WYCOMBE DISTRICT LOCAL PLAN

Land South East of Princes Risborough, Buckinghamshire

Agricultural Land Classification ALC Map and Report Reconnaissance Survey

April 1999

A1

Resource Planning Team Eastern Region FRCA Reading RPT Job Number: 0305/030/99 MAFF Reference: EL 03/1404

,

AGRICULTURAL LAND CLASSIFICATION REPORT

WYCOMBE DISTRICT LOCAL PLAN LAND SOUTH EAST OF PRINCES RISBOROUGH, BUCKINGHAMSHIRE RECONNAISSANCE SURVEY

INTRODUCTION

- 1. This report presents the findings of a reconnaissance Agricultural Land Classification (ALC) survey of approximately 119 hectares of land, south east of Princes Risborough, in Buckinghamshire. The survey was carried out during April 1999.
- 2. The work was undertaken by the Farming and Rural Conservation Agency (FRCA)¹ on behalf of the Ministry of Agriculture, Fisheries and Food (MAFF). The survey was carried out in connection with MAFF's statutory input to the Wycombe District Local Plan. This survey supersedes any previous ALC information for this land.
- 3. The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA. The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF, 1988). A description of the ALC grades and subgrades is given in Appendix I.
- 4. At the time of survey the agricultural land on the site was mostly under cereals with the remainder in permanent or rough grazing. The areas mapped as 'Other land' include farm buildings, trackways, a residential property, a water utility station, a recreation ground and woodland.

SUMMARY

- 5. The findings of the survey are shown on the enclosed ALC map. The map has been drawn at a scale of 1:25,000. It is accurate at this scale but any enlargement would be misleading.
- 6. The area and proportions of the ALC grades and subgrades on the surveyed land are summarised in Table 1.

Grade/Other land	Area (hectares)	% surveyed area	% site area
2	45.8	41.3	38.7
3a	51.7	46.7	43.7
3b	13.3	12.0	11.2
Other land	7.6	N/A	6.4
Total surveyed area	110.8	100	93.6
Total site area	118.4		100

Table 1: Area of grades and other land

¹ FRCA is an executive agency of MAFF and the Welsh Office

- 7. The fieldwork was conducted at an average density of approximately 1 boring per 3 hectares of agricultural land. In total, 41 borings and 4 soil pits were described.
- 8. The agricultural land on this site has been classified as Grade 2 (very good quality), Subgrade 3a (good quality) and Subgrade 3b (moderate quality). The principal limitation to land quality is soil droughtiness. To a lesser extent, soil wetness/workability and gradient also affect land quality.
- 9. All of the soils in the survey area are well drained and most overly the Lower Chalk. One of the major factors affecting land quality is the depth of soil over the Chalk. Grade 2 land contains those soils that are deepest over the Chalk or where rooting into the Chalk extends furthest because the chalk is softer. Subgrade 3a land contains those with a more limited depth of resource over the Chalk or where rooting into the harder Chalk is somewhat restricted. Both soil depth and rooting depth are critical to the amount of water that is available for use by crops. Consequently, on the subgrade 3a land over the Chalk, the soil droughtiness limitation is more significant. Part of the site contains soils developed over Chalky Head deposits. These too, experience a slight soil droughtiness limitation but also experience a workability limitation due to the heavy nature of their topsoils. This will somewhat restrict the opportunity for mechanised operations or grazing by livestock on the land
- 10. Most of the Subgrade 3b land is affected by a gradient limitation. Such slopes will restrict the safe and efficient use of farm machinery. A very small area of land in the south-west is also classified as Subgrade 3b, which has been disturbed in the past, with a soil profile containing building rubble.

FACTORS INFLUENCING ALC GRADE

Climate

- 11. Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics.
- 12. The key climatic variables used for grading this site are given in Table 2 and were obtained from the published 5km grid datasets using the standard interpolation procedures (Met. Office, 1989).

