A1

CHERWELL DISTRICT LOCAL PLAN REVIEW
Land at Milestone Farm Banbury Oxfordshre Semı Detalled Survey

Agricultural Land Classification
ALC Map and Report
December 1998

Resource Planning Team
RPT Job Number 3301/074/98
Eastern Region
FRCA Reading

AGRICULTURAL LAND CLASSIFICATION REPORT

CHERWELL DISTRICT LOCAL PLAN
 LAND AT MILESTONE FARM BANBURY OXFORDSHIRE

SEMI DETALLED SURVEY

INTRODUCTION

1 This report presents the findings of a semı detailed Agricultural Land Classification (ALC) survey of 644 hectares of land to the south west of Banbury in Oxfordshire The survey was carred out during December 1998

2 The survey was undertaken by the Farming and Rural Conservation Agency (FRCA) ${ }^{1}$ on behalf of the Ministry of Agriculture Fisheries and Food (MAFF) It was carried out in connection with MAFF s statutory input to the Cherwell District Local Plan This survey supersedes any previous ALC information for this land This survey lies adjacent to and over land previously classified in 1996 (FRCA Refs $301 / 036$ \& 037/96) Information from these studies has been incorporated into this survey

3 The work was conducted by members of the Resource Planning Team in the Eastern Region of FRCA The land has been graded in accordance with the published MAFF ALC guidelines and criteria (MAFF 1988) A description of the ALC grades and subgrades is given in Appendix I

4 At the tume of survey agricultural land within the area of survey was in a vantety of uses including winter cereals soft fruit on a pick your own enterprise and permanent grass much of which is currently utilised for grazins horses with in addition an area of amenity grassland to the south east of the site including the summit of Crouch Hill Areas marked as Other Land include housing with associated gardens farm buildings tracks and roadways a farm reservorr and woodland/unmanaged scrub

SUMMARY

5 The findings of the survey are shown on the enclosed ALC map The map has been drawn at a scale of 115000 It is accurate at this scale but any enlargement would be misleading

6 The area and proportions of the ALC grades and subsrades on the surveyed land are summarised in Table 1

7 The fieldwork was conducted at an average density of 1 boring per 12 hectares of agricultural land In total 47 borings and 4 soll pits were described during this survey

8 The agricultural land on this site has been classified in the range Grade 2 (very good quality) to Grade 4 (poor quality) with substantial areas mapped as Subgrade 3b (moderate quality) land and a small proportion as Subgrade sa (good quality) The principal limitations to land quality include soil wetness soll droughtiness topsonl workability and gradient

[^0]Table 1 Area of grides und ather lind

Grade/Other land	Area (hectares)	/ surveled area	/ site area
2	88	$1 \supset 2$	137
3a	18	31	288
3b	460	796	714
4	12	1	19
Other land	66		102
Total surveyed area	278	100	898
Total site arca	644		100

9 The majority of the site is mapped as Subgrade sb and is limited by soll wetness Soils across this area comprise a heavy clay loam or clay topsoll overlying similar subsoils The majonty of the subsoils significantly impede drainage this factor in combination with a heavy topsoil texture and the prevaling local climatic parameters lead to Subgrade 3 b being the most appropriate classification Soll wetness reduces the versatility of the land in terms of access by machinery (e g for cultivations or harvesting) and grazing by livestock if damage to the soil is to be avoided Soil wetness will also adversely affect seed germination and root growth and will therefore reduce the level and consistency of yields

10 Some of the Subgrade 3b and all of the land mapped as Grade 4 is limited by gradient The slopes in these areas were of sufficient gradient to restrict the safe and efficient use of farm machunery to the extent that the applied classification is appropriate

