
-	45-75	HCL	75YR44						0	0 MSST	10	м	
	75 120	HCL,	75YR53						0	0 MSST	10	м	
- 55	0 30	MCL	10YR43						0	0 MSST	3		
	30 45	MZCL	10YR44						0	0 MSST	5	м	
	45-87	MZCL	10YR54	10YR56	С	D		S	0	0 MSST	5	м	
_	87 120	HZCL	25Y 6362	10YR56	С	D		Y	0	0 MSST	2	Р	Ŷ
57	0 28	HCL	10YR5343						0	0 HR	2		
-	28 60	С	10YR53	10YR5868	С	D		Ŷ	0	0 HR	2	P	Y
1	60 70	С	25Y 64	10YR56	С	D		Y	0	0	0	Ρ	Y
63	0 30	MCL	75YR43						1	0 MSST	10		
	30 55	MCL	75YR44						0	0	0	М	
	55 68	MCL	25Y 64						0	0 MSST	15	М	
68	0 36	MCL	10YR43						1	0 MSST	10		
•	36 67	с	25Y 6462	10YR68	M	D		Y	0	0 MSST	10	Р	Y
73A	0 30	MCL	75YR43						0	0 MSST	5		
	30 50	MCL	75YR54						0	0 MSST	20	м	
1	50 72	HCL	75YR44						0	0 MSST	10	M	
	72 90	С	25Y 64	10YR56	С	D		Y	0	0 MSST	2	P	Y
80	0 33	MCL	75YR44						0	0 MSST	5		
	33 50	С	25Y 6462	10YR56	С	D		Y	0	0 MSST	10	Ρ	Ŷ
84	0 35	MCL	10YR54						0	0 HR	5		
	35-55	MCL	10YR54						0	o hr	5	М	
85	0 30	MCL	10YR53						0	0 HR	5		
1	30 50	MCL	75YR44						0	0 HR	5	м	
87	0 25	MCL	10YR43						3	0 MSST	15		
#	25 50	MCL	75YR46						0	o msst	25	м	
92	030	MCL	75YR44						0	0 MSST	10		
	30 42	MCL	75YR44						0	0 MSST	15	M	

program ALCO11

1

				-MOTTLES			PED		S	TONES	s	STRUCT/	SUBS				
SAMPLE	DEPTH	TEXTURE	COLOUR	00L /	ABUN	CONT	COL	GLEY	26	LITH T	гот с	ONSIST	STR	POR	IMP SP	PL CALC	
											_						
94	0 33	MZCL	10YR44						0	0	0						
-	33-60	HZCL	25Y 54	10YR56	С	D		S	0	0	0		I	4			
	60 120	ZC	05Y 53	10YR58	М	D		Y	0	0	0		1	P		Y	
96	0 30	MCL	75YR43						0	0 MSST	5						
	30 52	MZCL	75YR44						0	0 MSST	10		I	1			
104	0 30	MCL	10YR54						0	0 MSST	8						
	30 40	MCL	10YR54						0	0 MSST	10		1	1			
111	0 30	MZCL	10YR43						0	0	0						
	30 55	MZCL	10YR54	10YR68	С	D		S	0	0	0		1	4			
	55-85	ZC	25Y 64	10YR68	Ċ	D		Y	0	0	0		1	>		Y	
	85-120	ZC	25Y 62	10YR68	M	D		Y	0	0	0		I	2		Y	
112	0.30	MZCI	10YR44						٥	0 MSST	5						
	30 65	MZCL	75YR44						0	0 MSST	15			1			
	65 120	MCL	75YR43						0	0 MSST	10			1			
113	0 29	MCI	10YR43						0	0	0						
	29 54	M7CI	10YR54	107868	С	D		s	0	0	0			1			
_	54 120	ZC	25Y 64	10YR68	M	D		Ŷ	0	0	0		ł	5		Y	
115	0 30	MCI	757044						0	n MSST	· g						
- 15	30.50	MCI	75YP43						n	TZZM 0	10			4			
•	30 30	FNL	751845						Ŭ	0 1801	10		ľ	1			
116	0 29	MZCL	75YR43						0	0 MSST	5						
	29-49	MCL	75YR44						0	0 MSST	10		١	1			
•	49 120	ZC	25Y 6261	10YR56	с	D		Y	0	0	0		ſ	>		Y	
1P	0 29	MZCL	10YR54						0	0 MSST	2						
	29 50	MZCL	10YR54						0	0 MSST	5	MCSAB	FR N	1			
	50 73	ZC	05Y 61	10YR56	С			Y	0	0 ZR	5	MDCPR	FR N	1			POROUS
	73 120	ZC	05Y 51	10YR56	С			Y	0	0 ZR	5	MDCPR	FRN	1	Y	Y	PIT90/AUG120
2P	0 23	HCL	75YR53						1	0 MSST	17						WET SIEVED
	23 67	HCL	75YR54						0	0 MSST	55		۲	1			WET SIEVED
	67 95	HCL	75YR44						0	0 MSST	39		٨	1			WET SIEVED
	95-120	HCL.	75YR54						0	0 MSST	50		۲	1			
3P	0 28	MZCL	10YR43						2	0 MSST	10						
	28 56	HZCL	10YR44						0	0 MSST	15	MCSAB	FM N	1			
	56 73	HZCL	05Y 73	10YR56	С			Y	0	0 ZR	20	MVCPL	FM F	, ·	Y	Y	