Factor	Units	Va	lues
Grid reference Altitude Accumulated Temperature Average Annual Rainfall Field Capacity Days Moisture Deficit, Wheat Moisture Deficit, Potatoes	N/A m, AOD day°C (Jan-June) mm days mm mm	SP 810 025 125 1365 733 160 98 87	SP 817 031 160 1325 745 162 94 82
Overall climatic grade	N/A	Grade 1	Grade 1

Table 2: Climatic and altitude data

- 13. The climatic criteria are considered first when classifying land as climate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soil conditions.
- 14. The main parameters used in the assessment of an overall climatic limitation are average annual rainfall (AAR), as a measure of overall wetness, and accumulated temperature (AT0, January to June), as a measure of the relative warmth of a locality.
- 15. The combination of rainfall and temperature at this site mean that there is no overall climatic limitation. Other climatic factors such as exposure and frost risk are not believed to be significant at this site. The site is climatically Grade 1.

Site

16. The site lies at altitudes in the range 110–170m AOD, on the lower and mid-slopes of the Chiltern Hills escarpment. The land-form is typical of that associated with Middle and Lower Chalk deposits. The north-eastern boundary represents the highest land which is underlain by the Middle Chalk. The land falls steeply west and southwards and gradient limits land quality to Subgrade 3b. The Lower Chalk is typically undulating with moderate to gentle gradients; however, where dry valleys cut through the Lower Chalk, gradient can also restrict land quality to Subgrade 3b. The lowest lying land is found in the west, along Picts Lane. Nowhere on the site do microrelief or flooding affect land quality.

Geology and soils

- 17. The most detailed published geological information for the site (BGS, 1994) shows the highest land to be underlain by the Middle Chalk, this quickly gives way to the Lower Chalk which is mapped over most of the site. In the west, younger and older head deposits (chalky drift) cover the Lower Chalk.
- 18. The most detailed published soils information covering the area (SSEW, 1983) shows it to comprise two soil associations. Most of the site comprises soil of the Coombe 2 association which is described as 'well drained calcareous fine silty soils over Chalk or Chalk rubble'. Along the eastern fringes of the site soils of the Upton 1 association is mapped. This is described as 'shallow well drained calcareous silty soils over Chalk. Mainly on moderately steep, sometimes very steep land. Deeper fine silty calcareous soils in coombes and dry valleys'.

AGRICULTURAL LAND CLASSIFICATION

- 19. The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1, page 1.
- 20. The location of the auger borings and pits is shown on the attached sample location map and the details of the soils data are presented in Appendix II.

Grade 2

21. Very good quality land is found in two localities with soil droughtiness and soil workability the principal limiting factors. In the north of the site, the soils are well drained (Wetness Class

I) with calcareous heavy silty clay loam topsoils which may contain up to 2% total hard rock or 3% total chalk. These overlie similarly textured upper subsoils which may contain up to 10% total chalk. From 37-46cm, the heavy silty clay loam upper subsoils pass into soft marl chalk which continues to depth or becomes impenetrable to the soil auger from 55-72cm. Pit 1 (see Appendix II) is typical of these impenetrable chalky soils and confirmed that rooting into the chalk was evident at 100cm, and is likely to continue down to 120cm. Moisture balance calculations which take account of these soil properties and their interaction with the local climate indicate a minor soil droughtiness limitation, and Grade 2 is appropriate. In addition, the heavy nature of the topsoils, in the prevailing climate (160 FC Days), results in a soil workability limitation and Wetness Grade 2 is appropriate. In the south-west, two soil types are found. Pit 3 (see Appendix II) is typical of the chalky soils and is similar to pit 1. although the chalk is harder at depth and rooting less good. The other soil is most probably derived from the chalky drift deposits. These soils are well drained (Wetness Class I) with calcareous heavy silty clay loam or non-calcareous heavy clay loam topsoils which may contain up to 5% total hard chalk rock. These pass to similarly textured or clay upper subsoils which are variably stony ranging from 0-20% total hard chalk rock. These overlie similarly textured lower subsoils which may contain up to 30% total chalk or 15% total hard chalk rock. Some of these profiles were impenetrable to the soil auger from 60-75cm whilst others continue to 120cm without encountering chalk bedrock. Soil droughtiness calculations indicate a minor limitation which is combined with a soil workability limitation due to the heavy nature of the topsoil textures. A combined soil droughtiness and soil workability limitation may influence the level and consistency of yields, as well as affect the ease with which mechanised operations can be carried out or grazing by livestock.