11 The area mapped as Grade 2 is limited by etther soll droughtiness soll wetness or topsoil workability The soils are variable across this area but most commonly comprise a heavy clay loam topsoil overlying stoneless to moderately stony heavy clay loam or clay subsorls These elther become impenetrable due to the presence of limestone/marlstone at moderate depths or pass to sandy loam and sand lower subsoils or pass to a poorly draned clay In the prevailing local climate the sandy and stony solls do not contain sufficient moisture throughout the growing season so that crops are not likely to acheve maximum potential As such crop quality and yields are likely to be adversely affected especially in drier years Some of the profiles examined contain sufficient mossture but because of etther heavy topsoils or poorly draned clays at moderate depths they are limited by topsoll workability and soll wetness respectively These limitations on land quality have the effect of restricting access to the land for grazing and/or cultivations during wetter periods is restricted if soil damage is to be avoided Also excessive wetness in the soil can affect crop establishment and growth

12 The area mapped as Subgrade 3a towards the south west of the site is principally restricted by soll droughtıness The solls in this area comprise heavy clay loam topsolls which overlie simular and clay subsorls The topsolls were shightly stony and the subsolls moderately to very stony These significant stone contents restrict the amount of water avalable to plants to the extent that in the local climate Subgrade 3a is appropriate on the basis of soll droughtiness the effects of which are described in paragraph 11 above

FACTORS INFLUENCING ALC GRADE

Clımate

13 Climate affects the grading of land through the assessment of an overall climatic limitation and also through interactions with soil characteristics

14 The key climatic variables used for grading this site are given in Table 2 and were obtaned from the published 5 km gnid datasets using the standard interpolation procedures (Met Office 1989)

15 The climatic criteria are considered first when classifying land as chmate can be overriding in the sense that severe limitations will restrict land to low grades irrespective of favourable site or soll conditions

16 The main parameters used in the assessment of an overall climatic limitation are averase annual rainfall (AAR) as a measure of overall wetness and accumulated temperature (AT0 January to June) as a measure of the relatıve warmth of a locality

Table 2 Clim itic ind iltitude dat I

Factor	Units	Values		
Grid reference	N/A	SP + +)	SP 4,73)8	SP 433400
Altutude	m AOD	125	140	15)
Accumulated Temperature	day C (Jan June)	1358	1340	1323
Average Annual Rainfall	mm	())	701	707
Field Capacity Days	days	158	158	159
Moisture Deficit Wheat	mm	101))	97
Morsture Deficit Potatoes	mm	90	88	86
Overall clımatic grade	N/A	Grade I	Grade 1	Grade 1

17 The combination of rainfall and temperature at this site mean that there is no overall climatic limitation Local climatic factors such as exposure and frost risk are not believed to affect land quality at this location The site is climatically Grade 1 However climatic factors do interact with soll properties to influence sorl wetness and soil droughtiness

Site
18 The site lies at altutudes in the approximate ranse of 125169 m AOD The highest land occurs in the south of the site at Crouch Hill The land falls away in all directions from this prominent local feature towards the lowest lying land along the Broughton Road which bisects the ste The land then rises again towards the noth of the ste becomms almost flat towards Withycombe Farm at around 155 m AOD Some gradients within the site are sufficient to adversely affect land quality to the extent that Subgrade 3 b and Grade 4 has been mapped in the vicinity of Crouch Hill and to the north of Milestone Farm on the basis of gradient Other site factors such as microrelief and flooding aie not present on the site and therefore do not adversely affect agricultural land quality

Geology and soils

19 The most detailed published geological information for the site (BGS 1982) shows the north of the site near Withycombe Farm to be underlan by Jurassic Marlstone Rock Beds Moving south the land is shown as being underlain by a series of deposits including Chipping Norton hmestone Northampton Sands and the sandy Lower Estuarine Series before much of the reminder of the site to the south of Milestone Farm is mapped as the Jurassic Upper Lias Clays An outcrop of the Marlstone Rock Bed is shown in the south west of the site close to Crouch Hill Farm