Subgrade 3a

22 Good quality agricultural land has been classified over most of the site. A soil droughtiness restriction is the principal limitation. These soils are well drained (Wetness Class I) and comprise calcareous medium or heavy silty clay loam topsoils which may contain up to 10% flints or 15% chalk. These directly overlie chalk or pass through a very shallow heavy silty clay loam upper subsoil to the chalk beneath. From 30–78cm, the chalk was impenetrable to the soil auger. Pit 2 and 4 (see Appendix II) is typical of these soil variants and demonstrated the harder nature of the chalk. Roots were observed to depths of 70 and 75cm respectively and moisture balance calculations to this depth indicate Subgrade 3a is appropriate. The severity of the limitation will affect the level, particularly in drier years, and consistency of yield from year to year.

Subgrade 3b

23. Moderate quality land is limited by a gradient limitation. Gradients in the range 7°-11° were measured using an optical-reading clinometer; these gradients may affect the safe and efficient use of farm machinery. On the steeper slopes the potential for soil erosion is a secondary factor, causing rills and gullies with sediment burying crops down slope. Some areas of soil deposition resulting from erosion where noted around borings 26 and 31 at the time of survey (April 99).

Colin Pritchard Resource Planning Team Eastern Region FRCA Reading

SOURCES OF REFERENCE

British Geological Survey (1994) Sheet No. 237, Thame. BGS: London

Ministry of Agriculture, Fisheries and Food (1988) Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. MAFF: London.

Met. Office (1989) Climatological Data for Agricultural Land Classification. Met. Office: Bracknell.

Soil Survey of England and Wales (1983) Sheet 6, Soils in South East England.. SSEW: Harpenden.

Soil Survey of England and Wales (1984) Soils and their Use in South East England SSEW: Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1: Excellent Quality Agricultural Land

Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.

Grade 2: Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1 land.

Grade 3: Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops, the timing and type of cultivation, harvesting or the level of yield. When more demanding crops are grown, yields are generally lower or more variable than on land in Grades 1 and 2.

Subgrade 3a: Good Quality Agricultural Land

Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.

Subgrade 3b: Moderate Quality Agricultural Land

Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass, or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.

Grade 4: Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the range of crops and/or the level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.

Grade 5: Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

APPENDIX II

SOIL DATA

Contents:

I

Sample location map

Soil abbreviations - explanatory note

Soil pit and soil boring descriptions (boring and horizon levels)

.

SOIL PROFILE DESCRIPTIONS: EXPLANATORY NOTE

Soil pit and auger boring information collected during ALC fieldwork is held on a computer database. This uses notations and abbreviations as set out below.

Boring Header Information

- 1. GRID REF: national 100 km grid square and 8 figure grid reference.
- 2. USE: Land use at the time of survey. The following abbreviations are used:

ARA:	Arable	WHT:	Wheat	BAR:	Barley
CER:	Cereals	OAT:	Oats	MZE:	Maize
OSR:	Oilseed rape	BEN:	Field beans	BRA:	Brassicae
POT:	Potatoes	SBT:	Sugar beet	FCD:	Fodder crops
LIN:	Linseed	FRT:	Soft and top fruit	FLW:	Fallow
PGR:	Permanent pasture	LEY:	Ley grass	RGR:	Rough grazing
SCR:	Scrub	CFW:	Coniferous woodland	ОТН	Other
DCW:	Deciduous woodland	BOG:	Bog or marsh	SAS:	Set-Aside
HTH:	Heathland	HRT:	Horticultural crops	PLO:	Ploughed

- 3. GRDNT: Gradient as estimated or measured by a hand-held optical clinometer.
- 4. GLEY/SPL: Depth in centimetres (cm) to gleying and/or slowly permeable layers.
- 5. AP (WHEAT/POTS): Crop-adjusted available water capacity.
- 6. **MB (WHEAT/POTS)**: Moisture Balance. (Crop adjusted AP crop adjusted MD)
- 7. DRT: Best grade according to soil droughtiness.
- 8. If any of the following factors are considered significant, 'Y' will be entered in the relevant column:

MREL:Microrelief limitationFLOOD:Flood riskEROSN:Soil erosion riskEXP:Exposure limitationFROST:Frost proneDIST:Disturbed landCHEM:Chemical limitation

9. LIMIT: The main limitation to land quality. The following abbreviations are used:

OC :	Overall Climate	AE:	Aspect	ST:	Topsoil Stoniness
FR:	Frost Risk	GR:	Gradient	MR:	Microrelief
FL:	Flood Risk	TX:	Topsoil Texture	DP:	Soil Depth
CH:	Chemical	WE:	Wetness	WK:	Workability
DR:	Drought	ER:	Erosion Risk	WD:	Soil Wetness/Droughtiness
EX:	Exposure				

Soil Pits and Auger Borings

1. **TEXTURE**: soil texture classes are denoted by the following abbreviations:

S :	Sand	LS:	Loamy Sand	SL:	Sandy Loam
SZL:	Sandy Silt Loam	CL:	Clay Loam	ZCL:	Silty Clay Loam
ZL:	Silt Loam	SCL:	Sandy Clay Loam	C :	Clay
SC:	Sandy Clay	ZC:	Silty Clay	OL:	Organic Loam
P :	Peat	SP:	Sandy Peat	LP:	Loamy Peat
PL:	Peaty Loam	PS:	Peaty Sand	MZ:	Marine Light Silts

For the sand, loamy sand, sandy loam and sandy silt loam classes, the predominant size of sand fraction will be indicated by the use of the following prefixes:

- F: Fine (more than 66% of the sand less than 0.2mm)
- M: Medium (less than 66% fine sand and less than 33% coarse sand)
- C: Coarse (more than 33% of the sand larger than 0.6mm)

The clay loam and silty clay loam classes will be sub-divided according to the clay content: M: Medium (<27% clay) H: Heavy (27-35% clay)

- 2. MOTTLE COL: Mottle colour using Munsell notation.
- 3. MOTTLE ABUN: Mottle abundance, expressed as a percentage of the matrix or surface described:

F: few <2% C: common 2-20% M: many 20-40% VM: very many 40% +

- 4. MOTTLE CONT: Mottle contrast:
 - F: faint indistinct mottles, evident only on close inspection
 - **D**: distinct mottles are readily seen
 - P: prominent mottling is conspicuous and one of the outstanding features of the horizon
- 5. **PED. COL**: Ped face colour using Munsell notation.
- 6. GLEY: If the soil horizon is gleyed a 'Y' will appear in this column. If slightly gleyed, an 'S' will appear.
- 7. STONE LITH: Stone Lithology one of the following is used:

HR:	all hard rocks and stones	FSST:	soft, fine grained sandstone
ZR:	soft, argillaceous, or silty rocks	CH:	chalk
MSST:	soft, medium grained sandstone	GS:	gravel with porous (soft) stones
SI:	soft weathered igneous/metamorphic	GH:	gravel with non-porous (hard)
	rock		stones

Stone contents (>2cm, >6cm and total) are given in percentages (by volume).

8. STRUCT: the degree of development, size and shape of soil peds are described using the following notation:

Degree of development	WK: ST:	weakly developed strongly developed	MD:	moderately developed
Ped size	F: C:	fine coarse	M :	medium
Ped shape	S: GR: SAB: PL:	single grain granular sub-angular blocky platy	M: AB: PR:	massive angular blocky prismatic

9. **CONSIST:** Soil consistence is described using the following notation:

L: loose	FM: firm	EH: extremely hard
VF: very friable	VM: very firm	
FR: friable	EM: extremely firm	

- 10. SUBS STR: Subsoil structural condition recorded for the purpose of calculating profile droughtiness: G: good M: moderate P: poor
- 11. POR: Soil porosity. If a soil horizon has less than 0.5% biopores >0.5 mm, a 'Y' will appear in this column.
- 12. IMP: If the profile is impenetrable to rooting a 'Y' will appear in this column at the appropriate horizon.
- 13. SPL: Slowly permeable layer. If the soil horizon is slowly permeable a 'Y' will appear in this column.
- 14. CALC: If the soil horizon is calcareous, a 'Y' will appear in this column.