According to the most recent published information available for this area (SSEW 1983) the area of survey is underlain by two soll associations namely Banbury and Denchworth The Denchworth association is mapped across the majority of the site especially where the clayey Upper Las geology is shown The solls are described as comprising Slowly permeable seasonally waterlogged clayey soils with similar fine loamy over clayey solls Some fine loamy over clayey soils with only shght seasonal waterlogging and some slowly permeable calcareous clayey solls Landslips and associated ırregular terrain locally (SSEW 1983) The Banbury association is mapped across the remainder of the site to the north and south west The soils in these areas are described as Well dramed brashy fine and coarse loamy ferruginous solls over tronstone Some deep fine loamy over clayey solls with slowly permeable subsoils and slight seasonal waterlogging (SSEW 198 د) Soils sımilar to both the above descriptions were found over the majority of the site with the addition that some of the land mapped as being underlain by Banbury solls contained limestone as well as ironstone

AGRICULTURAL LAND CLASSIFICATION

21 The details of the classification of the site are shown on the attached ALC map and the area statistics of each grade are given in Table 1 on page 1

22 The location of the auger borings and pits is shown on the attached sample location map and the detalls of the solls data are presented in Appendix II

Grade 2

23 Land of very good qualty has been mapped towards the north of the site on land adjacent to the previous 1996 survey ($3301 / 036 / 96$) The land in this area is principally limited by a combination of soll droughtiness wetness and topsoil workability The soil pit 1 P (see Appendix II) is representative of the majority of solls in this area although considerable variation was observed

24 Sols generally comprise a medium silty clay loam or more commonly a heavy clay loam topsoil which in most cases passes to sımilar heavy silty clay loam and clay subsorls Towards the south of the unit heavy clay loam upper subsolls pass to medium sandy loam and medium sand lower subsolls The majonty of the souls were stoneless or very slightly stony containing up to 5% limestone and/or ironstone fragments by volume Occasıonal observations were impenetrable due to an increase in stone content at a moderate depth This has the effect of restricting the volume of water avalable for crop, towth creating a slight soll droughtiness limitation This effect is also seen where the lower subsolls are of a sandy nature Soil droughtiness adversely affects crop yields and the variability of yields is also likely to be affected by prevaling weather conditions dum, the „rowns season

Many of the soils in the Grade 2 unit are affected by a combination of very slight soll wetness and/or topsoll workability The profiles exhibited signs of wetness by being gleyed or slightly gleyed at moderate depths Where the clays were gleyed pit 1 P shows that they were slowly permeable Slowly permeable horizons cause drainage to be impeded and this may lead to gleying in the upper honzons The moderate depth of the gleyed and slowly permeable horizons in the profile lead in the prevailing local climate to Wetness Classes I and II being applied Soil wetness may adversely affect crop growth and development At this level it can also slightly limit the flexibility of the land by reducing the number of days when the soil is in a suitable condition for cultivation trafficking by machinery or grazıng by hivestock Nevertheless such land is suitable for a wide range of agncultural and horticultural uses

With the heavy topsorls present across most of this area these sols are classified as Grade 2 because cultivations and grazing opportunities are likely to be slightly restricted without damage to the sotl structure created by compaction and/or poaching of the surface especially durng wetter periods or the winter months Occasional observations in the Grade 2 unt are of both slightly better and slightly worse quality but their scattered location within the unit preclude separate mapping

Subgrade 3a

27 Good quality land has been mapped in a single unit towards the south west of the area surveyed The soils here are typified by soil pit 4P (see Appendix II) All the profiles observed were well drained (Wetness Class I) The soils typically comprise heavy clay loam or clay topsoils passing to simularly textured subsoll horizons which were impenetrable to the soil auger between 45 and 67 cm Topsoll stone contents were typically very slight in the range 08% hard stone fragments by volume with a maximum of $2 \%>2 \mathrm{~cm}$ diameter In the upper subsoll a maximum of 20% hard stone was recorded although 510% is more typical The pit (4P) shows that at this location the upper subsoll stone content was much greater than had previously been estımated with 51% hard marlstone recorded This passed at the approximate depth of impenetrability to the soll auger to a very stony clay lower subsoll $(65 \%$ stone by volume) In the local climate these soll properties lead to Subgrade 3a being appropriate as the moisture avalable to plants is restricted by the volume of stones present in the profile as a whole The result is that crop yields are adversely affected and the consistency of these yields is less predictable especially of conditions during the growing season are dry