15. Other notations:

- APW: available water capacity (in mm) adjusted for wheat
- APP: available water capacity (in mm) adjusted for potatoes
- MBW: moisture balance, wheat
- MBP: moisture balance, potatoes

SAMF	LE	A	SPECT				WETN	IESS		IEAT-	-PC)TS~	M	.REL	EROSN	FRO	ST	CHEM	ALC	;
NO.	GRID REF	USE		GRDNT	GLEY	SPL CL	ASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ε	XP	DIST	LIMI	T	COMMENTS
۱ 2	SPR1500410	920	N	1		1		2	103	А	107	22	2					WD	2	CH45CM/1P
15	SP81600400	ASD.	NLJ	2		1		2	77	-21	79	-8	38					WD	2	CH37CM/1P
7	SPR1400390	058	NU	1		1		-	125	30	96	11	1					DR	34	CH30CM/1P
10	SP81700390	0SR	SLI	, २		1		2	102	7	107	22	2					LUC LUC	2	CH47CM/1P
17	SP81500370	OSR	NH	1		1		2	103	, 8	107	22	2					WD	2	CH46 AT1P
	0.01000070			•		•		-		-			-						-	
18	SP81600370	OSR	N	3		1		2	57	-41	57	-30	38					DR	3A	IMP36 CHALK
19	SP81700370	CER	SE	5		1		2	59	-39	59	-28	38					DR	3A	IMP35 CHALK
20	SP81800370	CER	N	5		1		1	103	8	95	10	2					DR	2	CH291MP90
24	SP81600350	OSR	N	2		1		1	122	24	93	6	2					DR	3A	CH29CM
26	SP81800350	CER	H	9						0		0						GR	38	GRADIENT
31	SP81300330	PGR	NM	6		1		1	116	21	116	31	2					DR	2	CH681MP88
37	SP81500310	PLO	NW	1		1		1	74	-24	75	-12	38					DR	- 3A	CH28IMP52
41	SP81700300	CER	SW	3		1		1	91	-7	96	9	3A			-		DR	34	CH36POSSGR2
42	SP80700290	CER	N	6		1		1	58	-40	58	-29	38					DR	34	CH26-2P/4P
43	SP81100290	CER				1		2	50	-48	50	-37	3B					DR	3A	CH25-2P/4P
48	SP81600290	CER				1		1	97	-1	92	5	3A					DR	3A	CH27IMP85
51	SP81800280	CER	S	2		1		2	56	-42	56	-31	3B					DR	3A	CH27IMP35
53	SP81200280	CER	SE	2		1		1	64	-34	64	-23	38					DR	3A	CH301MP40
55	SP81400280	CER	S	4		1		2	97	-1	99	12	3A					DR	3 A	CH40POSSGR2
56	SP81500280	CER	E	1		1		1	88	-10	92	5	3A					DR	3A	CH27IMP73
57	SP80700270	CER	SW	2		1		1	77	-21	78	-9	3B					DR	3A	CH37IMP52
58	SP80800270	CER	s	4		1	:	2	61	-37	61	-26	3B					DR	3A	CH29IMP37
60	SP81000270	CER	SW	5		1	:	2	51	-47	51	-36	3B					DR	3A	CH25 AT2P
63	SP81300270	CER	SH	5		1	:	2	95	-3	99	12	3A					DR	2	CH55
66	SP81600270	CER	S	5		1	:	2	62	-36	62	-25	38					DR	3A	CH301MP40
67	SP80800260	CER	S	5		1	1	2	76	-22	76	-11	38					DR	3A	CH37IMP50
68	SP80900260	CER	SW	4		1	:	2	105	7	113	26	2					WD	2	IMP70/3P
69	SP81000260	CER	SW	4		1	i	2	58	-40	58	-29	38					DR	3A	CH30IMP60
76	SP80200250	PL0	ε	2		1	:	2	107	9	95	8	2					WD	2	CH391MP95
78	SP80700250	CER				1		1	91	-7	92	5	2					DR	2	AT 3P
79	SP80800250	CER	s	4		1	:	2	88	-10	91	4	34					DR	2	CH401MP60/3P
81	SP81000250	CER	s	5		1		2	77	-21	77	-10	38					DR	34	AT 4P
84	SP81300250	CER	-	-		1		2	152	54	115	28	1					WK	2	SEE 3P
90	SP80800240	CER	s	2		1		2	113	15	93	6	2					WD	2	CH29I108/3P
92	SP80100230	PL0				1		2	102	4	94	7	за					WD	2	CH37190/3P
	000400000			2		-		-	05	~	102		74						~	
32	SP00700200	PLU	W .	3		1	i	۲ ۱	90	-2	103	15	SA 2					WK	2	TWK ON
- 98	SP80700230		NAMI	ו ס		1		י ה	117	19	102	15	2						2	UN421MP100
104 No=	SP80000220		N	2		1	i	2	1.35	40	113	20	1					WK	2	
105	SP00400310	PLU DI O	N	I		1	i ,	<u> </u>	141	43	112	20	1					WK LIM	4	
107	3280400210	#LU				1	í	2	141	43	118	1	I					WK	2	
114	SP80400190	PL0	NE	3		1	:	2	101	3	106	19	3A					WD	2	IMP 75
IP	SP81500370	OSR	NN	1		1	2	2	132	37	103	22	1					WK	2	CH43R00TS100