Subgrade 3b

28 The majority of the asricultural land within this survey area has been classified as being of moderate quality Land quality is principilly restricted by soll wetness Soll pits 2 and 3 (see Appendix II) as well as pit 1 from the previous survey (FRCA Ret 2201/0, $7 / 96$) are typical of the soll types present in this area

29 The principal soll type comprises a heavy clay loam or clay topsoll passing to clay subsolls All the subsolls showed signs of soll wetness ie they were gleyed or occasionally slightly gleyed The pit observations indicate that the subsoils are poorly structured and slowly permeable In the local climate the depth to these drainage impeding horizons causes these profiles to be placed in Wetness Class IV Given the local climate and the observed topsoll textures a Subsrade 3b classification is therefore appropriate The consequences of soll wetness are described above (parasraph 25) However in this area the effects are likely to be more severe than on the Grade 2 land in the noth of the site

30 The second soil type in this area is also limited to Subgrade $s b$ by soil wetness it is principaily located towards the south west of the site The soils in this area are characterised by soil pit 2 and comprise a heavy clay loam topsorl overlying two different clay subsolls The topsoil and upper subsoll are very slightly or slightly stony containing up to 15% relatively soft ironstone by volume These pass at moderate depths to a stoneless poorly structured slowly permeable clay sımilar to that elsewhere in the Subgrade sb unit The moderate depth of the slowly permeable horizon leads to Wetness Class III being applied Given the local clımate and the poor workability of heavy clay loam topsoils Subgrade 3 b is again the appropriate classification here

31 Subgrade 3b has also been mapped on the basis of gradient in two parts of the site To the immediate north of Milestone Farm and around Crouch Hill slopes were measured in the range 711 These are sufficient to adversely affect agricultural land quality as some precision farm machinery cannot be safely operated in this area Therefore Subgrade 36 has been apphed because other factors such as the soil conditions are not more limiting although they are equally limiting over much of this area

Grade 4

32 To the north east of Milestone Farm and towards the summit of Crouch Hill poor quality land has been identified The principal limitation heie is gradient Slopes were measured to be in excess of 11 This is sufficient to restrict the safe and efficient use of most precision farm machinery Grade 4 is therefore the most appropriate classification for this land

SOURCES OF REFERENCE

Britısh Geological Survey (1982) Sheet No 201 Banbury Solıd and Drift Edition 150000 Scale BGS London

Ministry of Agnculture Fisheries and Food (1988) Asricultural Land Classification of England and Wales Revised gudelines and criteria for grading the quality of agricultural land MAFF London

Met Office (1989) Climatological Data for A\& ricultural Land Classificatıon Met Office Bracknell

Soul Survey of England and Wales (1983) Sheet 6 Soils of South East England 1250000 Scale SSEW Harpenden.

Soul Survey of England and Wales (1984) Solls and then Use m South East England SSEW Harpenden

APPENDIX I

DESCRIPTIONS OF THE GRADES AND SUBGRADES

Grade 1 Excellent Quality Agricultural Land

Land with no or very minor limutations to agricultural use A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit soft fruit salad crops and winter harvested vegetables Yields are high and less variable than on land of lower quality

Grade 2 Very Good Quality Agricultural Land

Land with minor limitations which affect crop yield cultivations or harvesting A wide range of agnicultural or horticultural crops can usually be grown but on some land of this grade there may be reduced flexibility due to difficultes with the production of the more demanding crops such as winter harvested vegetables and arable root crops The level of yield is generally high but may be lower or more variable than Grade 1 land

Grade 3 Good to Moderate Quality Land

Land with moderate limitations which affect the choice of crops the timing and type of cultivation harvesting or the level of yield When more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2

Subgrade 3a Good Quality Agricultural Land

Land capable of consistently producing moderate to hish yields of a narrow range of arable crops especially cereals or moderate yields of a wide range of crops including cereals grass orlseed rape potatoes sugar beet and the less demanding horticultural crops

Subgrade 3b Moderate Quality Agricultural Lind

Land capable of producing moderate yields of a nar row range of crops principally cereals and grass or lower yields of a wider range of crops or hish yields of grass which can be grazed or harvested over most of the year

Grade 4 Poor Quality Agricultural Land

Land with severe limitations which significantly restrict the ranse of crops and/or the level of yields It is mainly suited to grass with occasional arable crops (e g cereals and forage crops) the yields of which are variable In morst clımates yields of grass may be moderate to high but there may be difficulties in utilisation The grade also includes very droughty arable land

Grade 5 Very Poor Quality Agricultural Land

Land with severe limitations which restrict use to permanent pasture or rough grazing except for occasıonal pioneer forage crops

APPENDIX II

SOIL DATA

Contents

Sample location map
Soil abbreviations explanatory note
Soil boring descriptions (boring and horizon levels)

SOIL PROFLLE DESCRIPTIONS EXPLANATORY NOTE

 set t bel w

Boring $\mathbf{H} \mathbf{d} \quad \operatorname{lnf} \mathrm{rm} \mathbf{t}$
I GRID REF natıonal 100 km gnd sq ar and 8 f gure grid f re
2 USE Land se th tim f rvy Th fillwing bbre t ns ar d

ARA	Arabl	WHT	Wheat	BAR	Barl y	
CER	Cereal	OAT	O ts	MZE	M 2	
OSR	O Iseed rape	BEN	F ld beans	BRA	B ass ca	
POT	Potatoes	SBT	S gar beet	FCD	Fodder cr p	
LIN	Linseed	FRT	$S \mathrm{ft}$ and top in t	CLW	$F \\|$ w	
PGR	Permanent past re	LEY	Ley grass	RCR	R gh grazıng	
SCR	Scrub	CFW	C nufer woodl d	OTH	Oth	
DCW	Dec d us woodland	BOG	Bog marsh	SAS	Set Asd	
HTH	Heathland	HRT	H rt lt ral cr p	PLO	Pl gld	

3 GRDNT Gradient as estimated m as ed by hand h ld $\mathrm{pt} \quad \mathrm{l}$ t
4 GLEY/SPL Depth in centum tres (cm)t glying and/I wlypern bl is r
5 AP(WHEAT/POTS) C p-dj st $d \quad \operatorname{lbl} w i \quad p$ ty
6 MB (WHEAT/POTS) M ist re B lance (Crop dj sted AP or p dj $t \mathrm{dMD}$)
7 DRT Best grade cco ding t soldr ghtıness

MREL	Macr rel flmitat	HLOOD	I lood	k	EROSN	S 1 ros $\pi \mathrm{mk}$
EXP	Expos 1 mat	HROST	1 t p		DIST	Dst bedl d

9 LIMIT Th m in limutat on t land q lty Th follow g bb $t \quad d$

| OC | O erall Climat | AL | Aspect | ST | TpiSt ess |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FR | F ost Rusk | GR | Grad t | VR | Mcr If |
| FL | Flood Risk | TX | T psolTxt | DP | S IDepth |
| CH | Chemeal | WE | W tness | Wh | W kblty |
| DR | Dro ght | FR | E os R k | WD | S IW tness/Dr ght ess |
| EX | E pos | | | | |

Soil Pits and Ag B ring

1 TEATURE it t lasses ar d ted byth $f l l$ ung bb t is

S	Sand	LS	Lo my S d	SI	S dy	Lo	
SZL	Sandy S It Loan	CL	Cl y Loar	/CL	S lit	Cl y Loar	
ZI,	S it Loam	SCL	Sandy Cl y Lo	C	$\mathrm{Cl} y$		
SC	Sandy Cl y	ZC	S liy Cl y	OI	Orga	Loam	
P	P t	SP	Sandy P t	1 P	Lo	Y^{P} t	
PL	P ty Loam	PS	P ty ${ }^{\text {d }}$	M7	Mar	Lglt ${ }^{\text {d }}$	

F Fin (m than $66 / \mathrm{fth}$ sand lss than 02 nn)
M Med m (less than $66 / \mathrm{f}$ and and less than $33 /$ ar d)
C \quad C arse (m than $33 / \mathrm{fth}$ sand larg than 06 m)
Th 1 yl am and ity $\mid \mathrm{yl} \mathrm{m}$ lasses wilbe b-d $\mathrm{d} d \quad \mathrm{~d} \mathrm{gt} \mathrm{it} \mid \quad \mathrm{t}$
M Mdm($27 / \mathrm{l}$ y) H H vy $(2735 / \mathrm{ly}$)

4 MOTTLE CONT M tul co trast

PED COL Ped feecol ing M nsell tat n.