.

I

LIST OF BORINGS HEADERS 28/02/00 LAND SE OF P. RISBOROUGH

page 2

,

-	SAMP	LE	A	ASPECT				WETI	NESS	-WH	EAT-	-PC	TS-	м.	REL	EROSN	FROST	CHEM	ALC	
	NO.	GRID REF	USE		GRDNT	GLEY	SPL	CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Ð	P DIST	LIMIT		COMMENTS
	2P	SP81000250	CER					1	2	90	-8	92	5	3A				DR	3A	CH28R00TS75
	3P	SP80700250	CER	S	5			1	2	111	13	107	22	2				WD	2	CH55R00TS120
	4P	SP81000250	CER	S	5			1	1	90	-5	95	10	3A				DR	3A	CH37R00TS70

.

					MOTTLES	<u>}</u>	PED		\$	TONES-	s	TRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	ΩL	ABUN	CONT	COL.	GLEY >2	>6	LITH	tot o	ONSIST	STR POR	IMP SPL CALC	
2	0-26	HZCL	25Y 5152						0	0 HR	2			Ŷ	
6	2645	HZCL	25Y 62						0	0	0		м	Y	
	45-120	СН	25Y 72						0	0	0		M	Y	
5	0-28	HZCL	25Y 52						0	0 HR	2			Y	
	28-37	HZCL	25Y 63						0	0	0		M		
	37-55	СН	25Y 72						0	0	0		Р		
7	0-30	MZCL	10YR51						0	0 HR	2			Y	
	30-90	СН	25Y81						0	0 CH	1		м	Ŷ	
-	90-120	СН	25Y81						0	0 CH	1		M	Ŷ	
10	0-34	HZCL	25Y 5152						0	0 CH	4			Ŷ	
	34-47	HZCL	25Y 62						0	0	0		м	Y	
	47-68	HZCL	25Y 72						0	0 CH	30		Ρ	Ŷ	
17	0-34	HZCL	25Y 52						0	осн	3			Ŷ	
	34-46	HZCL	25Y 53						0	0 CH	10		м	Y	
	46-72	CH	25Y 8172						0	0	0		P	Y	
18	0-28	HZCL	25Y 51						0	0 CH	15			¥	
	28-36	СН							0	0	0		Ρ		
19	0-27	HZCL	25Y 51						0	0	0			Ŷ	
	27-35	СН							0	0	0		Ρ		
20	0-24	MZCL	25Y52						0	0 CH	6			Y	
-	24-30	HZCL	25Y53						0	0 CH	1		м	Ŷ	
	30-40	СН	25Y 8172						0	0	0		Р	Ŷ	
	40-90	СН	25Y81						0	0	0		Ρ	Y	
24	0-26	MZCL	25Y 52						0	0 СН	7			Y	
	26-29	HZCL	25Y 53						0	0 CH	10		Μ	Y	
	29-120	сн	25Y 8153						0	0	0		Ρ	Y	
26	0-0								0	0	0				38 GRADIENT
31	0-18	MZCL	25Y 52						0	0 CH	2			Y	
	18-68	HZCL	25Y 63						0	0 CH	15		Μ	Y	
	68-88	СН	25Y 8172						0	0	0		P	Y	
37	0-23	MZCL	25Y 52						0	0 CH	2			Y	
	23–28	HZCL	25Y 53						0	0 CH	10		м	Y	
	28-52	СН	25Y 8153						0	0	0		Ρ	Y	
41	0-27	MZCL	25Y 52						0	0 СН	3			¥	
	27-36	HZCL	25Y 53						0	0 CH	10		м	Y	
	3667	СН	25Y 8153						0	0	0		Ρ	Y	

•

-					MOTTLES	S	PED		STON	ES	STRUCT/	SUBS	
SAMPLE	DEPTH	TEXTURE	COLOUR	00L	ABUN	CONT	COL.	GLEY >2 >	6 LI	TH T	OT CONSIST	STR POR IM	P SPL CALC
42	0-26	MZCL	25Y 52					8	0	СН	15		Y
	26-38	СН	25Y 81					0	0		0	Ρ	Y
43	0-25	HZCL	25Y 52					0	0	СН	10		Y
1	25-30	СН	25Y 71					0	0		0	Ρ	
48	0-27	MZCL	25Y 52					0	0	сн	5		Y
	27-85	CH	25Y81					0	0		0	Р	Y
51	0-27	HZCL	25Y 52					3	0	сн	15		Ŷ
-	27-35	СН	25Y 81					0	0		0	Ρ	Ŷ
53	0-30	MZCL	10YR42					0	0	СН	10		Y
_	30-40	CH	10YR81					0	0		0	Ρ	Ŷ
55	0-25	HZCL	25Y 52					O	0	сн	5		Y
-	25-40	HCL	25Y 53					0	0	СН	10	M	
•	40-75	СН	25Y 71					0	0		0	Ρ	
56	0-27	MZCL	25Y 53					3	0	СН	10		Y
_	27-73	СН	25Y 81					0	0		0	Р	Y
57	0-18	MZCL	25Y 52					9	0 (СН	15		Y
-	18-37	HZCL	25Y 63					0	0 (СН	10	M	Y
1	37-52	СН	25Y 8163					0	0		0	Р	Y
58	0-29	HZCL	25Y 52					2	0 (СН	8		Ŷ
-	29-37	СН	25Y 81					. 0	0		0	Р	Y
60	0-25	HZCL	25Y 52					0	0 (сн	5		Ŷ
-	25-30	сн	25Y 71					0	0		0	Р	
63	0-30	HZCL	25Y 52					0	0 (сн	5		Y
-	30-55	HCL	25Y 53					0	0 0	сн	10	M	
•	55-60	СН	25Y 71					0	0		0	P	
66	0-30	HZCL	25Y 52					0	01	HR	10		Y
_	30-40	СН	25Y 71					0	0		0	Ρ	
67	0-25	HZCL	25Y 53					7	0 0	ж	13		Y
-	25-37	HZCL.	25Y 63					0	0 0	ж	10	М	Y
1	37-50	СН	25Y 81					0	0		0	Ρ	Y
68	0-30	HZCL	10YR52					o	0 0	ж	1		Y
-	30-55	HZCL	25Y 53					0	0 0	ж	5	м	
I	55-70	СН	10YR81					0	0		0	P	
- 69	0-30	HZCL	10YR52					5	0 0	ж	15		Y
•	30-35	СН	10YR81					0	0		0	Ρ	Y