6 GLEY If th Ih riz glyed Y will ppear $t \mid 1 \mathrm{nn}$ If I ghtly gleyed, an S wil ppear
7 STONE LITH St Lith 1 gy fth f ll wing is sed

STRUCT th degree fd 1 pment, iz and sh pe f lpeds ar described g th f II wing tat
Degree of de 1 prnent

Ped size

Ped hape

CONSIST S 1 oris sten described ing th $f 11$ ing t

 POR S I porosty If solhonz has less than $05 / \mathrm{b}$ opo $>05 \quad \mathrm{Y} \quad$ ll ppear \quad I $\quad \mathrm{I}$ in

CALC If th solh riz Icareo Ywil ppearint I
Other tat ons

APW	I bl w ter	pacty (unm) dj st df
APP	1 bl w ter	p ty (tnmm) dj st df ptt
MBW	m st b lan	wh t
MBP	m ist reb lan	potatoes

AMP		ASPECT					-WETNESS		-hwEAT		POTS		M REL.		EROSN	FROST	CHEM	ALC	COMMENTS
NO	GRID REF	USE		GRDNT	GLEY	SPL.	CL.ASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	Exp	DIST	LIMIT		
1	SP43304020	PGR	W	2			1	1	160	61	124	36	1					1	
2	SP43304010	CER	W	1			1	2	100	1	112	24	3A				OR	3 A	IMP 75
3	SP43404010	CER	W	1			1	2	134	35	112	24	1				WK	2	
4	SP43504010	CER	E	1	65	65	2	3A	133	34	113	25	1				WE	3 A	IP location
6	SP43304000	CER	W	1			1	2	151	52	113	25	1				WK	2	
7	SP43404000	CER			35	35	4	38	86	13	92	4	3A				WE	38	
8	SP43504000	CER	N	3	65		1	2	122	23	104	16	2				DR	2	
9	SP43604000	RGR			39	22	4	38	83	16	89	1	3A				WE	38	SL GLY 220 M
10	SP43704000	RGR	N	2	24	24	4	38	84	15	90	2	3A				WE	3 B	
11	SP43503990	PGR	S	2	40		1	1	124	25	115	27	2				OR	2	
12	SP43603990	PGR	S	2	19	30	4	38	132	33	110	22	1				WE	3 A	
13	SP43683994	PGR	2	S	18	45	4	38	106	7	108	20	2				WE	3B	IMP80 LSTONE
16	SP43603980	PGR	N	6	26	26	4	38	83	16	89	1	3A				WE	3B	
17	SP43703980	PLO	N	4	20	20	4	38	80	19	86	2	3A				WE	38	
18	SP43803980	PLO	S	5			1	1	72	27	72	16	38				DR	3A	IMP 45 HR
20	SP43603970	PGR	N	1	20	20	4	38	87	12	99	11	3 A				WE	38	
21	SP43703970	PLO			20	20	4	38	87	12	99	11	3A				WE	3B	
22	SP43803970	PLO			20	20	4	38	77	22	80	8	38				WE	3B	
${ }^{25}$	SP43503960	PGR			38	38	4	38	85	14	90	2	3 A				WE	3B	
26	SP43603960	PGR			45	45	3	38	94	5	103	15	3A				WE	38	
27	SP43703960	CER	S	1	25	40	4	38	99	0	103	15	3A				WE	38	
30	SP44003960	PGR	N	2	0	32	4	38	87	12	93	5	3 A				WE	38	
${ }^{31}$	SP43403950	HRT			52	52	3	3 B	121	22	112	24	2				WE	3B	
32	SP43503950	STB					1	2	154	55	119	31	1				WK	2	
33	SP43603950	PLO			35	35	4	3 B	90	9	96	8	3 A				WE	3 B	
38	SP44103950	PGR	NE	5	22	22	4	38	83	16	89	1	3A				WE	3B	
39	SP43403940	HRT	N	5	30	42	4	38	92	7	99	11	3A				WE	38	2P location
40	SP43503940	FRT	N	5	42	42	3	38	91	8	98	10	3A				WE	38	
41	SP43603940	FRT	N	4	60	60	2	38	105	6	112	24	2				WE	38	CLAY TOPSOIL
42	SP43713946	CER	N	2	32	32	4	38	100	1	105	17	3A				WE	38	QSPL32 WC3 38
43	SP43823940	CER	N	7	25	25	4	38	99	0	104	16	3A				WE	38	38 GRADIENT
45	SP43973941	CER	N	5	27	27	4	3B	79	20	79	9	3 A				WE	38	
47	SP44203939	OTH	E	5	14	14	4	3B	71	28	71	17	38				WE	38	
48	SP43403930	FRT	N	2			1	2	76	23	76	12	38				DR	38	IMP45 4P LOC
49	SP43503930	FRT	N	4			1	2	97	2	107	19	3 A				DR	3A	IMP 67 HR
50	SP43603930	FRT	N	2			1	3A	83	16	87	1	3A				wo	3 A	IMP 55 HR
${ }^{51}$	SP43703930	FRT			42	42	3	38	87	12	94	6	3A				WE	3B	
52	SP43623926	PGR	NW	4	22	40	4	38	102	3	107	19	3A				WE	3B	3P location
58	SP43403920	PLO			33	33	4	38	81	18	83	5	3A				WE	38	
	SP43503920	HRT			27	27	4	38	76	23	76	12	38				WE	38	
${ }_{60}$	SP43603920	FRT			55	55	3	38	102		110	22	3A				WE	38	
62	SP43803920	CER	NW	4	30	30	4	38	101	2	106	18	3A				WE	38	C PLASTIC $30+$