I

8

	page	3
-		

					HOTTLE	S	PED	8	TONES	S STRUCT/	SUBS		
SAMPLE	DEPTH	TEXTURE	COLOUR	CO L	ABUN	CONT	COL.	GLEY >2 >6	LITH	I TOT CONSIST	STR POR IMP	SPL CALC	
76	0-27	HCI	10784243					0	оня	2 3		Y	
	27-39	C	10YR54					0	O HE	2 10	м	Ŷ	
	39-95	он Сн	257 72					0	0	0	P	Ŷ	
		u .						Ŧ	•	•	·	·	
78	0-25	HZCL	25Y 42					0	0 G	1 2		Y	
	25-78	HZCL	25Y 72					0	0	0	м	Y	
79	0-28	HZCL	25Y 53					2	0 CH	I 8		Y	
	28-40	HZCL	25Y 63					0	0 CF	I 10	м	Y	
	40-60	СН	25Y 8172					0	0	0	Р	Ŷ	
81	0-30	HZCL	25Y 52					1	0 CH	I 5		Y	
3	30-52	СН	25Y 72					0	0	0	м	Ŷ	
_ 84	0-20	HZCL	25Y 52					0	0 CH	I 5		Y	
•	20-60	HCL	25Y 53					0	0 CH	I 5	м		
4	60-120	HCL	25Y 53					0	0 CH	10	м		
90	0-29	HZCL,	25Y 53					0	0 CH	I 4		Y	
	29-108	СН	25Y 7281					0	O HR	5	Р	Y	V.SOFT
-													
92	0-22	HCL	10YR4243					0	O HR	4		Y	
	22-37	С	10YR4454					0	O HR	5	м	Y	
-	37-90	СН	25Y 72					0	0	0	Р	Ŷ	V.SOFT
0 5	0-28	H7C1	107841					5	2 (14	10		v	
	28-60	HTCL	257 63					0	0	0	м	· Y	
	20 00		201 00					•	Ū	Ū			
9 8	0-27	MZCL	25Y 4152					0	O HR	2		Y	
I	27-42	HZCL	25Y 53					0	0 HR	5	м	Y	
•	42-100	СН	25Y 72					0	0	0	Р	Y	
_													
104	0-35	HCL	10YR42					0	0 HR	2		Y	
	35-65	HCL	25Y 53					0	0 CH	5	м	Ŷ	
	65-120	сн	25Y 72					0	0	0	Р	γ	
•													
105	0-24	HCL	10YR42					0	0 HR	4		N	
	24-59	С	10YR44					0	0 HR	2	M /	N	
	59-120	HZCL	10YR54					0	O HR	15	м	Y	
	•							-	.	-			
- 107	0-30	HZCL	10YR42					0	OHR	5		Ŷ	
-	30-65	HCL	25Y 53					0	0	0	M	Y	
I	65-120	С	25Y 54					0	0 HR	10	м	Ŷ	
-		1170	10/040					-	• ··-	-			
114	0-28 20 55		10YR42					0		5 20	м	T V	
	20-03		101K44					0		20		r V	
	03-13	TIVE .	ا⊂ب (ل,2					v	u un	لى ت	13	T	

_

page 4

	-																		
_	_					MOTTLES	S	PED	~~~ ~	ST	ONES-		STRUCT/	SU	BS				
	SAMPLE	DEPTH	TEXTURE	COLOUR	COL	ABUN	CONT	COL.	GLEY >2 >	6	LITH	TOT	CONSIST	ST	r po	R IMF	9 SPL	CALC	
	19	0~29	HZCL	25Y 52					0		0 СН	3							
		29-43	HZCL	25Y 53					0		0 CH	15	MDCSAB	FR	М				
		43-120	СН	25Y 7262					0		0	0			P				PITTO100 AUG120
	2P	0~28	HZCL	25Y 52					2		0 СН	12						Y	
		2885	СН	25Y 8172					0		0	0			Р			Y	PITTO85 ROOTSTO75
	3P	0~28	HZCL	10YR42					0	I	0 HR	5						Y	
1		28~55	HZCL	25Y 72					Û	i	0 CH	25	MDCSAB	FR	M		-	Y	VERY PALE
		55-86	СН	25Y 72					0	ļ	0	0			Ρ			Y	PITTO86HARDCHROOT
	4P	0-24	MZCL	25Y 52					1		0 СН	4						Y	
		24-37	HZCL	25Y 6263					0	(0 СН	37	MDMSAB	FR	G	Ν		Y	
		37-70	СН	25Y 7281					0	1	0	0			Ρ			Y	PITT050 ROOTST065