SAMPLE		ASPECT			GLEY	SPL	-WETNESS		-HHEAT		POTS		M REL		EROSN	FROST	CHEM	ALC	COMMENTS
NO	GRID REF	USE		GRDNT			CLASS	GRADE	AP	MB	AP	MB	DRT	FLOOD	EXP	DIST	LIMIT		
64	SP44003920	CER	S	9	50	50	3	38	101	2	113	25	3A				WE	38	3B GRADIENT
66	SP44203920	CER	S	2	25	25	4	38	99	0	104	16	3 A				WE	3B	
68	SP43703910	CER	SW	3	28	28	4	38	100	1	105	17	3A				WE	3 B	
70	SP43903910	CER	S	1	27	27	4	38	93	-6	105	17	3A				WE	38	
71	SP44063909	CER	S	4	22	22	4	38	97	2	102	14	3A				WE	38	
1 P	SP43504010	CER	E	1	63	63	2	3 A	106	7	114	26	2				WE	3 A	PIT 80 e ASP
2P	SP43403940	HOR	N	5	27	51	3	38	93	6	105	17	3A				WE	38	PIT 70 e ASP3
$3 P$	SP43703930	PGR	N	3	25	25	4	38	85	14	91	3	3A				WE	38	PIT 60 Q ASP5
4 P	SP43403930	PGR	N	1			1	2	76	23	83	5	38				OR	38	PIT 70 @ ASP48

38	022	HCL	$10 \mathrm{YR51}$	$10 \mathrm{YR46}$	M
	2260	C	25 Y 61	10 YR 68	M

\mathbf{Y}	0	0	0
\mathbf{Y}	0	0	0

P	Y	PLASTIC
M		2P LOCATION
P	Y	
M		
P	Y	

PLASTIC
2P LOCATION

[^0]: ' FRCA is an evecutue quencr of MAFF und the Welsh Office

